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Abstract: The standard matrix factorization methods for recommender systems suffer from data
sparsity and cold-start problems. Thus, in real-world scenarios where items are commonly associated
with textual data such as reviews, it becomes necessary to build a hybrid recommendation model
that can fully utilize the text features. However, existing methods in this area either cannot extract
good features from the texts due to their order–insensitive document modeling approaches or fail
to learn the hybrid model in an effective way due to their complexity of inferring the latent vectors.
To this end, we propose a deep hybrid recommendation model which seamlessly integrates matrix
factorization with a Convolutional Neural Network (CNN), a powerful text feature extraction tool
with the capability of detecting the information of word orders. Unlike previous works which use
content features as prior knowledge to regularize the latent vectors, we combine CNN into MF in
an additive manner to allow training CNN with direct learning signals. Furthermore, we propose
an adversarial training framework to learn the hybrid recommendation model, where a generator
model is built to learn the distribution over the pairwise ranking pairs while training a discriminator
to distinguish generated (fake) and real item pairs. We conduct extensive experiments on three
real-world datasets to demonstrate the effectiveness of our proposed model against state-of-the-art
methods in various recommendation settings.

Keywords: hybrid recommendation model; matrix factorization; generative adversarial learning;
convolution neural network

1. Introduction

In recent years, many commercial websites have employed recommender systems to provide
better services for their customers. Recommender systems aim to match items to users through
exploring the hidden connections between users and items. One of the most successful techniques
for recommender systems is collaborative filtering based upon Matrix Factorization (MF) [1–7].
A standard MF-based approach aims to discover latent similarities among users and items from
user–item interaction data, such as clicks and ratings, by learning user and item vectors whose dot
products predict the users’ preference scores over items.

Although these MF-based methods have been shown to achieve promising recommendation
results, they typically suffer from data sparsity and cold-start problems. In real-world scenarios, a user
commonly interacts with only a tiny number of items in the system and an item is also consumed
by only a minority of users. As a result, standard MF-based methods may fail to capture effective
collaborative information based on the extremely sparse user–item interactions In addition, it is
practically infeasible for matrix factorization to obtain meaningful latent factors of new users or items
which are associated with no interaction data (a.k.a., cold-start problem). To address these issues, plenty
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of work have attempted to build hybrid recommendation models by exploiting auxiliary content data
information to aid MF-based collaborative filtering [8–16]. A common approach to building a hybrid
model is to bridge together the content feature modeling and matrix factorization. These methods
range from non-DL (Deep Learning) to DL-based models, with their major difference lying in their
ways of learning auxiliary features from the content data. Deep hybrid models [9,10,13–16], by using
DL techniques to extract deep content features, have recently shown superior performance than
traditional non-DL based models, which adopts shallow representation learning techniques, such as
LDA [8,11,17].

In principle, these hybrid models can be built from a probabilistic perspective, where content
features are incorporated as priors into MF to regularize the latent user and item vectors [8,9,16,18].
However, this probabilistic treatment involves manually tuning additional regularization parameters
and limits the use of other non-MF based collaborative filtering methods. Besides, since the exact
inference for latent variables is usually intractable, the estimation of model parameters has to rely on
approximation methods, such as maximum a posteriori inference (i.e., maximum likelihood estimation
with regularization terms). Moreover, most existing deep hybrid models detect the content features
through auto-encoders [9,13,15]. However, auto-encoders assume the bag-of-words model by ignoring
contextual text information such as surrounding words and word orders. Thus, they are unable to
fully capture document features in text-aware recommendation scenarios where items are commonly
associated with text information such as reviews .

In order to address the aforementioned problems, this paper first develops an adversarial
training framework to learn a deep hybrid recommendation model. Specifically, we specify the
recommender model as a generator to generate item ranking pairs while introducing an adversarial
discriminator that evolves to discriminate between the real data and the generated data. Compared
with maximum likelihood estimation, this indirect approach to learning the probability distribution
offers more flexibility and has shown promising results in learning latent variable models [19–22].
Maximum likelihood estimation is theoretically equivalent to maximizing the Kullback–Leibler
divergence between the data distribution and modeled distribution, whereas the adversarial paradigm
corresponds to maximizing the Jensen–Shannon divergence, which may thus boost the capability
of learning the distributional features over the collaborative patterns [19,21]. Second, in our training
framework, the specification of generator is a flexible design choice and we apply a Convolutional
Neural Network (CNN) [23–26] to extract deep features in the document data. CNN has proven to be
a powerful technique to capture local features of images or documents through modeling components
such as local receptive fields, shared weights and subsampling [27–30]. We seamlessly integrate the
CNN content feature extraction module into our hybrid model to enhance both cold start and wart
start recommendation.

To summarize, our main contributions are:

• We propose an adversarial training paradigm to learn a hybrid recommendation model, which,
compared to maximum a posteriori estimation, enjoys more powerful capability of the learning the
distribution over user behavior data. Specifically, we train a pair-wise ranking model (generator)
to capture the distribution over positive-negative item pairs, while in the mean time learning
a discriminator to guide the training of the generator. The parameters of the two component
models are learned by letting them play a mini-max game.

• The generator is specified as a deep hybrid model, where a Convolutional Neural network
(CNN) is seamlessly incorporated into matrix factorization to extract high-level features from the
content data. Unlike previous methods, which use content features to regularize latent vectors,
we combine CNN into MF in an additive manner, allowing CNN to be trained via direct learning
signals without tuning additional regularization parameters.

• We conduct extensive experiments on three real-world datasets and show that our model
outperforms the state-of-the-art methods in both cold-start and warm-start recommendation
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settings. Also, we demonstrate the effectiveness of the proposed adversarial learning paradigm
and CNN in document feature extraction in our proposed hybrid model.

2. Related Work

2.1. Hybrid Recommendation Model

To deal with data sparsity and cold-start problems, hybrid recommendation models resort
to exploiting auxiliary content data (a.k.a. side information) descriptive of users or items,
such as demographics of a user and document descriptions of a movie, to aid collaborative
filtering [8,12,17,27,28,31,32]. Typical methods include Collective Matrix Factorization (CMF) [12]
which simultaneously factorizes several matrices to inject the content information into latent user and
item vectors, and Collaborative Topic Regression (CTR) [8,17] which combines matrix factorization
with the topic models that discover latent topics of the content data. However, these models use
shallow feature learning methods and are, thus, unable to extract deep knowledge in the content data.

As a powerful feature extraction technique, Deep Learning (DL) has recently gained wide
popularity for building hybrid recommendation models [9,10,14,23–26,30,33]. The key idea of these
deep hybrid models is to combine MF based collaborative filtering methods with deep learning
techniques, where deep content features are incorporated as prior knowledge into matrix factorization.
The superiority of these models over previous non-DL methods [8,12,17,31] mainly lies in the
introduction of DL for extracting high-level features from the content data.

From a probabilistic perspective, both DL and non-DL hypbrid recommendation models
essentially share the same goal with the standard plain MF-based methods [2,8,9,34,35] and focus
on approximating the real distribution over user–item interactions. However, the complex structure
of these hybrid (especially DL-based) models makes it hard to exactly infer the latent user and item
vectors. Therefore, they typically resort to Maximum A Posteriori estimation (MAP) to learn model
parameters and infer the latent variables.

2.2. Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN) has recently proven to be effective at learning
data distributions in various applications such as image analysis and natural language
processing [19,22,36,37]. Instead of optimizing the likelihood of data (i.e., minimizing the
Kullback-Leibler divergence between the data distribution and model distribution), GAN aims to
find a data distribution that is capable of generating samples which are indistinguishable from real
data samples by a discriminator. The superiority of such likelihood-free learning mechanism is
that it does not require inference of latent variables and thus can be more applicable in learning
latent variable models. Another advantage of GAN training is that its objective is to minimize the
Jensen-Shannon divergence rather than Kullback-Leibler divergence between the data distribution
and model distribution [20–22,38].

Despite the tremendous success of GAN in learning distributions with latent variables, little
attention has been paid to the area of recommender systems. Recently, IRGAN [39] builds a
recommender model from an information retrieval perspective and brings the idea of GAN into
item recommendation, where a conditional softmax generator is used to generate relevant items for a
given user (query), and a discriminator is used to distinguish the generated samples from the positive
observations [39]. This implementation is reasonable in IR where the retrieval module has been given
a candidate set of items. However, it requires ranking the whole set of items and, as a result, cannot
scale well to a large number of items in item recommendation. The scalability problem becomes even
more serious when modeling content data associated with items and thus the effectiveness of learning
a hybrid model in an adversarial framework remains unclear in the literature.
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3. Adversarial Deep Collaborative Filtering

3.1. General Framework

We deal with binary implicit feedback such as clicks and purchases, where only positive
interactions are observed. In particular, we aim to approximate the underlying distribution over
user behavioral data by a parameterized model pθ . Typically, the data distribution can be expressed in
three forms: point-wise [2,3], pair-wise [40–42] and list-wise [43,44]. While the point-wise distribution
is easy to implement, it ignores the ranking nature of recommendation. On the other hand, the list-wise
approaches fail to model inter-list loss and are inefficient on large scale datasets. We therefore focus on
learning the pair-wise distribution, which has previously shown to be effective in both non-DL and DL
based collaborative filtering models [40,45,46].

Following [40,41], we construct a pair-wise training set as follows:

S = {s = (u, j, j′)|u ∈ U ∧ j ∈ Iu ∧ j′ ∈ I/Iu}, (1)

where U and I represent the whole user and item set, respectively, and Iu represents the set of items
that user u has interacted with. A sample s = (u, j, j′) is used to indicate that user u prefers item j over
item j′ [40,41]. Accordingly, we use pθ(s = (u, j, j′)) to model the probability that user u likes item j
better than item j′. Note that pθ is not a single distribution but a series of correlated distributions over
the training data S, subject to the totality order constraint that pθ(s = (u, j, j′)) = 1− pθ(s = (u, j′, j))
when j 6= j′ [40].

Given the training set S, the learning task is to estimate the parameters of the generator pθ . Instead
of maximizing the likelihood of observing S, we follow the idea of generative adversarial network
(GAN) [19] to learn the parameters θ by simultaneously training two models: a generative model
pθ that generates data samples, and a discriminative model Dw parameterized by w that estimates
the probability that a sample comes from the training data rather than the generator. The training
procedure is to let the two components play a mini-max game: pθ varies its parameters to generate
data that maximize the probability of Dw making a mistake, whereas Dw is trained to draw a clear
distinction between the ground-truth samples and the generated ones. When the two components
reach a balance, we obtain the desired model pθ that is able to produce samples indistinguishable from
real data by Dw.

Formally, we perform the following min-max optimization over the generator parameters θ and
discriminator parameters w:

min
θ

max
w
{Es∼pr [logDw(s)] + Es∼pθ

[log(1− Dw(s))]}, (2)

where pr denotes underlying real data distribution. We discuss the specific parameterization of pθ

and Dw in the following subsections. We dub the proposed method as Adversarial Deep Hybrid
Recommendation (ADHR) model and illustrate its learning framework in Figure 1.
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Figure 1. Illustration of Adversarial Deep Hybrid Recommendation (ADHR) model. ADHR consists of
two components: a generator and a discriminator. The generator is a deep hybrid model to capture the
pairwise ranking distribution where a convolutional neural network is used to extract high-level item
content features. The discriminator is a binary classifier based upon latent factor model, which takes
the user and item embeddings in a sample pair as input and predicts the probability of the sample
being real. While the generator provides fake samples for training the discriminator, the discriminator
provides learning signals that drive the optimization of the generator.

3.2. Generator with Deep Text Modeling

The generator hinges on predicting the user–item score r̂uj that indicates the preference of a user
u towards an item j. We adopt a commonly used latent factor model in this paper [1,3,4], leaving more
complex models based on neural networks [47,48] to future work. Specifically, we define r̂uj as:

r̂uj = pu · qj + bj, (3)

where pu and qj represent the latent vector for user u and item j, respectively. Compared with plain
MF, a bias term is included in Equation (3) and bj is the bias term for item j. Here, pu is a user ID
embedding and the modeling of qj will be discussed in the following subsection. By letting qj to be an
item ID embedding, Equation (3) reduces to the ordinary latent factor model.

Integrating CNN into MF

We consider text-aware recommendation where item j is a document associated with a sequence
of word tokens denoted by Dj. To incorporate document features, we model the item vector qj with
the following additive approach:

qj = g(Dj) + vj, (4)

where g(·) is a function that takes a raw document as input and is used to establish a high-level
feature representation of the document. An item embedding vector vj is included as an offset term and
corresponds to the original item vector of the plain MF. By plugging Equation (4) into Equation (3),
the CNN-based document modeling is integrated into the latent item vectors of MF and this additive
manner allows the training signals to directly flow into the CNN.

This paper builds a model for g(·) based on Convolutional Neural Network (CNN), which is
one of the most popular deep learning tools to extract high-level features from text data [29]. Unlike
previous order–insensitive models [8,9], CNN has the benefit of exploiting the additional information
inherent in word orders [29,30], which has recently been demonstrated to be critical for performing
text-aware hybrid recommendation [10,14]. It is worth pointing out the difference between our model
and ConvMF [10], which considers text information as the prior knowledge to regularize item latent
vectors and thus requires to tune additional trade-off hyper-parameters for training. By contrast,
our CNN is directly incorporated into the representations of items and thus enjoys more explicit flow
of the learning signals than the regularization approach.
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We design the CNN module g(·) as follows. First, we transform an item j’s document Dj into the
concatenation of a sequence of k-dimensional embeddings:

x = e1 ⊕ e2 ⊕ · · · ⊕ en, (5)

where n is the total number words in the text,⊕ is the concatenation operator, and ei ∈ Rk represents the
embedding vector of the i-th word in the document. Let xi:i+h−1 refer to the concatenated embedding
representation of a window of h words:

xi:i+h−1 = ei ⊕ ei+1 ⊕ · · · ⊕ ei+h−1. (6)

We apply a convolutional filter wt
c ∈ Rhk to xi:i+h−1 to produce a new feature ct

i for t = 1, · · · , nc:

ct
i = relu(wt

c · xi:i+h−1) + bt, (7)

where bt ∈ R is a bias term for filter t, relu is the rectified linear unit function, and nc represents
the total number of filters used. After applying to each possible window of words in the document,
the filter wt

c produces a feature vector cj ∈ Rn−h+1:

ct = [ct
1, ct

2, · · · , ct
n−h+1]. (8)

Here, as one filtering weight captures only one type of contextual features, we use multiple filtering
weights to detect multiple types of contextual features. To deal with the varied length of documents,
we apply a max-pooling operation over all the feature vectors:

c̃ = [max{c1}, max{c2}, · · · , max{cnc}]. (9)

By doing so, we transform documents of varied length into fixed-length vectors. Finally, we apply a
two-layer nonlinear neural network on top of c̃ to obtain:

g(Dj) = tanh(W2{tanh(W1c̃ + b1)}+ b2), (10)

where tanh is the hyperbolic tangent function, W1, W2 are projection weight matrices, and b1, b2

represent bias vectors.
Based on the preference score and CNN document feature modeling, the generator generates a

sample s = (u, j, j′) with probability:

pθ(s) = δ(r̂uj − r̂uj′), (11)

where δ(x) = 1
1+e−x is the sigmoid function. It is easy to verify that pθ(s = (u, j, j′)) = 1− pθ(s =

(u, j′, j)). Note that in order to generate samples from pθ , we have to first select a personalized item
pair as the input to the generator.

3.3. Discriminator Based on Latent Factor Model

The goal of the discriminator is to classify a given sample as real or fake. Theoretically, any
binary classifier will fit the task. In our experiments, we apply the similar latent factor model as
in generator with user and item embeddings as the latent vectors, which is similar to Equation (3)
with no document modeling. Also, the output of the discriminator is binary and we thus build the
discriminator on top of the user–item score by a similar logistic classifier given by Equation (11).
Note that these embeddings are different parameters from the ones used in the generator. Besides,
the output of the discriminator model, by contrast, indicates the probability of a sample being real. We
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also experimented with standard Multi-Layer Perceptron (MLP) as the discriminator, where we used
the concatenation of embeddings as its input and found that the latent factor model performed better.

Latent factor model, as discussed previously, satisfies the totality order constraint [40] which
brings an additional optimization advantage in our learning setting. That is, minimizing the probability
of a generated (fake) sample (u, j, j′) being real is equivalent to maximizing the probability of (u, j′, j)
being real. This behavior is desirable if (u, j′, j) happens to be a real sample, as one of the training goals
for Dw is to maximize the probability of the truthful data. If the real sample is (u, j, j′), the objective in
Equation (2) would force Dw, regardless of its specification as latent factor model or MLP, to output a
probability of 0.5 for both (u, j, j′) and (u, j′, j), thus reaching a balance between pr and pθ .

3.4. Training

3.4.1. Optimizing Discriminator

The objective for the discriminator is to maximize the log-likelihood of correctly distinguishing
between the true and generated data samples. With pθ fixed, we update Dw by maximizing the
objective in Equation (2). Equivalently, we minimize the following binary cross-entropy loss:

w∗ = arg min
w
−{Es∼pr [logDw(s)] + Es∼pθ

[log(1− Dw(s))]}. (12)

More specifically, we first draw samples from the two distributions pθ and pr, and then train a binary
classifier Dw based on the two sets of samples. We perform a gradient descent algorithm to learn
the model parameters w and incorporate L2 regularization term into the objective loss, with λ as the
trade-off parameter.

As the real data distribution pr is usually unknown to us, sampling from pr is considered
equivalent to randomly selecting samples from the training data [19,39,49]. The samples of pr provide
triple indexes as input to generator pθ , which is able to generate a sample in every Bernoulli trial due
to the totality constraint of the pairwise ordering scheme. Specifically, suppose a real data sample
s = (u, j, j′) is selected from pr, then accordingly, we run a Bernoulli trial with probability given by
pθ(s = (u, j, j′)). If the result is 1, a sample s′ = (u, j, j′), which is the same as given input s, is regarded
to be “generated” by the current pθ ; otherwise, s′ = (u, j′, j) by exchanging the ranking positions
between item j′ and j in the s.

However, the formulation of the training set S shown by Equation (1) introduces noisy samples,
since not all observed items are preferred over unobserved items. To address this problem, we first
select samples from S, and then remove those for which the value of pθ is less than ε. The motivation
is to remove the noisy samples which are considered to be impossible observations by a good (to some
extent) model. We set ε to zero at the start, so that we can learn a relative good model. Then, as training
progresses, we gradually increase its value until it reaches an upper bound, which was set to 0.3 in our
experiments. Note that the idea of resorting to the model at training time is not completely new and
has been similarly applied in [50].

3.4.2. Optimizing Generator

On the other hand, the generative model pθ intends to minimize the objective in Equation (2). It fits
the underlying true distribution by randomly generating samples to fool the discriminator. Formally,
keeping the discriminator Dw fixed, we update the parameters θ by maximizing the probability that
samples from pθ are classified as real by the discriminator:

θ∗ = arg min
θ

Es∼pθ
[log(1− Dw(s))].

= arg max
θ

Es∼pθ
[Dw(s)].

(13)
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From the perspective of reinforcement learning [51–53], pθ acts as the policy to select actions
(samples), in which the reward for an action s is given by the term logDw(s). The goal of Equation (13)
is to shift the policy through its parameters to increase the reward of generated samples, as judged by
logDw(·). Following [39,51–53], we adopt the policy gradient method and calculate the gradient with
respect to the generator parameters as follows:

5Es∼pθ
[logDw(s)] = ∑

s
logDw(s)5 pθ(s)

= ∑
s

logDw(s)pθ(s)5 logpθ(s)

= Es∼pθ
[logDw(s)5 logpθ(s)].

(14)

Here, logDw(·) based on the discriminator acts as learning weights and assigns relatively large weights
(rewards) to those samples that are incorrectly modeled by the current pθ .

One typical solution for the last step is to perform Monte Carlo approximation and compute the
average of multiple samples. However, this would distort the function of logDw(·), since the weights
of different samples would counter-weigh each other in the training process. This is a direct result of
the generation process of the generator. Therefore, we perform stochastic gradient decent and update
the parameters using one sample at a time (shown in Algorithm 1). We note that the update rule has a
very similar form to LambdaRank [54,55] and the difference is that they use current item ranking list
to compute the learning weights while we exploit signals from the discriminator. It is noteworthy that
theoretically we can sample the unobserved item ranking pairs that are not in the training set S, thus
improving the model’s generalization ability.

Overall, the adversarial training is an alternating optimization with respect to the generator
parameters θ and the discriminator parameters w, i.e., alternating between Equations (12) and (13).
Following [39], we pre-train the generative model to ensure a stable model training process in
experiments. The convergence of the proposed model ADHR is monitored through early stopping on
a validation dataset. The overall optimization procedure is illustrated in Algorithm 1.

Algorithm 1: Optimization Algorithm for Our Proposed Model ADHR
Input: generator pθ ; discriminator Dw; and training set S.
Initialize pθ with a pre-trained model;
repeat

for train Dw do
Draw a sample s = (u, j, j′) uniformly from the pairwise training data S;
Run a Bernoulli trial with pθ(s) to generate a fake sample s′;
Update w← w + η(5logDw(s) +5log(1− Dw(s′))− λw).

end
for train pθ do

Select a triple (u, j, j′), where i and j, j′ are randomly drawn from U and I, respectively;
Run a Bernoulli trial with pθ((u, j, j′)) to generate a training sample s;
Update θ ← θ − η′(logDw(s)5 logpθ(s) + λ′θ).

end
until Convergence;

3.4.3. Complexity

Just like other GAN training [19,21,39], the complexity of the algorithm highly relies on the
number of iterations, each of which is of linear complexity with respect to the number of training
samples. As we perform stochastic gradient descent based on bootstrap sampling of training triples,
only a fraction of a full cycle of the data is sufficient for convergence. On the other hand, compared
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with previous deep hybrid models [9,10], the extra cost of our model mainly concentrates on training
discriminator, which can be ignored compared with the cost of training the deep generator model.

4. Experiment

In this section, we conduct extensive experiments to show that: (1) our proposed model ADHR
outperforms the state-of-the-art methods in both warm-start and cold-start recommendation settings;
and (2) ADHR is effective in learning the distribution over user behavioral data and capturing the
contextual features in the document. We will first present the experimental settings, followed by
analyzing the above research topics one by one.

4.1. Experimental Setting

4.1.1. Evaluation Scheme

4.1.2. Datasets

We perform experiments on three real-world datasets obtained from MovieLens (http://
grouplens.org/datasets/movielens/) and Amazon (http://jmcauley.ucsd.edu/data/amazon/). These
datasets consist of users’ 5-star ratings on items. For Amazon, the dataset contains users’ purchases
of instant video and we consider the reviews as the description documents associated with items.
For MovieLens, we use plot summary of corresponding items from IMDB (http://www.imdb.com/).
To adapt to implicit feedback recommendation, we follow a widely adopted approach [10,39,40] to
preprocess all datasets and transform ratings into binaries to indicate whether users have rated items.
Similar to [8,10,16], the documents are preprocessed with the following procedures: (1) remove stop
words; (2) set the maximum document length to 300; (3) select top 8000 distinct words as vocabulary;
(4) remove non-vocabulary words from document. The statistics of the final datasets are given in
Table 1, where we use Avg. to indicate the average number of words per document.

Table 1. Statistics of the evaluation datasets.

Dataset #Records #Users #Items Sparsity Avg.

MovieLen-1m 993,482 6040 3544 95.36% 97.09
MovieLen-10m 9,945,875 69,878 10,073 98.59% 92.05

Amazon 135,188 29,757 15,149 99.97% 73.03

4.1.3. Evaluation Methodology

We test the models on held-out datasets for both warm start and cold start recommendation,
with the evaluation settings described as follows.

Warm Start. We adopt 5-fold cross-validation. For each user, we do a 5-fold split of their
interactions. We always assign items with less than 5 interactions to training set. This ensures that
there are no cold start items in the test set. The removed interactions simulate the unobserved data
(zero entries in the matrix) in the real scenario. After learning, we predict interactions across all
unobserved items for each user.

Cold Start. We again adopt 5-fold cross-validation. We consider the cold item recommendation
setting and the situation is similar to recommending for cold users. We evenly split the set of all items
into 5 folds. Similarly, we always assign items with less than 5 interactions to training set. We fit the
models on the training set items and form predictive per user ranking of items in the test set.

Metrics. After training, a top-N ranked list of unobserved items can be returned for each user,
which are then compared to the test data for performance evaluation. We adopt two widely-used
performance metrics: Recall@N and truncated Normalized Discounted Cumulative Gain (NDCG@N).
Formally, let T represent the binary user–item interaction matrix of the test data and define πu as the

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/
http://jmcauley.ucsd.edu/data/amazon/
http://www.imdb.com/
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column indexes of items in the recommended ranking list for user u. πu(k) returns the item column
index in the k-th ranking position for user u.

Recall@N for user u is defined as:

Recall@N(u, πu) =
1

min(N, ∑n
j=1 T(u, j))

N

∑
k=1

T(u, πu(k)),

where the denominator calculates the minimum between the truncation number N and the number of
items that user u has interacted with. We use Recall@N to denote the average of Recall@N(u, πu) over
all users. Recall@N considers whether the recommended items are in the user list.

DCG@N for user u is computed by:

DGG@N(u, πu) =
N

∑
k=1

2T(u,πu(k)) − 1
log(k + 1)

.

NDCG@N(u, πu) is the normalized DCG@N(u, πu) with respect to all possible rankings. We use
NDCG@N to denote the average of NDCG@N(u, πu) over all users. NDCG takes into account the
ranking positions of the recommended items and similarly, we report NDCG@N as the average
measure over all users.

4.1.4. Baselines

We compare our proposed model with the following baselines, ranging from classical MF-based
method to state-of-the-art hybrid recommendation models.

• BPR (http://www.mymedialite.net): BPR (Bayesian Personalized Ranking) [40] is a classical
MF-based recommendation model which focuses on optimizing a pair-wise rank-award
objective loss.

• IRGAN (https://github.com/geek-ai/irgan): IRGAN [39] is a state-of-the-art non-hybrid
recommendation method and learns from user–item interactions only with no content feature
modeling. It applies list-wise learning with softmax based generator in an adversarial
training framework.

• CTR (https://github.com/blei-lab/ctr): Collaborative Topic Regression [8] is a classical non-DL
based hybrid model, which combines topic modeling with matrix factorization.

• CDL (https://github.com/js05212/CDL): Collaborative Deep Learning [9] is a state-of-the-art
DL-based hybrid model, which couples denoising auto-encoders with matrix factorization.

• CVAE (http://eelxpeng.github.io/research/): Collaborative Variational Autoencoder [16] is
another state-of-the-art DL-based hybrid model, which learns deep features from content data
in an unsupervised manner and also captures relationships between items and users from both
content and implicit feedback.

4.1.5. Implementation Details

For all the baselines, we use the publicly accessible code and try our best to tune their
hyper-parameters on our datasets. We implement our proposed model ADHR using Pytorch
(https://pytorch.org) with Nvidia GeForce GTX 1080 GPU. The model parameters are updated based
on batch gradient with Adam optimizer [56]. As for the CNN architecture, the word embeddings were
randomly initialized with dimension of 200. We used window sizes (h) of 3, 4, 5 with 100 (nc) feature
filters each. In experiments, we perform grid search to find the best performing hyper-parameters
for all comparion methods based on validation datasets. We also used dropout to prevent CNN from
over-fitting [57], with the dropout rate set as 0.1. In order to balance between the unseen and observed
samples in training generator, we updates the parameters of generator 10 times more often than
updating the discriminator. The batch sizes for training the generator and discriminator are 512 and
256, respectively. We perform grid search to select the learning rate from {0.001, 0.005, 0.01, 0.05, 0.1}

http://www.mymedialite.net
https://github.com/geek-ai/irgan
https://github.com/blei-lab/ctr
https://github.com/js05212/CDL
http://eelxpeng.github.io/research/
https://pytorch.org
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and the regularization parameter from {0.0001, 0.001, 0.01, 0.1}. The besting performing values of the
L2 regularization parameters and the learning rates for different datasets are reported in Table 2.

Table 2. Best performing hyper-parameters on the three datasets.

Dataset Learning Rate η Learning Rate η′ Regularization λ Regularization λ′

MovieLens1m 0.005 0.01 0.001 0.001
MovieLens10m 0.05 0.1 0.001 0.01

Amazon 0.01 0.01 0.005 0.001

4.2. Qualitative Performance Comparison Results

We report the comparison performance results of all methods in various settings. The experiments
show that our proposed method ADHR is able to achieve superior performance against state-of-the-art
methods in both cold-start and warm-start recommendation settings and the performance
improvement are consistent across the metrics and the three datasets.

4.2.1. General Comparison Results and Analysis

Tables 3 and 4 show the performance results of all comparison methods in warm-start and
cold-start recommendation settings, respectively. As BPR and IRGAN are unable to perform cold-start
recommendation, we omit them in Table 3 and compare the hybrid models only. Similar to [9,16],
we fix the dimension of latent user and item vectors as 50 for all models and truncate recommended
list at 100 for both metrics. The following observations can be noted from the results.

Table 3. Warm-start top-20 recommendation performance of all comparison methods.

MovieLens1m MovieLens10m Amazon

Model Recall NDCG Recall NDCG Recall NDCG

BPR 0.259 0.273 0.182 0.191 0.043 0.051
IRGAN 0.327 0.355 0.224 0.232 0.067 0.071

CTR 0.343 0.365 0.292 0.301 0.081 0.086
CDL 0.401 0.420 0.311 0.316 0.088 0.090

CVAE 0.421 0.432 0.317 0.325 0.093 0.094
ADHR 0.451 0.453 0.333 0.339 0.103 0.104

Improve (abs) 0.030 0.021 0.025 0.014 0.010 0.010
Improve (%) 7.1% 4.9% 5.0% 4.3% 10.7% 10.6%

Table 4. Cold-start top-20 recommendation performance of all comparison methods.

MovieLens1m MovieLens10m Amazon

Model Recall NDCG Recall NDCG Recall NDCG

CTR 0.301 0.325 0.232 0.241 0.062 0.066
CDL 0.322 0.346 0.261 0.276 0.071 0.082

CVAE 0.351 0.372 0.277 0.285 0.081 0.086
ADHR 0.373 0.388 0.289 0.298 0.090 0.094

Improve (abs) 0.022 0.016 0.012 0.013 0.009 0.008
Improve (%) 6.3% 4.3% 4.3% 4.6% 11.1% 9.3%

First, among the baselines, we see from Table 3 that IRGAN shows a significant performance
improvement over BPR in the warm-start recommendation settings. The results are consistent with [39],
indicating the powerful learning ability of adversarial training paradigm. We observe that there is
a large performance gap between IRGAN and the hybrid recommendation methods. Specifically,
IRGAN shows worse performance results than CTR, which only applies shallow feature learning
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method LDA for content modeling. These findings indicate the very necessity of incorporating content
features for text-aware recommendation.

Second, among the hybrid baseline models, DL-based methods CDL and CVAE outperform
the non-DL model CTR in both warm-start and cold-start recommendation settings. The results are
consistent with the findings in [9,16] and the performance improvements are attributed to the fact
that deep learning methods can extract more effective features from the text data to aid collaborative
filtering than that of the shallow feature learning method like LDA used in CTR.

Lastly, we can see that our proposed model ADHR delivers consistent performance improvements
over all baseline across the three datasests on both metrics. ADHR delivers better performance than
CDL and CVAE despite the fact that both belong to DL-based hybrid models. ADHR outperforms the
best performing baseline CVAE across all three datasets by a margin of 4.3%∼10.8% in the warm-start
recommendation setting and by a margin of 4.3%∼11.1% in the cold-start recommendation setting.
The results demonstrate that CNN is better at capturing textual information than auto-encoders and
our proposed adversarial framework is effective at learning the hybrid recommendation model.

4.2.2. Performance Comparison w.r.t. Truncated Value N

To further compare against the baselines, we illustrate the NDCG@N of all comparison
methods w.r.t. the truncated value N in the warm-start and cold-start recommendation settings
in Figures 2 and 3, respectively. We can see that our proposed model ADHR demonstrates
consistent improvements over other methods across all positions on the two datasets. In the
warm-start recommendation setting, ADHR outperforms the best performing baseline CVAE by
a margin of 4.2%∼5.2%, 4.3%∼6.6% and 7.2%∼11.3% on MovieLens1m, MovieLens10m and Amazon,
respectively. In the cold-start recommendation setting, ADHR outperforms CVAE by a margin of
3.6%∼5.4%, 4.1%∼6.3% and 9.2%∼12.1% on MovieLens1m, MovieLens10m and Amazon, respectively.
For Amazon, since the dataset is even sparser, the improvement is more significant than on the other
two datasets. The results further validate the effectiveness of our proposed approach in utilizing
content data to assist collaborative filtering.
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Figure 2. Warm-start recommendation performance w.r.t. different values of N.
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Figure 3. Cold-start recommendation performance w.r.t. different values of N.
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4.2.3. Performance Comparison w.r.t. Latent Factors

Moreover, to further compare the hybrid recommendation models, we study their NDCG@20
performance with respect to the number of latent factors on the three datasets. We report the
results in the cold-start and warm-start recommendation settings in Figures 4 and 5, respectively.
Again, we observe that our proposed model ADHR delivers consistently better performance than the
best performing baseline CVAE across different latent factors. In the warm-start recommendation
setting, ADHR outperforms CVAE by a margin of 4.3%∼5.5%, 3.1%∼5.2% and 7.1%∼11.5% on
MovieLens1m, MovieLens10m and Amazon, respectively. In the cold-start recommendation setting,
ADHR outperforms CVAE by a margin of 4.3%∼5.5%, 4.1%∼6.3% and 6.1%∼12.3% on MovieLens1m,
MovieLens10m and Amazon, respectively.
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Figure 4. Warm-start recommendation performance w.r.t. latent dimensionality.
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Figure 5. Cold-start recommendation performance w.r.t. latent dimensionality.

4.3. Effectiveness of Adversarial Learning and CNN

We analyze the converge of our proposed model ADHR in both warm-start and cold-start
recommendation settings and demonstrate the effectiveness of our proposed adversarial training
paradigm in learning the data distribution. Moreover, we show the effectiveness of CNN in capturing
the contextual features in document modeling in the proposed model ADHR.

4.3.1. Convergence

To show the effectiveness of adversarial learning, we study the convergence of our proposed
model ADHR with respect to training epochs on MovieLens1m in Figure 6. The starting points in
the figure represent the performance results of a pre-trained model, which is of the same form as
the generator model of ADHR, but is trained using typical stochastic gradient decent as adopted
by BPR [40–42]. We used the best pre-trained model though tuning the hyper-parameters for MAP.
From the results, we observe that our proposed model ADHR can deliver consistent improvement over
the pre-trained model from the beginning of adversarial training. We also tried with training ADHR
with some non-best pre-trained models and found ADHR was consistently able to converge to the best
performance. These results demonstrate that our proposed pairwise adversarial training framework is
effective at capturing the collaborative ranking distributions over the user–item interaction data.
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Figure 6. Convergence of our proposed model ADHR on MovieLens1m.

4.3.2. CNN in Document Modeling

The performance of our proposed hybrid recommendation model is affected by the effectiveness
of CNN in capturing the contextual features of the item documents. As the convolution filtering
weights play the key role of detecting text features in CNN, we study whether the contextual meaning
of phrases are captured by the convolution matrices.

To investigate the CNN’s capability in our proposed hybrid model ADHR, we select the
convolution filtering weight W11

c and W86
c from the model trained on MovieLens10m dataset.

The convolution weights capture the contextual meaning of the phrases shown in Table 5. Although
the term “trust” seem similar to each other in the two phrases, it has subtlety different contextual
meanings captured by the convolution weights. Specifically, the “trust” in the first phase is a verb
while in the second one it is used as noun. To very this distinction, we change the term “trust” in the
phrases and study the change of weight values. As shown in Table 5, when replacing “trust” with
“believe” and “faith” in the phase captured by W11

c , the weight value for “believe” is higher than that
for “faith”. By contrast, in the case of W86

c , the weight value for “believe” is lower than that for “faith”,
which matches our expectation that the “trust” word shows different meanings in the two phases.
The results thus demonstrate that the CNN module in our model is able to distinguish the different
contextual meaning of words in documents via the convolution filtering weights.

Table 5. Case study of Convolution Filtering Weights of ADHR.

Phrase captured by W11
c max(c11) Phrase captured by W86

c max(c86)
people trust the man 0.0712 betray his trust finally 0.1004

Test phrases for W11
c max(c11

test) Test phrases for W86
c max(c86

test)
people believe the man 0.0398 betray his believe finally 0.0632

people faith the man 0.0365 betray his faith finally 0.698

Similar to [58–62], we apply a simple tool to further analyze the predictions of our proposed
hybrid model ADHR. Specifically, we produce a heat-map where we associate each input word with
its impact on the output prediction in Figure 7. Suppose item j is recommended to user u. That is,
we assume r̂uj is large. Then let [e1, e2, · · · , en] be the sequence of word embeddings associated with
item j. We generate the heat-map’s value for word t by converting the gradient with respect to the

word into a scalar. Since the word is discrete, we compute || dr̂uj
det
|| instead and obtain the gradient by

back-propagating through the CNN module g(·).
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A great Highlight Reel of the Apollo mission. Enough background information 

is presented to provide context, and the interviews and actual footage are 

very effective in recreating the feel of watching the mission
unfold.  If you're looking for a memory refresher or an introdution to the 

mission to the moon for younger viewers, this show fills the bill.

Figure 7. Saliency of each word in a review regarding an instant video in the Amazon dataset. Size and
color of the words indicate the influence on final predicted score. The important chunks of words such
as “great” and “footage” are learned by the model.

5. Conclusions

In this paper, we propose an adversarial training framework to learn a deep hybrid
recommendation model, which seamlessly integrates a Convolutional Neural Network (CNN) into
latent factor model to exploit deep content features as well as the collaborative patterns from user–item
interactions. Specifically, our main work can be concluded as follows.

First, we propose a hybrid recommendation model that incorporates a Convolutional Neural
Network (CNN) to learn the deep text features. As CNN is an order-sensitive textual feature extractor,
it offers the benefit of exploiting the additional information in word orders.

Second, with the aim of reflecting the ranking nature of top-N recommendation, we propose
an adversarial learning framework to capture the pair-wise ranking distribution over user–item
interactions in an effective way.

Finally, we have conducted extensive experiments on three real-world datasets to demonstrate
that our proposed model is able to deliver the state-of-the-art performance across both warm-start and
cold-start recommendation settings.
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