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Abstract: Due to the increasingly serious air pollution problem, air quality prediction has been
an important approach for air pollution control and prevention. Many prediction methods have
been proposed in recent years to improve the prediction accuracy. However, most of the existing
methods either did not consider the spatial relationships between monitoring stations or overlooked
the strength of the correlation. Excluding the spatial correlation or including too much weak spatial
inputs could influence the modeling and reduce the prediction accuracy. To overcome the limitation,
this paper proposes a correlation filtered spatial-temporal long short-term memory (CFST-LSTM)
model for air quality prediction. The model is designed based on the original LSTM model and is
equipped with a spatial-temporal filter (STF) layer. This layer not only takes into account the spatial
influence between stations, but also can extract highly correlated sequential data and drop weaker
ones. To evaluate the proposed CFST-LSTM model, hourly PM2.5 concentration data of California are
collected and preprocessed. Several experiments are conducted. The experimental results show that
the CFST-LSTM model can effectively improve the prediction accuracy and has great generalization.

Keywords: air quality forecasting; deep learning; long short-term memory; PM2.5; spatial-
temporal correlation

1. Introduction

In the last decades, along with the rapid development of urbanization and industrialization,
emissions of air pollutants, such as PM2.5, PM10, CO, and SO2, have caused serious environmental
problems. Each year, millions of people die from exposure to serious air pollutants [1,2]. Billions of
wealth is lost due to direct and indirect effects of air pollution [3]. Deteriorating air quality has become
a critical environmental concern. A number of policies and measurements have been introduced to
reduce the emissions of air pollutants and mitigate the impacts of air pollution on human society [4].
Air pollution monitoring stations have also been constructed in many areas to monitor and collect air
pollution data.

In academia, scholars also have put lots of effort in studying how to better manage the air pollution.
Commonly seen literature covers topics like air pollution dispersion mechanism modeling [5], influential
factors analysis [6,7] as well as air quality prediction [8,9]. Air quality prediction is one of the main areas
in this domain. Based on accurate air pollution forecasting, early warnings can be given. The public
can then prepare themselves in advance to mitigate the impact of air pollution and the government
can adopt effective measurements such as traffic restriction to control air pollution.
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In order to obtain better forecasting results, statistical methods and machine learning techniques
have been widely adopted for modeling the air quality. Statistical methods refer to methods developed
based on large amounts of statistical data and linear mathematical functions. For example, Davis and
Speckman [10] took a generalized additive model (GAM) approach to predict the ozone concentrations
one day in advance for Houston. Li et al. [11] employed a set of numerical forecasting models such as
autoregressive integrated moving average (ARIMA) to improve the forecast of air pollutants including
PM2.5, NO2, and O3 in Hong Kong. Kulkarni et al. [12] also adopted ARIMA time series model for
forecasting air pollution in India.

Machine learning techniques also predict air pollution based on historical data. They model the
data in a non-linear way, which is more consistent with the non-linearity of the real-world air pollution
data and therefore can generate higher prediction accuracy. For example, Osowski and Garanty [13]
presented a method for daily air pollution forecasting based on support vector machine (SVM) and
wavelet decomposition. Gardner and Dorling [14] trained multilayer perceptron (MLP) neural networks
to model hourly NOx and NO2 pollutant concentrations in Central London. Jusoh and Ibrahim [15]
utilized artificial neural networks (ANNs) for air pollution index forecasting.

Beside algorithms developed based on traditional statistical methods and machine learning
methods, more and more studies recently started to implement deep learning technologies for
air pollution modeling. Deep learning is one kind of advanced non-linear modeling techniques
that was designed based on artificial neural networks but grows the neural-like calculation unit
deeper for a better modeling. It has been tested by several studies and was reported to have
outstanding prediction performance in air quality forecasting. For example, Prakash et al. [16]
proposed a wavelet-based recurrent neural network (RNN) model to forecast one step ahead hourly,
daily mean, and daily maximum concentrations of ambient CO, NO, PM2.5, and other most prevalent
air pollutants. Li et al. [17] extended a long short-term memory (LSTM) network for air pollution
prediction, and achieved better performance than existing methodologies.

However, although most of the aforementioned approaches have generated accurate forecasting
results, the majority of them only modeled the prediction based on the historical air pollutants data and
meteorological data. Only a few considered the temporal and spatial correlation of the data recorded
by neighbor stations. Yang et al. [18] developed a space-time support vector regression (STSVR) model
to predict hourly PM2.5 concentrations, incorporating spatial dependence and spatial heterogeneity
into the modeling process. Li et al. [17] proposed a long short-term memory neural network extended
(LSTME) model that inherently considers spatial-temporal correlation for air pollutant concentration
prediction. Szpiro et al. [19] described a methodology for assigning individual estimates of long-term
average air pollution concentrations that accounts for a complex spatial-temporal structure and can
accommodate spatial-temporally misaligned observations. Still, these papers have a common limitation.
Since the distribution of air quality monitoring stations is dense and balanced in some places but sparse
and imbalanced in other places, spatial and temporal correlation of the air pollutant concentrations
between two neighboring stations could be different. It might be strong when the distribution of
stations is dense, and weak when the distribution is sparse. Weak correlation, on the other hand, might
add more noise during the modeling process and influence the model performance. However, most of
the previous studies did not well address this point. Therefore, a model that considers the strength of
spatial and temporal correlation of air pollutant concentrations is required to further improve the air
quality prediction accuracy.

To this end, this paper proposes a correlation filtered spatial-temporal long short-term memory
(CFST-LSTM) neural network for air quality prediction. A special spatial-temporal filter (STF) layer is
designed into the ordinary LSTM network to optimize the various spatial-temporal time series from the
input layer. In this way, highly correlated inputs are filtered, the influence of noisy data is mitigated,
the complexity of the model is reduced, and therefore, the model performance can be improved. In this
paper, PM2.5 concentration is selected as the prediction target. Historical PM2.5 data of California
are collected.
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2. Research Framework

In this paper, a deep learning-based CFST-LSTM model is proposed for air quality prediction. Deep
learning, also known as deep structured learning or hierarchical learning, is a class of machine learning that
uses multiple layers of non-linear processing units for feature selection and data modeling [20]. Due to its
powerful learning ability, deep learning has been applied to a number of fields such as computer vision,
speech recognition, language processing [21,22], and has achieved state-of-the-art performance [23].

Development of deep learning can be traced back to the machine learning technology. Due to
the intrinsic linear assumption of traditional statistical methods, scholars tried to adopt non-linear
machine learning methods to better fit the non-linear mechanism of real-world data like air pollution.
For example, Singh et al. [24] identified pollution sources and predicted urban air quality using
tree-ensemble machine learning methods. Their results demonstrated that the prediction accuracy of
machine learning methods outperformed statistical methods. Wang et al. [25] developed an online air
quality prediction model based on support vector machine and achieved high prediction accuracy.
Among various machine learning methods, artificial neural networks (ANNs) have been proved to
have better prediction performance for air pollution compared with other models [26].

Typical ANNs usually contain three kinds of layers, including input layer, hidden layer, and output
layer [27,28]. Based on three-layer ANNs, scholars further found that as the architecture of a neural
network becomes deeper and more complicated, its modeling performance becomes better. Therefore,
deep learning is developed. Deep learning models are vaguely inspired by the information processing
and communication patterns in biological nervous systems [20]. It normally contains multiple layers
and the relationship between layers and neurons of each layer could be rather complicated. Commonly
seen deep learning architectures include deep neural networks, deep belief networks, and recurrent
neural networks. Among these networks, the recurrent neural network (RNN) is specially designed
for time series data such as air pollution data modeling [29]. It can take the output of the last layer as
the input of the current layer and therefore estimate the temporal mechanism of the data.

Although RNN can pass on the information of the previous moment to the next moment,
its modeling performance will become unsatisfactory for long-term data due to the vanishing or
exploding gradient [30]. To overcome the limitation, a gated recurrent neural network named long
short-term memory (LSTM) is proposed. It overcomes the vanishing/exploding gradient problem
of RNN through several control gates and can learn from long-term dependencies. Its modeling
performance for time series data has also been evaluated and proved by many studies [31–34]. However,
only a few of them have explored the implementation of LSTM on air quality prediction.

Therefore, this paper adopts LSTM as the base prediction model for air pollutant concentrations
and further proposes an extended LSTM model, namely correlation filtered spatial-temporal long
short-term memory (CFST-LSTM). The research framework of this paper is shown in Figure 1. It consists
of five parts. First is data collection. In this study, air quality datasets of California, the U.S., are collected
for experiments. The collected data are then preprocessed to be more model-friendly. Missing data
imputation and data normalization are conducted. After that, the CFST-LSTM model is constructed to
forecast the PM2.5 concentrations. Its model structure and parameters are optimized and its modeling
performance is compared with other commonly seen machine learning models and neural networks.
Later, for each station in the study area, a CFST-LSTM model and an ordinary LSTM model are
constructed to explore the model generalization. Their performances are compared and evaluated
with the help of geographical information system (GIS).
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3. Data and Methods

3.1. Data Collection

To validate the effectiveness of the proposed methodology, a case study was conducted in this paper.
California, US was selected as the study area due to data availability. Hourly PM2.5 concentrations
data of California from 2016 to 2017 were collected from the United States Environmental Protection
Agency (EPA). Data of 30 monitoring stations were covered. A brief summary of the data is shown
in Table 1. The distribution of these 30 stations is presented in Figure 2. It can be seen that the
distribution is imbalanced. It is dense in the northern and southeastern areas of California but sparse
in the middle areas. As mentioned in Section 0, spatial and temporal correlation of the air pollutant
concentrations between two neighboring stations could be different due to the spatial distribution
of stations. Take station 11 as an example. It may have higher correlation with station 12 but lower
correlation with station 5 since station 5 is geospatially farther. The data from station 5 may have smaller
impact on predicting the air quality in station 11 but increase the risk of noisy data contamination and
lower computation speed. Therefore, it is important to consider the spatial-temporal correlation among
stations when building the forecasting model. Regarding this, this paper developed a correlation
filtered spatial-temporal LSTM (CFST-LSTM) model, which can automatically determine the highly
correlated data segments and simultaneously optimize the model from both temporal and spatial
aspects. Detailed modeling process of CFST-LSTM will be introduced later.

3.2. Data Preprocessing

After the raw data were collected, data preprocessing needed to be performed. The collected
datasets unavoidably involve some missing values due to machine failure, routine maintenance, human
error, insufficient sampling, and other factors. The missing values normally are required to be removed
or filled to ensure the performance of modeling [35].The missing rate in this experiment was relatively
small, at 2.65%. We implemented the linear interpolation methods following [36] to fill the empty
values. After this procedure, each station resulted in 17,544 records of PM2.5 concentrations.

Furthermore, to mitigate the impact of dimension and speed up the model training, min-max
normalization was adopted to normalize the data. Calculation of the normalization can be formulated
as Equation (1)

x∗ =
x− xmin

xmax − xmin
(1)

where xmax represents the maximum value in the dataset and xmin represents the minimum value.
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Table 1. A brief summary of the collected PM2.5 data.

Attribute Value

Data content PM2.5 concentrations
Temporal resolution 1 h

Location California State, the U.S.
Duration 2016/01-2017/07

Number of stations 30
Average 1st quantile 5.3933

Average Mean 11.3668
Average Median 9.3133

Average 3rd quantile 14.7833
Average Standard Deviation 10.0275

Unit Micrograms/Cubic Meter

3.3. Methods

3.3.1. Long Short-Term Memory (LSTM)

After the data collection and preprocessing, the modeling algorithm could be applied to model
the data and predict PM2.5 concentrations. In this paper, a correlation filtered spatial-temporal long



Appl. Sci. 2020, 10, 14 6 of 16

short-term memory (CFST-LSTM) model was proposed to accomplish the task. Future air quality of
a target station was predicted based on the historical data of itself and surrounding stations.

The proposed CFST-LSTM network was developed based on the long short-term memory (LSTM)
model. LSTM is a special architecture of recurrent neural network (RNN) proposed by Hochreiter and
Schmdhuber [30]. It overcomes the vanishing and exploding gradient problem of RNN and is capable
of learning from long dependencies through a gating mechanism. Due to the strong ability of LSTM in
modeling temporal sequential data, it has been reported to have state-of-the-art performance in many
domains, such as speech recognition, language modeling, and sequence forecasting [37–40].

The network structure of LSTM consists of an input layer, an output layer, and a plurality of
hidden layers. The specialty of LSTM lies in the compositions of its hidden layers, which are composed
of one or more self-recurrent memory blocks. These blocks allow a value (forward pass) or gradient
(backward pass) that flows into the block to be preserved and subsequently retrieved at the required
time step [41]. The basic structure of the memory block is shown in Figure 3. It consists of three gates,
including the forget gate ft, the input gate it, the output gate ot, and a recurrent connection cell Ct. xt is
the input to the current block, ht−1 is the hidden state of the last block, and ht is the state of the current
block. At time step t, the LSTM memory block can be defined with the following set of equations:

ft = σ(Wf·[ht−1, xt] + bf), (2)

it = σ(Wi·[ht−1, xt] + bi), (3)

C̃t = tan h(Wc·[ht−1, xt] + bc), (4)

Ct = ft · Ct−1 + it·C̃t, (5)

ot = σ(Wo·[ht−1, xt] + bo), (6)

ht = ot·tan h(Ct), (7)

where W represents the connection weights between neurons, b represents deflection, and σ denotes
the sigmoid activation the gates used.
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3.3.2. CFST-LSTM

However, when predicting air pollutant concentrations, the ordinary LSTM model neither takes
into account the spatial correlation among the monitoring stations nor considers the strength of the
spatial-temporal correlations. Consequently, its performance is limited when the air pollution in one
area is largely influenced by other areas. To overcome the problem, this study proposed a correlation
filtered spatial-temporal long short-term memory (CFST-LSTM) model, which can analyze the lagged
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spatial-temporal correlation of the input data and select the time series data that meet the pre-set
threshold. The architecture of the CFST-LSTM model is presented in Figure 4. It consists of five layers,
including input layer, STF layer, LSTM layer, fully connected (FC) layer, and output layer. Working
process of the CFST-LSTM model is shown as follows.
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Firstly, given a dataset X, STF layer calculates the correlation coefficient matrix R for the time
series of the target stations and the lagged time series of all the other stations (including the target
station itself). The formulation of R is shown in Equation (8).

R = Corr
(
Starget_site, Sother_sites

)
(8)

where Corr(·) denotes the function for calculating the correlation coefficient matrix, Starget_site represents
the time series of the target station, Sother_sites represents the lagged time series matrix of other sites,
which can be formulated as Equation (9).

Sother_sites =


St−1

site_1 . . . St−r
site_1

. . . . . . . . .
St−1

site_n . . . St−r
site_n

 (9)

where n represents the number of sites, r represents the largest time lag, t represents the length of time
series, each St−j

site_i represents the lagged j-moment time series of the number ith station for the target

station, 1 ≤ i ≤ n, 1 ≤ j ≤ r. For Corr(·), each R(i,j) = ρ
(
Stargetsite

, St−j
site_i

)
. ρ(·) is the Pearson correlation

function. Its calculation is shown in Equation (10).

ρ(X, Y) =
Cov(X, Y)

σXσY
(10)
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where X represents the original input of the model, Y represents the output, Cov(X, Y) represents the
covariance of X and Y, σX and σY represent the standard deviation of X and Y, respectively, ρ ∈ (−1, 1).
The formulation of X can be expressed as Equation (11).

X =


site_1t−1 . . . site_1t−r

. . . . . . . . .
site_nt−1 . . . site_nt−r

 (11)

where site_it−j represents the recorded value of the ith station at time t-j.
Secondly, transform the R based on the correlation threshold ρth, as shown in Equation (12).

RI = I(R, ρth) (12)

where I(·) represents the indicator function. When R(i,j) ≥ ρth, RI
(i,j) = 1. When R(i,j) < ρth, RI

(i,j) = 0.

Thirdly, apply the element-wise product to X and RI. Then, the final output X′ of STF layer is
given, as presented in Equation (13).

X′ =
(
X ∗RI

)T
(13)

where ∗ represents the element-wise product and (·)T represents the matrix transpose.
After the X′ is given, it is input into the LSTM layer. The following steps are the same as the

ordinary LSTM model.

4. Results and Discussions

4.1. LSTM Structure Optimization

To validate the effectiveness of the proposed model, hourly PM2.5 data of 30 stations in California
were collected. After the data were preprocessed, they were input into the model. However, before
that, parameters of the model need to be optimized at first. For illustration purpose, monitoring station
11 is used as an example. It contains 17,544 records of PM2.5 concentrations; 70% of its data are used as
training samples while the remained 30% are used as testing samples. The number of samples relies
on the largest time lag value. If time lag is 12, then there will have 12,272 training samples, and 5260
testing samples. Note that the calculated optimization results in the following paper are all based on
the performance from the testing set.

Before applying the proposed model on further experiments, its parameters need to be identified
and optimized for a better result. Although this study designed an STF layer into the LSTM network,
some parameters of the deep neural network setting can be re-used. Following the study of V et al., [42],
this paper sets the epoch and batch size as 1000 and 48, respectively. MSE is selected as the loss function,
and RMSprop is adopted as the optimizer. The learning rate of the model is set as 0.001. The number of
fully connected layer is set as 1. The number of neurons of fully connected layer is set as 64. The linear
active function is used. The number of neurons of output layer is set as 1. The discussion on the largest
time lag of STF layer and ρthreshold will be introduced in later sections, and we pre-set them as 12 and
0.4 first.

The most important parameters that need to be tuned before model implementation is the structure
of the stacked LSTM layer. The optimization performance is evaluated using root mean square error
(RMSE), mean absolute error (MAE), and R2. Calculations of the three metrics are presented in
Equations (14), (15) and (16), respectively.

RMSE =

√√√
1
N

N∑
i=1

(
yi

true − yi
pred

)2
(14)
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MAE =
1
N

N∑
i=1

∣∣∣∣yi
true − yi

pred

∣∣∣∣ (15)

R2 = 1−

∑N
i=1

(
yi

true − yi
pred

)2

∑N
i=1

(
yi

true − ytrue
mean

)2 (16)

where N represents the number of samples, yi
true represents the true value of the ith sample, yi

pred
represents the predicted value of the ith sample, and ytrue

mean represents the mean value of true values.
The number of neurons in each LSTM layer is set as the same. Candidates of the number of LSTM

layers narrowed down to {2–4} after a trial and error process, and the number of neurons at each layer
was set as {32, 64, 128}. Optimization results are shown in Table 2. It can be observed that when the
number of LSTM layers is 2 and the number of neurons of each layer is 64, the model has the lowest
scores of RMSE and MAE and the highest score of R2. Therefore, this paper sets the number of LSTM
layers as 2 and the number of neurons as 64.

Table 2. Optimization of the structure of the LSTM layer.

Layers Nodes RMSE (µg/m3) MAE (µg/m3) R2

2
32 2.0122 1.5385 0.9534
64 1.9926 1.5161 0.9583

128 2.1270 1.5687 0.9477

3
32 2.1156 1.6306 0.9483
64 2.0934 1.5553 0.9494

128 2.1378 1.6026 0.9471

4
32 2.1632 1.6269 0.9458
64 2.1998 1.6904 0.9439

128 2.1744 1.7027 0.9453

4.2. Comparison of Different Correlation Threshold

Besides the structure of the stacked LSTM layer, it is also important to optimize the largest time
lag r and correlation threshold ρth. These two parameters are the key parameters in the newly designed
STF layer. Time lag r decided the feature pool of the model. Correlation threshold ρth decided the
quality of the feature pool. Since the air quality time series pattern in one place usually follows a daily
period, and one day may not enough to extract the useful pattern, we therefore set the test range of r as
48 h, and calculated the model performance using different pairs of r and ρth. The results are shown
in Figures 5–7.
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Figure 7. R2 values of the model using different pairs of r and ρth.

It can be seen from Figures 5–7 that both two parameters can affect the model performance a lot.
For example, the R2 value can change from the lowest 0.909 to 0.958. It is almost 5% performance.
The setting of ρth shows a clear separation for model performance. When ρth ≤ 0.4, the R2 value never
gets lower than 0.920, and when ρth > 0.4, most of the R2 values are lower than 0.920. This is because
when ρth is too large, many useful inputs will be filtered out, and result in limited knowledge to learn.
But when ρth goes too low, the inputs will keep much noise, and therefore the model performance
drops. Overall, it can be seen from Figures 5–7 that when r = 12, and ρth = 0.4, the model has the
lowest RMSE, MAE and highest R2 value. This pair is then the optimal pair for these two parameters.
The goodness of fit plot is shown in Figure 8.
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4.3. Model Comparison

To prove the effectiveness of the CFST-LSTM model, its prediction performance is compared with
other traditional machine learning models and commonly seen neural networks. These contain three
traditional machine learning models, including LASSO regression, Ridge regression, and support
vector regression (SVR), and two commonly seen neural networks, including artificial neural network
(ANN) and recurrent neural network (RNN) [43–47]. The parameters of these algorithms were all tuned
using the same grid search process. Table 3 presents the results of the model comparison. (1) It can be
seen from the first six rows that compared with other models, the two deep learning neural networks,
RNN and CFST-LSTM, have lower RMSE/MAE and higher R2. This is because compared with Lasso
and Ridge, neural network-based learning algorithms are better at modeling non-linear real-world
relationships. Therefore, ANN, RNN, and CFST-LSTM have better performance. (2) Also, compared
with traditional machine learning methods SVR and ANN, the other two deep learning based models
(RNN and CFST-LSTM) have lower error and higher R2. This is because they are specifically designed
for time series problems. It is easier for them to learn the impact from historical data. (3) Lastly,
CFST-LSTM outperforms RNN, and exhibits the lowest RMSE and the highest R2. It can be seen that
the difference is quite significant. The main reason is that except CFST-LSTM, other models did not
consider the influence from nearby stations.

Table 3. Model comparison.

Model RMSE (µg/m3) MAE (µg/m3) R2

LASSO 2.93213 1.951243 0.915126
Ridge 2.89453 1.932423 0.918705
SVR 2.79312 1.892831 0.925028

ANN 2.78484 1.882643 0.925734
RNN 2.70294 1.853425 0.929810

CFST-LSTM 1.99257 1.516072 0.958348
CFST-ANN 2.62591 1.79819 0.930665

CFST-RNN 2.53594 1.70958 0.939712



Appl. Sci. 2020, 10, 14 12 of 16

Since the newly designed STF layer in CFST-LSTM is one kind of neural network layer, it can
also be added into ANN and RNN. To test how much it can help increase the performance of neural
network models, this study also calculated the R2 value of CFST-ANN and CFST-RNN. The results are
shown in the last two columns in Table 3. It can be seen that the R2 values of these two neural networks
have improved. This, on another angle, proved the effectiveness of the proposed STF layer. However,
the overall performance of CFST-ANN and CFST-RNN are still behind CFST-LSTM. This is because
the LSTM layer in CFST-LSTM is better at learning long-term dependency from time series data.

4.4. Comparison of Ordinary LSTM and CFST-LSTM

Besides the comparison between CFST-LSTM and other commonly seen machine learning/deep
learning algorithms, this study also compared the performance of CFST-LSTM and the ordinary LSTM
network. To better illustrate the comparison and the advantages of the proposed CFST-LSTM model,
this experiment expands the test site form site 11 to all the sites within California State. For each site,
we will separate the data into 70% training set and 30% testing set, and then train the models using
ordinary LSTM (O-LSTM), full site inputs LSTM (F-LSTM), and CFST-LSTM. The differences between
these three models are shown in Equations (17) to (19).

InputsSite i
O−LSTM
→ PredictionsSite i (17)

InputsAll Sites
F−LSTM
→ PredictionsSite i (18)

InputsAll Sites
CFST−LSTM
→ PredictionsSite i (19)

The results are all calculated based on the testing sets of different sites, and they are shown in
Figure 9. Figure 9 (left) is the R2 values on different sites. R2

O means the R2 value calculated using
O-LSTM, and is marked using a blue line. R2

F means F-LSTM, and is marked using a green line. R2
C

means CFST-LSTM, and is presented using an orange line. It can be seen that overall, CFST-LSTM
performs the best, O-LSTM the second, and F-LSTM the third. To show the difference between these
three models more clear, we calculated the values of R2

O −R2
F and R2

O −R2
C, and also plotted them on

Figure 9 (right). In this way, it can be seen that O-LSTM performs better than F-LSTM in most sites,
while it also seldom surpasses CFST-LSTM.
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The average values of these three indicators on all sites are shown in Table 4. It can be seen that
CFST-LSTM has the highest average R2 with a value of 0.9155, and it is 2.88% better than O-LSTM and
6.29% better than F-LSTM. This is reasonable since CFST-LSTM not only considered the influence from
nearby stations, but also filtered out less related time series inputs. F-LSTM performs the worst with
a value of 0.8613, which is 3.32% lower than O-LSTM. This is also understandable since it contains too
much noise when modeling the PM2.5 concentrations.
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Table 4. Average R Square value of different LSTM models on all sites.

Models CFST-LSTM O-LSTM F-LSTM

Average R Square 0.9155 0.8899 0.8613

Overall, the comparison between these three models helps prove the effectiveness of the proposed
CFST-LSTM. This reflects that retaining the stations with higher correlation and dropping those with
lower correlation can effectively improve the prediction accuracy of PM2.5 concentrations.

4.5. Improvements Interpolation

To further explore the features of CFST-LSTM, this study interpolates the R2 improvements
geospatially. The inverse distance weighted (IDW) technique of GIS [48] is used to visualize and
interpolate the value of R2

∆ = R2
C −R2

O in the map of California. The spatial change of R2
∆ is presented

in Figure 10. Red means the value of R2
∆ is high while yellow means the value of R2

∆ is low. It can be
seen that for areas with denser stations, the improvement is higher than those with sparser stations.
This is because in areas with higher density of stations, more stations remained during the modeling
process of CFST-LSTM, and therefore more related information are utilized to learn the temporal
patterns. However, in areas with lower density of stations, only one or two stations might be retained
by CFST-LSTM as the inputs. The prediction result, therefore, could be similar to the ordinary model,
which uses the historical data of the target station only.
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5. Conclusions

This paper proposed a correlation filtered spatial-temporal long short-term memory (CFST-LSTM)
model for PM2.5 concentrations prediction. For a target station, not only the historical data of itself,
but also the data of its surrounding stations are used. A spatial-temporal filter (STF) layer was designed



Appl. Sci. 2020, 10, 14 14 of 16

to automatically remove the station data with low correlation with the target station. Hourly PM2.5
concentrations data of 30 stations in California were collected to validate the model effectiveness.
Prediction performance of the CFST-LSTM model was compared with other traditional machine
learning models and commonly seen neural networks. Results show that:

• The proposed CFST-LSTM model outperforms other commonly seen machine learning/deep learning
models with a better fitting degree and higher prediction accuracy. Its R2 can reach 0.9583.

• Compared with ordinary LSTM, our method not only considers the influence from nearby stations
but also filters out less related time series inputs, and this helps increase 2.88% R2 performance in
our tests on 30 sites. On the other hand, if only simply adding the time series inputs from other
stations, the model performance will drop 3.32% due to a higher level of noise.

• According to the experiment on the R2 improvements over the sites in California, the proposed
method exhibited a higher improvement over ordinary LSTM in areas with denser sites, but lower
improvement in sparser districts. This reflects that our method performs better at places with
denser spatial inputs.

• Parameter optimization of the newly designed STF layer is quite important to the proposed method.
The experiment showed that the difference in R2 between proper and improper parameters can
reach around 5.39% of the overall performance.

The main contribution of this study is that we proposed an improved neural network model for
spatial-temporal time series predictions. The model is modified based on deep learning techniques.
Besides the prediction of PM2.5 concentrations, the model is expected to be applicable to other types of
spatial-temporal time series problems, such as the prediction of weather, wind power, and other types
of air pollutants. Of course, further studies need to be conducted for verifications.

Due to the data availability, only the historical PM2.5 concentration data are collected and tested
in this paper. Other possible influential factors of PM2.5, such as meteorological characteristics and
traffic emissions, are not considered. Further studies could be conducted to explore the feasibility of
implementing the proposed method on multivariate inputs.

Author Contributions: Conceptualization, Y.D. and C.Z.; Data curation, Y.D. and J.M.; Formal analysis, Y.D.;
Investigation, C.Z.; Methodology, Y.D., Z.L. and J.M.; Project administration, C.Z.; Software, Y.D., Z.L., C.Z. and
J.M.; Supervision, C.Z.; Validation, Y.D. and C.Z.; Visualization, Y.D. and J.M.; Writing—original draft, Y.D. and
Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cakmak, S.; Dales, R.E.; Rubio, M.A.; Vidal, C.B. The risk of dying on days of higher air pollution among the
socially disadvantaged elderly. Environ. Res. 2011, 111, 388–393. [CrossRef]

2. Bai, L.; He, Z.; Li, C.; Chen, Z. Investigation of yearly indoor/outdoor PM2.5 levels in the perspectives of health
impacts and air pollution control: Case study in Changchun, in the northeast of China. Sustain. Cities Soc. 2019,
101871. [CrossRef]

3. Xia, Y.; Guan, D.; Jiang, X.; Peng, L.; Schroeder, H.; Zhang, Q. Assessment of socioeconomic costs to China’s
air pollution. Atmos. Environ. 2016, 139, 147–156. [CrossRef]

4. Lin, C.; Lau, A.K.H.; Fung, J.C.H.; He, Q.; Ma, J.; Lu, X.; Li, Z.; Li, C.; Zuo, R.; Wong, A.H.S. Decomposing
the Long-term Variation in Population Exposure to Outdoor PM2.5 in the Greater Bay Area of China Using
Satellite Observations. Remote Sens. 2019, 11, 2646. [CrossRef]

5. Tiwari, A.; Kumar, P.; Baldauf, R.; Zhang, K.M.; Pilla, F.; Di Sabatino, S.; Brattich, E.; Pulvirenti, B.
Considerations for evaluating green infrastructure impacts in microscale and macroscale air pollution
dispersion models. Sci. Total. Environ. 2019, 672, 410–426. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.envres.2011.01.003
http://dx.doi.org/10.1016/j.scs.2019.101871
http://dx.doi.org/10.1016/j.atmosenv.2016.05.036
http://dx.doi.org/10.3390/rs11222646
http://dx.doi.org/10.1016/j.scitotenv.2019.03.350
http://www.ncbi.nlm.nih.gov/pubmed/30965257


Appl. Sci. 2020, 10, 14 15 of 16

6. Ma, J.; Ding, Y.; Cheng, J.C.P.; Jiang, F.; Tan, Y.; Gan, V.J.L.; Wan, Z. Identification of high impact factors of air
quality on a national scale using big data and machine learning techniques. J. Clean. Prod. 2019, 118955.
[CrossRef]

7. Zhao, D.; Chen, H.; Li, X.; Ma, X. Air pollution and its influential factors in China’s hot spots. J. Clean. Prod.
2018, 185, 619–627. [CrossRef]

8. Ma, J.; Cheng, J.C.P.; Lin, C.; Tan, Y.; Zhang, J. Improving air quality prediction accuracy at larger temporal
resolutions using deep learning and transfer learning techniques. Atmos. Environ. 2019, 214, 116885.
[CrossRef]

9. Ma, J.; Ding, Y.; Gan, V.J.L.; Lin, C.; Wan, Z. Spatiotemporal Prediction of PM2.5 Concentrations at Different
Time Granularities Using IDW-BLSTM. IEEE Access 2019, 7, 107897–107907. [CrossRef]

10. Davis, J.M.; Speckman, P. A model for predicting maximum and 8h average ozone in Houston. Atmos. Environ.
1999, 33, 2487–2500. [CrossRef]

11. Liu, T.; Lau, A.K.H.; Sandbrink, K.; Fung, J.C.H. Time Series Forecasting of Air Quality Based On Regional
Numerical Modeling in Hong Kong. J. Geophys. Res. Atmos. 2018, 123, 4175–4196. [CrossRef]

12. Kulkarni, G.E.; Muley, A.A.; Deshmukh, N.K.; Bhalchandra, P.U. Autoregressive integrated moving average
time series model for forecasting air pollution in Nanded city, Maharashtra, India. Model. Earth Syst. Environ.
2018, 4, 1435–1444. [CrossRef]

13. Osowski, S.; Garanty, K. Forecasting of the daily meteorological pollution using wavelets and support vector
machine. Eng. Appl. Artif. Intell. 2007, 20, 745–755. [CrossRef]

14. Gardner, M.W.; Dorling, S.R. Neural network modelling and prediction of hourly NOx and NO2 concentrations
in urban air in London. Atmos. Environ. 1999, 33, 709–719. [CrossRef]

15. Jusoh, N.; Ibrahim, W.J.W. Evaluating Fuzzy Time Series and Artificial Neural Network for Air Pollution
Index Forecasting. In Proceedings of the Second International Conference on the Future of ASEAN (ICoFA)
2017—Volume 2; Saian, R., Abbas, M.A., Eds.; Springer: Singapore, 2018; pp. 113–121.

16. Prakash, A.; Kumar, U.; Kumar, K.; Jain, V.K. A Wavelet-based Neural Network Model to Predict Ambient
Air Pollutants’ Concentration. Environ. Model. Assess 2011, 16, 503–517. [CrossRef]

17. Li, X.; Peng, L.; Yao, X.; Cui, S.; Hu, Y.; You, C.; Chi, T. Long short-term memory neural network for air
pollutant concentration predictions: Method development and evaluation. Environ. Pollut. 2017, 231,
997–1004. [CrossRef]

18. Yang, W.; Deng, M.; Xu, F.; Wang, H. Prediction of hourly PM2.5 using a space-time support vector regression
model. Atmos. Environ. 2018, 181, 12–19. [CrossRef]

19. Szpiro, A.A.; Sampson, P.D.; Sheppard, L.; Lumley, T.; Adar, S.D.; Kaufman, J.D. Predicting intra-urban
variation in air pollution concentrations with complex spatio-temporal dependencies. Environ. 2010, 21,
606–631. [CrossRef]

20. Deep Learning. Wikipedia. 2019. Available online: https://en.wikipedia.org/w/index.php?title=Deep_
learning&oldid=887765315 (accessed on 18 March 2019).

21. Ma, J.; Ding, Y.; Cheng, J.C.P.; Tan, Y.; Gan, V.J.L.; Zhang, J. Analyzing the Leading Causes of Traffic
Fatalities Using XGBoost and Grid-Based Analysis: A City Management Perspective. IEEE Access 2019, 7,
148059–148072. [CrossRef]

22. Ma, J.; Cheng, J.C.P. Identification of the numerical patterns behind the leading counties in the U.S. local
green building markets using data mining. J. Clean. Prod. 2017, 151, 406–418. [CrossRef]

23. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
[PubMed]

24. Singh, K.P.; Gupta, S.; Rai, P. Identifying pollution sources and predicting urban air quality using ensemble
learning methods. Atmos. Environ. 2013, 80, 426–437. [CrossRef]

25. Wang, W.; Men, C.; Lu, W. Online prediction model based on support vector machine. Neurocomputing 2008,
71, 550–558. [CrossRef]

26. Russo, A.; Raischel, F.; Lind, P.G. Air quality prediction using optimal neural networks with stochastic
variables. Atmos. Environ. 2013, 79, 822–830. [CrossRef]

27. Kumar, R.; Aggarwal, R.K.; Sharma, J.D. Energy analysis of a building using artificial neural network:
A review. Energy Build. 2013, 65, 352–358. [CrossRef]

28. Tealab, A. Time series forecasting using artificial neural networks methodologies: A systematic review.
Future Comput. Inform. J. 2018, 3, 334–340. [CrossRef]

http://dx.doi.org/10.1016/j.jclepro.2019.118955
http://dx.doi.org/10.1016/j.jclepro.2018.02.181
http://dx.doi.org/10.1016/j.atmosenv.2019.116885
http://dx.doi.org/10.1109/ACCESS.2019.2932445
http://dx.doi.org/10.1016/S1352-2310(98)00320-3
http://dx.doi.org/10.1002/2017JD028052
http://dx.doi.org/10.1007/s40808-018-0493-2
http://dx.doi.org/10.1016/j.engappai.2006.10.008
http://dx.doi.org/10.1016/S1352-2310(98)00230-1
http://dx.doi.org/10.1007/s10666-011-9270-6
http://dx.doi.org/10.1016/j.envpol.2017.08.114
http://dx.doi.org/10.1016/j.atmosenv.2018.03.015
http://dx.doi.org/10.1002/env.1014
https://en.wikipedia.org/w/index.php?title=Deep_learning&oldid=887765315
https://en.wikipedia.org/w/index.php?title=Deep_learning&oldid=887765315
http://dx.doi.org/10.1109/ACCESS.2019.2946401
http://dx.doi.org/10.1016/j.jclepro.2017.03.083
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://dx.doi.org/10.1016/j.atmosenv.2013.08.023
http://dx.doi.org/10.1016/j.neucom.2007.07.020
http://dx.doi.org/10.1016/j.atmosenv.2013.07.072
http://dx.doi.org/10.1016/j.enbuild.2013.06.007
http://dx.doi.org/10.1016/j.fcij.2018.10.003


Appl. Sci. 2020, 10, 14 16 of 16

29. Ma, J.; Ding, Y.; Cheng, J.C.P.; Jiang, F.; Wan, Z. A temporal-spatial interpolation and extrapolation method
based on geographic Long Short-Term Memory neural network for PM2.5. J. Clean. Prod. 2019, 237, 117729.
[CrossRef]

30. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
31. Azzouni, A.; Pujolle, G. A Long Short-Term Memory Recurrent Neural Network Framework for Network

Traffic Matrix Prediction. arXiv 2017, arXiv:170505690. Available online: http://arxiv.org/abs/1705.05690
(accessed on 29 September 2018).

32. Ma, J.; Ding, Y.; Cheng, J.C.P.; Jiang, F.; Xu, Z. Soft detection of 5-day BOD with sparse matrix in city harbor
water using deep learning techniques. Water Res. 2019, 170, 115350. [CrossRef]

33. Peng, L.; Liu, S.; Liu, R.; Wang, L. Effective long short-term memory with differential evolution algorithm for
electricity price prediction. Energy 2018, 162, 1301–1314. [CrossRef]

34. Salman, A.G.; Heryadi, Y.; Abdurahman, E.; Suparta, W. Single Layer & Multi-layer Long Short-Term
Memory (LSTM) Model with Intermediate Variables for Weather Forecasting. Procedia Comput. Sci. 2018,
135, 89–98. [CrossRef]

35. Ma, J.; Cheng, J.C.P. Estimation of the building energy use intensity in the urban scale by integrating GIS and
big data technology. Appl. Energy 2016, 183, 182–192. [CrossRef]

36. Junninen, H.; Niska, H.; Tuppurainen, K.; Ruuskanen, J.; Kolehmainen, M. Methods for imputation of
missing values in air quality data sets. Atmos. Environ. 2004, 38, 2895–2907. [CrossRef]

37. Graves, A.; Fernández, S.; Schmidhuber, J. Bidirectional LSTM Networks for Improved Phoneme Classification
and Recognition. In Artificial Neural Networks: Formal Models and Their Applications—ICANN 2005, Warsaw,
Poland, 11–15 September 2005; Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S., Eds.; Springer: Berlin/Heidelberg,
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