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Abstract: Coumarin derivatives have gathered major attention largely due to their versatile utility
in a wide range of applications. In this framework, we report a comparative computational
investigation on the optoelectronic properties of 3-phenylcoumarin and 3-heteroarylcoumarin
derivatives established as enzyme inhibitors. Specifically, we concentrate on the variation in
the optoelectronic characteristics for the hydroxyl group substitutions within the coumarin moiety.
In order to realize our aims, all-electron density functional theory and time dependent density
functional theory calculations were performed with a localized Gaussian basis-set matched with
a hybrid exchange–correlation functionals. Molecular properties such as highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies, vertical ionization (IEV)
and electron affinity energies, absorption spectra, quasi-particle gap, and exciton binding energy
values are examined. Furthermore, the influence of solvent on the optical properties of the molecules
is considered. We found a good agreement between the experimental (8.72 eV) and calculated (8.71 eV)
IEV energy values for coumarin. The computed exciton binding energy of the investigated molecules
indicated their potential optoelectronics application.

Keywords: coumarin derivatives; electronic and optical properties; density functional theory;
optoelectronics application

1. Introduction

Coumarin is one of the most versatile and studied scaffolds. It exhibits interesting biological,
pharmacological, biochemical, therapeutic, and photochemical properties with a wide range of
applications [1–4]. It is classified in the benzopyrone family, and formed by fusion of α-pyrone ring
with a benzene nucleus. Coumarin was first isolated in 1820 from tonka bean by A. Vogel and has
since been reported to be present in seeds, roots, and leaves of many plant species, especially in
green plants [5].

Coumarin molecule (2H-chromen-2-one) exerts diversified nature of interactions (hydrophobic,
hydrogen bonds, electrostatics) with many key sites in organisms and therefore it is able to display
wide-range of pharmacological activities [2,6]. Furthermore, coumarin derivatives are synthesized
for different application as dye-sensitized solar cells and dye lasers [7]. Moreover, a multifaceted
utility of coumarin is possible thanks to flexible structural variations in the scaffold positions (3 and 4)
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by substitution on the aromatic ring [8]. Because of their synthetic versatility, phenylcoumarins
(an extra phenyl ring is attached to any position of the coumarin scaffold) are considered as
important molecular moiety with proved biological and pharmacological properties [9]. Notably,
3-phenylcoumarins (an extra phenyl ring attached to 3-position of the coumarin scaffold) has attracted
more attention, since their molecular structure closely resembles combination of two pharmacophores
(courmain-resveratol). In these molecules, the 3,4-double bond of the coumarin nucleus fixes the
trans disposition of the t-resveratrol-type double bond. Trans-resveratrol displays pharmacological
activities [10,11] and protective effect against cardiovascular and neurodegenerative diseases [12,13].
On the other hand, replacement of phenyl ring in position 3 with thiophene (a heterocyclic compound)
resulted in a 3-heteroarylcoumarin moiety [14], with promising applications in coumarin based
dyes [15], florescence microscopy and nanoscopy [16]. A significant number of research studies have
investigated the potential of 3-phenylcoumarins [17–20] and 3-heteroarylcoumarins [21–23] derivatives
as inhibitors against many target enzymes that are associated to different biological diseases [18,24].

In a recent study [13], authors investigated the inhibitory potential of twenty 3-phenylcoumarin
and eight 3-heteroarylcoumarin derivatives against xanthine oxidase enzyme, commonly associated
to gout [25]. Computational methods can be employed to provide valuable molecular information
for these coumarin derivatives. Therefore, the principal objective of this work was to investigate the
structure, electronic and optical properties of these same derivatives (Figure 1), in order to establish
the relationship between the chemical substitutions and computed molecular properties to aid in the
design of materials with potential optoelectronic applications [26].
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Figure 1. Chemical structure of coumarin, 3-phenylcoumarins (A–C), and 3-heteroarylcoumarin
derivatives (D) are shown here.

To do so, we employed density functional theory (DFT) [27], by far the most popular quantum
mechanical method to calculate the structure and electronic properties of the molecules [28–30]. A detailed
computational investigation was performed on the four coumarin-derivatives, which were selected on
the basis of their enzyme inhibition capability [13]. Further, to provide a systematic investigation on the
optical properties (absorption spectrum, electronic states transitions), time-dependent DFT (TD-DFT) [31]
calculations were performed on the optimized ground state structures of the molecules in vacuum. Several
computational DFT studies have investigated molecular properties of coumarin derivatives for applications
such as optoelectronics [26,32], solar cells [7,33–36], fluorescent dyes and lasers [7,37].

In order to extract useful information about properties that determine the performance of molecules
in solution, it is important to understand the role of solvents. Several studies have shown the impact of
solvent on the absorption spectral characteristics of the molecules [7,38–40]. Therefore, to understand
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and analyze the impact of solvents on the electronic absorption characteristics of molecules, TD-DFT
calculations with same level of description was performed on the representative molecular structure
that was extracted from classical molecular dynamics (MD) simulations of the molecules inserted in
a water box. Finally, the molecules were evaluated for their relevance in optoelectronic properties.

2. Computational Method

2.1. Molecule Preparation and DFT/TD-DFT Calculations

First, the two-dimensional (2D) structure of the molecules was drawn using Marvin, and the 2D
structure was converted into a three-dimensional (3D), using open babel software [41].

Geometry optimization on the obtained 3D structures of the molecules was performed within the
framework of density functional theory (DFT) using Gaussian basis-set 6-31G* [42] in combination
with a hybrid exchange–correlation functional, Becke’s three-parameter and Lee-Yang-Parr functional
(B3LYP) [43–45]. For comparison, all the calculations were repeated with a B3LYP/6-311+G* basis set
and Perdew–Burke-Ernzerhof (PBE)/6-31G* basis set.

From the geometry-optimized structure of each molecule the highest occupied molecular orbital
(EHOMO) and the lowest unoccupied molecular orbital (ELUMO) values were obtained. Using the
EHOMO and ELUMO values, global reactivity descriptors such as chemical potential (CP) and chemical
hardness (η) were evaluated using the following Equations [46,47]:

CP =
EHOMO + ELUMO

2
(1)

η =
EHOMO − ELUMO

2
(2)

The vertical ionization energies (IEV) and electron affinity (EAV) were computed using the DFT
total energy difference considering the neutral and charged (±1) species [48,49]:

IEV = E(o)
cation − Eneutral (3)

EAV = Eneutral − E(o)
anion (4)

The fundamental gap or quasi-particle gap (QP) was calculated as defined in the delta
self-consistent field (∆SCF) method [50,51]:

EQP = IEV − EAV = E(o)
cation + E(o)

anion − 2Eneutral (5)

Time-dependent density functional theory (TD-DFT) at B3LYP/6-31G* level was employed for
the calculation of electronic excitations and UV-Visible absorption spectrum for each molecule. In the
electronic absorption spectrum, the first peak corresponds to the first optically active transition EOPT.
From the EOPT value obtained from the spectrum, an estimate of the exciton binding energy was
evaluated as [52,53]:

EBIND = EQP − EOPT (6)

All the DFT and TD-DFT calculations were performed using NWChem software package [54].
Moreover, geometry optimization of the molecules at B3LYP/6-31G* level of theory was also performed
using Gaussian 16 software [55]. The molecular orbitals and electrostatic potentials mapped on the
isosurfaces were visualized using ArgusLab (version 4.0) [56].

2.2. Molecular Dynamics (MD) Simulations

To address the solvent effects on equilibrium conformations of the investigated molecules, each
molecule was inserted in a water box (Figure 2) with a minimum distance between any atom of
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each molecule and the edge of the box to be of 10 Å using VMD software package. The force-field
parameters for the molecules were obtained using the antechamber. The molecule was parameterized
using AM1-BCC charge model and general amber force-field (GAFF) parameter was generated using
antechamber module [57] of the Amber software package [58]. TIP3P model was used for water
molecules. Each complex system (molecule + water box) was prepared using tleap program in the
Amber software package. Each molecular system was energy minimized and gradual heating of the
system to 300 K in steps of 30 K was performed [59,60]. Equilibration of the system was done for 3
ns and followed by a production run of 50 ns of molecular dynamics (MD) simulations. The NAMD
software package [61] was used to perform MD simulations.
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molecules, with periodic boundary conditions.

3. Results and Discussion

All the five molecules (Figure 1) were subjected to geometry optimization without symmetry
constraints using DFT method with B3LYP exchange correlation (XC) functional in combination with
basis sets 6-31G* and 6-311+G*, alternatively. Coumarin molecule was chosen as the reference molecule,
and availability of experimental data allowed to validate the computational approach employed in
the present study. In Figure 3, comparison between the experimental infrared spectrum (available
from NIST database) [62] and the calculated spectrum using DFT with B3LYP/6-311+G* for coumarin
molecule is shown. In general, the computed harmonic frequencies overestimate the experimental
values [62]; in particular noted for the main peak, representing C=O (experimental value 1743 cm−1).
Therefore, we performed a uniform scaling factor on the computed ones to provide a better match with
the experimental vibrational frequencies [63]. Indeed, we achieved a reasonable agreement between
the scaled vibrational frequency of main peak C=O (1778 cm−1) and the experimental value [62–64].
Overall, we note the blue shifted profile compared to the experimental IR spectra [62].
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Overall, we note an excellent agreement (Table 1) between the computed and experimental bond
distance data [65]. The maximum variation of 2% between the experimental and computed distance
was found for 1O–2C bond length obtained by B3LYP/6-31G* and B3LYP/6-311+G* level of theory,
while a variation of 3.5% by PBE/6-31G* calculations. In general, the bond lengths were found to be
overestimated by PBE/6-31G* calculations (Table 1).

Compound A is a 3-phenylcoumarin; compound B is a 3-phenylcourmain derivative with bromine
substitution in the phenyl ring and hydroxyl substitution in position 8 of the coumarin moiety.
Compound C is also a 3-phenylcourmain derivative; however, with two hydroxyl substitutions in
the meta-position of the coumarin moiety and one hydroxyl substitution in the external phenyl
ring. Compound D is 3-heteroarylcoumarin (with a 2-thiophene group) with identical two-hydroxyl
substitution (meta position) in the coumarin moiety as molecule C.

Table 1. Comparison of optimized bond length distances for coumarin with corresponding experimental
data. Variation in the bond lengths is reported in %. The numbering scheme of coumarin molecule
is same as shown in Figure 3. The bond lengths are reported in angstrom (Å), and up to four
significant figures.

Atom 1 Atom 2 Exp., B3LYP/6-31G* B3LYP/6-311+G* PBE/6-31G*

1 O 2 C 1.371 1.398 (1.97%) 1.396 (1.82%) 1.419 (3.5%)
1 O 9 C 1.372 1.365 (−0.5%) 1.365 (−0.5%) 1.367 (−0.36%)
2 C 11 O 1.216 1.208 (−0.65%) 1.202 (−1.15%) 1.217 (0.08%)
2 C 3 C 1.454 1.460 (0.4%) 1.459 (0.34%) 1.459 (0.34%)
3 C 4 C 1.352 1.352 (0%) 1.349 (−0.22%) 1.363 (0.81%)
4 C 10 C 1.440 1.442 (0.13%) 1.440 (0%) 1.441 (0.07%)
5 C 10 C 1.406 1.407 (0.07%) 1.406 (0%) 1.414 (0.57%)
5 C 6 C 1.388 1.388 (0%) 1.385 (−0.22%) 1.394 (0.432%)
6 C 7 C 1.402 1.403 (0.07%) 1.402 (0%) 1.402 (0%)
7 C 8 C 1.390 1.391 (−0.07%) 1.389 (−0.07%) 1.397 (0.50%)
8 C 9 C 1.394 1.396 (0.14%) 1.394 (0%) 1.404 (0.72%)
9 C 10 C 1.400 1.408 (0.57%) 1.405 (0.36%) 1.419 (1.36%)

, Reference [65].

3.1. Electronic Properties of the Compounds Using B3LYP XC Functional

The calculated electronic properties of the compounds are summarized in Table 2. The chemical
reactivity of the molecule can be described by the energy of the lowest unoccupied molecular orbital
(ELUMO) that defines the electron accepting ability, while the energy of the highest occupied molecular
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orbital (EHOMO) is the one that defines the electron donating ability. The combination of the two
parameters (ELUMO, EHOMO) can then be used to estimate the electronic chemical potential (Equation (1),
methods) and chemical hardness (Equation (2)) of the molecules. The higher the value of EHOMO,
the easier it becomes to donate an electron, while lower the value of ELUMO easier it becomes to accept
an electron. Among the investigated coumarin derivatives, compound D displays the most favorable
electron donating (EHOMO), and compound B the most favorable electron accepting (ELUMO) ability.
It is worth mentioning that the electron donating capability of molecule C is quite close to that of
compound D. The smaller the difference energy between the ELUMO and EHOMO values, the higher the
reactivity of the molecule. Compound D represents highest reactivity, while the other three derivatives
displayed very similar values. The ELUMO–EHOMO (∆E) gap also provides a measure of the chemical
hardness of the molecule. A smaller value of ∆E corresponds to a soft molecule. Substitution of
sulfur atom in a molecule has been suggested to decrease the global hardness of the molecule. Indeed,
compound D, which contains sulfur atoms, displays the lowest value of ∆E (Figure 1). For the chemical
potential, compound B displays the lowest value, thus best electron acceptor (higher electronegativity)
among the other coumarin derivatives.

Table 2. Electronic properties of the Coumarin and derived compounds A, B, C and D, employing
B3LYP XC in combination with basis set 6-31G*, and 6-311+G* (red).

Compound Coumarin A B C D

EHOMO (eV) −6.50 −6.87 −6.07 −6.45 −6.26 −6.59 −5.61 −6.04 −5.58 −5.97
ELUMO (eV) −1.88 −2.28 −2.04 −2.32 −2.23 −2.58 −1.71 −2.14 −2.04 −2.48

η = (ELUMO − EHOMO)/2 (eV) 2.31 2.30 2.01 2.07 2.01 2.01 1.95 1.95 1.77 1.75
CP = (ELUMO + EHOMO)/2 (eV) −4.19 −4.58 −4.05 −4.39 −4.25 −4.59 −3.66 −4.09 −3.81 −4.23

Ionization energy IEV (eV) 8.41 8.71 , 7.64 7.96 7.72 7.98 7.11 7.48 7.14 7.46
Electron affinity EAV (eV) −0.04 0.49 0.35 0.80 0.67 1.09 0.15 0.65 0.48 1.00

Quasi particle gap EQP (eV) 8.45 8.22 7.29 7.16 7.05 6.89 6.96 6.83 6.66 6.46
, Experimental value = 8.72 eV from reference [66].

Subsequently, the vertical ionization energies (IEV, see Equation (3)) and the electron affinities
(EAV, see Equation (4)) values were calculated on the fixed geometries of the molecules in their ground
state configuration. With respect to the coumarin molecule, all the coumarin derivatives displayed
lower IEV values while higher EAV values. Among the coumarin derivatives, compounds A and B
displayed the highest value for IEV, and compound B the highest value of EAV.

To address the reliability of the electronic structure calculations, we repeated DFT calculations
using B3LYP XC functional with 6-311+G* basis set. The general trend in the calculated values among
the coumarin derivatives is nicely reproduced. Note that there is a marginal increase by ~4% for the IEV

values. Moreover, the calculated IEV for coumarin molecule 8.71 eV is very close to the experimental
value (8.72 eV) [66]. A significant difference between the calculated EAV values using the two basis
sets was observed. The noted increase in the EAV using 6-311+G* basis sets consistent with previous
other studies [38,48,67], as including diffusion functions can improve the predicted properties of
anionic species.

3.2. Electronic Properties of the Compounds Using PBE XC Functional

To further affirm our results, we repeated the electronic structure calculations with PBE XC
functional and 6-31G* basis set, since due to the computational efficiency it is considered as a reference
XC functional. In Table 3, the calculated observables obtained using PBE XC functional and the
associated difference with respect to B3LYP XC functional is reported. The ∆E gap and IEV

values are underestimated, while EAV value is overestimated for the compounds using PBE XC
functional. However, the general trend of the calculated observables among the compounds remains
consistent (Table 3).
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Table 3. Electronic properties of the Coumarin and derived compounds A, B, C and D, employing PBE
XC in combination with basis set 6-31G*, and difference between two functionals (∆ = B3LYP–PBE).

Compound Coumarin A B C D

Properties PBE ∆ PBE ∆ PBE ∆ PBE ∆ PBE ∆
EHOMO (eV) −5.72 −0.78 −5.39 −0.68 −5.51 −0.75 −5.01 −0.6 −4.88 −0.7
ELUMO (eV) −2.60 0.72 −2.66 0.62 −2.89 0.66 −2.53 0.82 −2.63 0.59
(ELUMO − EHOMO)/2 (eV) 1.56 0.75 1.37 0.64 1.31 0.7 1.24 0.71 1.13 0.64
CP = (ELUMO + EHOMO)/2 (eV) −4.16 −0.03 −4.03 −0.02 −4.2 −0.05 −3.77 0.11 −3.76 −0.05
Ionization energy IEV (eV) 8.28 0.13 7.47 0.17 7.42 0.3 6.98 0.13 6.93 0.21
Electron affinity EAV (eV) 0.07 −0.11 0.51 −0.16 0.80 −0.13 0.41 −0.26 0.54 −0.06
Quasi particle gap EQP (eV) 8.21 0.24 6.96 0.33 6.62 0.43 6.57 0.39 6.39 0.27

3.3. Molecular Orbitals and Electrostatic Potentials

The frontier orbitals (FOs) of the investigated compounds are depicted in Figure 4. For each
molecule, both the HOMO and LUMO, are π-type and delocalized over-all the molecule. In particular,
all the LUMOs are quite similar and mainly composed by the atomic orbitals of the coumarin moiety,
with only small contributions from those of the substituents.

As far as the HOMOs are concerned, the contributions from the substituents are much more
relevant and consequently, these orbitals are more different between them in comparison with the
LUMOs case. Therefore, larger differences between the energies of the HOMOs of the molecules A-D
and that of the parent compound are expected in comparison with those of the LUMOs. Indeed,
HOMO-LUMO gaps are smaller for the coumarin derivatives with respect to the parent compound.
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theory (DFT) at B3LYP/6-31G* level of theory (contour plot 0.04).

Figure 5 reports, for each compound, the electrostatic potential (EP) mapped onto the density
surface. As expected on the base of the electronegativity, the parts of surfaces with the highest negative
charge are those in the correspondence with the oxygen atoms, especially those doubly bound in the
pyrone rings. Taking into account the effects of the substituents at the parent molecule, the hydroxide
groups regardless the position, present negative EPs at the oxygen atoms, whereas the hydrogen
involved in OH bonds are in the correspondence with the regions of the surfaces with the more positive
potentials (molecules B, C and D). The phenyl rings show electronic density delocalized over the
carbon atoms skeleton and positive EPs at the hydrogen ones (molecules A, B and C).
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The thiophene ring exhibits similar properties with an important negative contribution at the
sulphur atom (compound D). Interestingly, the bromine atom in the molecule B presents an anisotropic
EP with negative values around the C-Br bond and a σ-hole at the tip of the halogen atom.

3.4. Optical Properties

Time-dependent density function theory method was employed at B3LYP/6-31G* and B3LYP/6-311+G*
levels to calculate the absorption spectra of the compounds optimized ground state structure in the gaseous
phase. The peaks in the absorption spectrum reported with a Lorentzian broadening allowed characterizing
the behavior of the molecules when irradiated. The first absorption peak corresponds to the optical
onset of the compound and the main peak corresponds to the one with the maximum value of transition
intensity (Figure 6).Appl. Sci. 2020, 10, 144 9 of 16 
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All the four derivatives display optical onset in the near ultra-violet (UV) region, ranging between
[3.26–3.94] eV. In general, using 6-311+G* basis set, the absorption profile was found to be red-shifted
with respect to 6-31G* basis set, and with a reasonable overlap in the first peak of absorption. Significant
difference in the absorption profile between the basis sets in found in the 5 to 7 eV range, which corresponds
to deep UV (UV-C) region. Among the derivatives, compounds A B and C displayed a good overlap in the
UV-B [3.5–4.0 eV] and UV-C [5.5–6.2 eV] regions, thus suggesting an optical signature of a phenylcoumarin
derivative. On the other hand, for compound D (belonging to heteroarylcoumarin family) the optical onset
value was red-shifted with respect to the other derivatives.

To obtain the electronic absorption characteristics of the derivatives TD-DFT calculations were
repeated with PBE/6-31G* level of description (Figure 7). Consistent with our previous findings,
we note a general red-shifted absorption profile with respect to the B3LYP XC functional (Table 4).
Interestingly, we note for compound B (2.92 eV), C (2.75 eV) and D (2.98 eV) the first signs of optical
transition to occur in the visible region (between blue and violet).Appl. Sci. 2020, 10, 144 10 of 16 
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B3LYP (black) and with 6-31G* basis set, respectively.

For the optical structure one can obtain information about the transition intensity, the transition
weight (indicating the dominant transition), and also the type of the transition itself, which will be
discussed in the next section. In Table 4 is summarized the transition energy and relative transition
intensity (given as oscillator strength) for the main peak (MP) absorption and the EOPT (first signs of
optical transition) value employing two XC functionals and basis sets.

Table 4. Energy and oscillator strength (OS) for the main peak (MP) and optical onset (EOPT) extracted
from the absorption spectra.

Molecule
B3LYP/6-31G* B3LYP/6-311+G* PBE/6-31+G*

Main Peak EOPT Main Peak EOPT Main Peak EOPT

eV OS eV OS eV OS eV OS eV OS eV OS

A 3.80 0.50 3.80 0.50 3.77 0.49 3.77 0.49 6.47 0.38 3.37 0.35
B 3.72 0.55 3.59 0.02 3.66 0.48 3.58 0.06 3.16 0.34 2.92 0.02
C 3.82 0.36 3.50 0.21 5.89 0.38 3.47 0.23 6.32 0.14 2.74 0.04
D 3.35 0.58 3.35 0.58 3.24 0.55 3.24 0.55 2.98 0.42 2.98 0.42
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For molecules A and D using B3LYP XC with either of the basis sets, we found the MP and optical
onset values to coincide. On the other hand, using PBE/6-31G* we found the coincidence between the
MP and optical onset only for molecule D (Table 4).

Using the information obtained for the optical onset values, we further evaluated the exciton
binding energy (EBIND) values (see Equation (6)), defined as energy needed to dissociate an excited
electron–hole pair into free charge carriers. In Table 5, we summarize the exciton binding energy
values of the molecules using the choses XC functionals and the basis sets.

Among the molecules, A displayed the highest value of exciton binding energy, D the lowest,
and B and C displayed similar energy values (Table 5). Thus, suggesting that adding a hydroxyl
substitution in the coumarin motif (between B and C) does not change the exciton binding energy.
The EBIND trend among the molecules remains consistent also for calculations with B3LYP/6-311+G*,
however, with the EBIND values reduced between 3–6%. On the other hand, we note a maximum
increase of 10.7% for molecule C for the calculations with PBE/6-31G* model.

Table 5. Optical onset and exciton binding (EBIND) energy values are reported here. The symbol (↓)
is denotes a decrease and (↑) denotes an increase in the values with respect to B3LYP/6-31G* level
of description.

Molecule B3LYP/6-31G* B3LYP/6-311+G* PBE/6-31+G*

(eV) EOPT EBIND EOPT EBIND EOPT EBIND

A 3.80 3.49 3.77↓ 3.36 ↓ (3.4%) 3.37 ↓ 3.59 ↑ (2.9%)
B 3.59 3.46 3.58 ↓ 3.31 ↓ (4.3%) 2.92 ↓ 3.70 ↑ (6.9%)
C 3.50 3.46 3.47 ↓ 3.33 ↓ (3.8%) 2.74 ↓ 3.83 ↑ (10.7%)
D 3.35 3.31 3.24 ↓ 3.11 ↓ (6%) 2.98 ↓ 3.41 ↑ (3%)

3.5. Solvent Effects on the Absorption Spectra for the Coumarin Derivatives

In order not to utterly neglect possible solvent effects on equilibrium conformations of the
coumarin derivatives, and therefore, indirectly, on their optical properties, we performed classical MD
simulations for the molecules in water. The representative conformation of the four compounds in
water was extracted and the spectra was calculated for these geometries and compared with those
of the vacuum-optimized one (Figure 8). For all the representative molecular structures in solvent,
the optical onset is red-shifted with respect to the vacuum ones. Only in the case of molecule D
(which belongs to heteroarylcoumarin family) the main absorption peak is nearly unchanged in the
position with respect to the vacuum optimized structure. Furthermore, the oscillator strength of the
main peak is lower only for molecule D for the TD-DFT calculations performed on the representative
molecular structures obtained from classical MD simulations in water. Thus, a clear difference with
respect to impact of solvent on the absorption characteristics is noted between the heteroarylcoumarin
(D) and 3-phenylcoumarin (A, B, C) derivatives.

It is evident from the absorption spectrum that molecular structures occur in the UV region
(Figure 8). Therefore, one could expect the main absorption peak of the coumarin derivatives to
be located in the UV region. Regarding the solvent optimized structures of A, B and D, the optical
onset and the main absorption peak are the same, and the transitions involve an excitation of the
HOMO–LUMO states (Table 6). This optical feature is conserved only for the optimized structures of A
and D in vacuum (Table 4). In detail, with the solvent treatment, the main absorption peak of molecules
A, B and D represent excitation from the HOMO→LUMO level, while for C from HOMO-1→LUMO
level (Table 6). Overall, among the molecules, the optical features display same trend between the
vacuum and solvent treatment.



Appl. Sci. 2020, 10, 144 11 of 15

Appl. Sci. 2020, 10, 144 11 of 16 

however, with the EBIND values reduced between 3-6 %. On the other hand, we note a maximum 
increase of 10.7 % for molecule C for the calculations with PBE/6-31G* model.  

Table 5. Optical onset and exciton binding (EBIND) energy values are reported here. The symbol (↓) is 
denotes a decrease and (↑) denotes an increase in the values with respect to B3LYP/6-31G* level of 
description. 

Molecule  B3LYP/6-31G*  B3LYP/6-311+G*  PBE/6-31+G*  
(eV) EOPT EBIND EOPT EBIND EOPT EBIND 

A  3.80  3.49 3.77↓  3.36 ↓ (3.4%) 3.37 ↓ 3.59 ↑ (2.9%) 

B 3.59  3.46 3.58 ↓ 3.31 ↓ (4.3%) 2.92 ↓ 3.70 ↑ (6.9%) 

C 3.50  3.46 3.47 ↓ 3.33 ↓ (3.8%) 2.74 ↓ 3.83 ↑ (10.7%) 

D 3.35  3.31 3.24 ↓ 3.11 ↓ (6 %) 2.98 ↓ 3.41 ↑ (3 %) 

3.5. Solvent Effects on the Absorption Spectra for the Coumarin Derivatives 

In order not to utterly neglect possible solvent effects on equilibrium conformations of the 
coumarin derivatives, and therefore, indirectly, on their optical properties, we performed classical 
MD simulations for the molecules in water. The representative conformation of the four 
compounds in water was extracted and the spectra was calculated for these geometries and 
compared with those of the vacuum-optimized one (Figure 8). For all the representative molecular 
structures in solvent, the optical onset is red-shifted with respect to the vacuum ones. Only in the 
case of molecule D (which belongs to heteroarylcoumarin family) the main absorption peak is 
nearly unchanged in the position with respect to the vacuum optimized structure. Furthermore, the 
oscillator strength of the main peak is lower only for molecule D for the TD-DFT calculations 
performed on the representative molecular structures obtained from classical MD simulations in 
water. Thus, a clear difference with respect to impact of solvent on the absorption characteristics is 
noted between the heteroarylcoumarin (D) and 3-phenylcoumarin (A, B, C) derivatives. 

 
Figure 8. Absorption spectra of coumarin derivatives in vacuum (black) and solvent (red) calculated 
with B3LYP/6-31G* model. 

Figure 8. Absorption spectra of coumarin derivatives in vacuum (black) and solvent (red) calculated
with B3LYP/6-31G* model.

Table 6. Main absorption peak energy value, oscillator strength (OS) and their associated electronic
excitations transition for the vacuum and solvent model systems, are included here. The transition
weight is reported in %, and H stands for HOMO and L for LUMO.

Molecule B3LYP/6-31G* (Vacuum) B3LYP/6-31G* (Water)

MP (eV) OS Transition MP (eV) OS Transition

A 3.80 0.5 H→L (96.3%) 3.46 0.54 H→L (98%)
B 3.72 0.55 H→L (82.6%) 3.38 0.65 H→L (98%)
C 3.82 0.36 H–1→L (79.4%) 3.64 0.49 H-1→L (81%)
D 3.35 0.58 H→L (97. 8%) 3.31 0.44 H→L (97%)

4. Conclusions

The aim of this work was to investigate the wide-range utility of coumarin derivatives used as
enzyme inhibitors, three 3-phenylcoumarin (A, B, C), and one 3-heteroarylcoumarin (D) compounds.
In particular, we examined the molecular structure, the electronic states (HOMO, LUMO), vertical
ionization potential (IEV) and electron affinity, quasi-particle gap, and optical properties of the
compounds using DFT and TD-DFT methods. Coumarin was chosen as a reference molecule,
considering the existence of experimental data. A good match between the calculated and experimental
IEV values supported the adopted computational approach. The reliability of the computed data was
verified using two XC functionals (B3LYP, PBE) and two basis sets (6-31G*, 6-311+G*).

Molecule B displayed the highest value of IEV and EAV, while molecule D had the lowest
HOMO-LUMO energy gap value. Concerning the optical properties, all the molecules showed
first-signs of absorption (optical onset EOPT) in the UV-region with molecule D displaying the lowest
EOPT and exciton binding (EBIND) energy values. The exciton energy values found lie in the range of
wide band gap semiconductor materials.

To address solvent effects on the optical properties, TD-DFT calculation was performed on the
extracted representative molecular structures from MD simulations in water. The first absorption peak
was found to be red shifted with respect to calculations performed on geometries optimized in vacuum.
Interestingly, same dominant HOMO-LUMO transition levels for the main absorption peak (and the
optical onset) was prominent between the molecular structures in vacuum and their solvent counterparts.
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In conclusion, we provide valuable information that can inspire further research on coumarin-based
derivatives as wide band gap semiconductor materials for applications in optoelectronic devices,
and promote the use of DFT based computational methodology to identify and design novel molecules
with useful and interesting applications.
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