
applied  
sciences

Article

Artificial Auditory Perception Pattern Recognition
System Based on Spatiotemporal Convolutional
Neural Network

Xia Fang 1 , Han Fang 1, Zhan Feng 1, Jie Wang 1,* and Libin Zhou 2

1 School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; 18215575946@163.com (X.F.);
fanghan_1022@163.com (H.F.); fengzhan2019@gmail.com (Z.F.)

2 School of Computer, Data & Information Sciences, College of Letters & Science, University of Wisconsin
Madison, Madison, WI 53706, USA; lzhou228@wisc.edu

* Correspondence: wangjie@scu.edu.cn; Tel.: +86-138-0801-5321

Received: 13 November 2019; Accepted: 15 December 2019; Published: 23 December 2019 ����������
�������

Abstract: It is difficult to combine human sensory cognition with quality detection to form a pattern
recognition system based on human perception. In the future, miniature stepper motor modules
will be widely used in advanced intelligent equipment. However, the reducer module based
on powder metallurgy parts and the stepper motor may have various defects during operation,
with varying definitions of those that affect the user comfort. It is tremendously important to develop
an intelligent system to effectively simulate human senses. In this work, an elaborated personification
of the perceptual system is proposed to simulate the ventral and flow of the human perception
system: two branch systems consisting of a spatiotemporal convolutional neural network (S-CNN)
and a concatenated HoppingNet temporal convolutional neural network (T-CNN). To ensure high
robustness of the system, we combined principal component analysis (PCA) with the opinions of an
experienced quality control (QC) team members to screen the data, and used a bionic ear to simulate
human perception characteristics. After repeated comparisons of the tester, the results show that our
anthropoid pattern sensing system has high accuracy and robustness for a stepper motor module.

Keywords: stepper motor module; spatial convolution neural network; temporal convolution neural
network; principal component analysis

1. Introduction

Stepper motors with variable speed modules are used in smartphones, and are the key component
in the process of inter-conversion between mechanical energy and electrical energy. During use of
the product, the poor performances of low-quality modules seriously affect the comfort of users [1].
A series of tiny bugs can turn into glitches over time, causing smart devices to freeze. In the field of
quality control and inspection of a sensory workpiece, it is very hard to make the machine’s perception
close to humans, and a miniature stepper motor module for smart devices needs precise control [2].
With the development of neural networks, more deep learning models have become outstanding in
the field of detection, including machine vision non-standard workpiece detection [3–6], motor fault
current signal detection [7], bearing vibration signal detection [8], and gear fault diagnosis based on
sound signals [9]. Due to extensive use of convolutional neural networks and activation function,
the method of analyzing high-dimensional features of objects by non-linear mapping will bring great
improvement to pattern recognition [10–12]. Deep learning technology is gradually applied in the
field of quality control [13,14]. There are also some neural networks that combine different functions to
design some special loss functions, which can be classified efficiently while focusing on pixel-level
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changes [15–18]. With the increasingly strong recognition ability of a neural network framework,
many models can complete multi-task learning [19,20]. It even plays a role in the perception of user
comfort [21]. The pattern recognition model based on statistics is difficult to label mixed data effectively.
The objectivity of the data and the perceived characteristics are very important for a deep learning
model [22]. Some models of input features use original data [23], while some networks use processed
data [24]. With the increasing amount of data analyzed, there are certain requirements for the data
in the process of deep learning to train. For non-defect quality control, the current testing methods
are mainly conducted by the manual quality control team, and the testing results are subjective.
Mehta [25] proposed that the human perception system is divided into the dorsal flow and ventral
flow, one responsible for full-time perception and the other for local instantaneous perception. Thus,
recently, neural network models have started to imitate the human perception model and conduct
double-branch learning of multi-task contents [26].

Due to the diversity of tasks, many neural networks have been developed with different emphases,
such as the recurrent neural network (RNN) focused on extension of the time-dimension [27],
spatiotemporal convolutional neural network (S-CNN) focused on extension of the space dimension [28],
and pixel-level semantic segmentation based on a fully convolutional neural network [29]. In addition,
the use of unsupervised learning to preprocess data allows for greater flexibility in many feature
extraction networks, which can then be trained [30]. Principal component analysis (PCA) is also
used to analyze data before dimension reduction and sparse over-complete models are effectively
combined [31] against the background of a large amount of data. This method achieves good results.

Based on the above situation, an intelligent identification system close to the human perception
system is proposed in this work. We used a double-branch neural network and PCA with experienced
quality control personnel to jointly define patterns and label data. As the gearbox parts are made of
powder metallurgy, most patterns will not turn into faults, but will seriously affect human perception.
This system was used to detect the operating status of the micro-stepper motor module. It not only
needs to eliminate workpieces with serious defects, but also needs to classify and manage patterns
according to user perception. Many experiments show that the system can objectively and accurately
identify the status with many workpieces and the product classification, quality control, and defect
screening has achieved great economic benefits.

2. Related Works and Foundations

Because the workpiece we detect is mainly constructed from powder metallurgy, most module
patterns do not turn into faults over their lifetime, but they can cause several conditions that affect the
user’s using perception [32]. We divide the inspected workpiece into four categories: normal, low,
noise, and collision. It is hard to make a reasonable quality standard for various devoted companies
for a stepper motor with four models.

The artifacts with normal sound defined by the quality control team in combination with the
data characteristics will also have some differences due to the heterogeneity of the complex system,
but the overall sound signal characteristics are stable. Although there are no obvious defects in the
workpiece, the damping of the whole system will be increased due to the deformation of the shaft and
gear. However, this kind of condition will not affect the service life of the complete system. We define
the workpiece that cannot produce a mechanical sound of normal value as low sound. Due to the
whole lifting mechanism in the operation process needing a certain transmission sound, users with
good sense of hearing and touch are brought into the process of using the product (such as a telescopic
camera). The vibrating sound with damping can be recognized with less energy through the bionic
ear, which is similar to the auditory characteristics of a human ear. This kind of pattern will not cause
faults, but it will have a great impact on people’s usage impression. Most of the workpiece is made of
metal sintering with a rough surface, and the particles will fall off in the process of use. This type of
module will not be further converted into a fault, but the effect on human auditory perception is very
large, so we classify this kind of module as a noisy workpiece. The workpiece with low noise and
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low sound can be mixed into the finished product in a certain proportion to form product categories
of different quality control standards. As mentioned above, because the gears are made of powder
metallurgy, the complexity of defects leads to different collision sounds. The hopping information
and the overall information in the whole operation cycle are still different from the data of the normal
module. All of the data are screened by the quality control team combined with the data analysis
method. In the process of using the system, this kind of defect will be upgraded to failure with high
probability. However, the intermittent bad sound signal caused by it has little impact on the human ear,
so we unified it into a kind of module that may cause faults. This kind of product is strictly controlled
and is not allowed to be mixed in the product that has passed the quality control inspection.

Currently, stepper motors and variable speed modules are manually placed on test platforms by
operators to determine whether or not a defective voice is overheard. In particular, it is difficult to
reach a consensus among multiple enterprises regarding which workpiece affects people’s subjective
perception because the quality cannot be objectively evaluated, resulting in a large number of economic
losses and many disputes. As previously stated, defect detection and quality control for stepper
motors and variable speed modules are achieved by employees listening to the sound repeatedly in a
closed silent room to identify the pattern type. Then, the analyzed defect is inspected by experienced
staff. This method of detection is not only costly, but also inefficient, and it fluctuates with the flow
of employees. Observation based on staff experience to achieve defect detection leads to various
disadvantages, such as time consumption and a lack of real standardization.

Therefore, a pattern evaluation system based on anthropomorphic perception is urgently needed.
The perception system of human can be divided into two branches: ventral and dorsal flow. Ventral
flow represents people’s perception of the overall state of events, and dorsal flow represents the
perception of transient fluctuations, by spatial stream and temporal stream CNNs, respectively. In the
T-CNN stream, we used a fully convolutional neural network to extract the detailed features of the
hoppings between each time spectrum. In order to be more similar to the human perception system,
we proposed a neural network model with two different functional branches to identify signals [33].
The characteristics of the system’s bionic ear are similar to human ears, and the calibration dataset
is screened by multi-party quality control personnel combined with PCA [34]. After using PCA,
we selected a workpiece with obvious features of 14 dimensions to identify, classify, and match with
experienced workers, so as to obtain a dataset of the network. With a large amount of calibrated data,
the training model has higher objectivity than single subjective discrimination.

To address these problems, we designed a new set of analysis period testing and load conditions
for devices as well as matching discriminating procedures. According to the customary distance of
using smartphones, we wanted to determine the position where the sound is the strongest and the loss
is the least. We placed the bionic ear and two other sets of sensors of the same type on the envelope
sphere with a radius of 10 cm and selected the right end of the test module as the optimal sound
acquisition location. In the experiments, the sensor we used was an acoustic pressure test capacitor
microphone AWA14424D, matched with an AWA6162 cochlear implant and AWA14604C bionic auricle.
Figure 1 shows the detailed anatomy of the stepper motor module and the measurement environment.

Figure 1. (a) Details of stepper motor module; (b) acquisition environment.
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Due to needing to determine the detailed sound features, we entered sound information at
different time periods in the identification system. The system acquisition software was LabVIEW 2018,
which uses serial port communication with the stepper motor control card for conducting segmented
periodic acquisition. The software system was programmed in Python 3.7. The detection algorithm
was developed by OpenCV and TensorFlow 1.5 deep learning platform. Figure 2 shows the device
composition of our entire system.

Figure 2. Apparatus of the proposed inspection system. (a) Bionic ear; (b) Acquisition computer.

3. Proposed Method

Figure 3 provides an overview of the processing workflow, which displays the components
of our proposed vision system. Our system can be roughly divided into two parts: ventral flow
and dorsal flow. In the spatial stream CNN, the time-frequency spectrum is decomposed into a 128
high-dimensional feature graph and sent to the directional convolution layer for feature extraction.
The global features contained in different time spectrums, which are the normal and missing reducer
modules, are identified by directional convolution. The sound of the defective module causes
sensory discomfort for people. In another channel, the hopping information of spectral signals is also
decomposed into 512 high-dimensional features, and the hopping feature graph is generated and put
into a temporal stream for identification.

Figure 3. Architecture of our proposed anthropomorphic auditory pattern recognition system. Ventral
and dorsal flow parts take the original time-frequency spectrum and time spectrum as input. CNN,
convolutional neural network.

Considering that the system is not a single detection of possible defects, the main purpose was
to identify the characteristic workpiece data determined by the quality control team and us after
decomposition of features by the contribution matrix in PCA in a way similar to human perception.
Therefore, we divided the system into two parts to learn different data, and finally fused the two
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branches of loss functions in the way described above, which contains two major parts: the S-CNN
and the temporal stream CNN and HoppingNet. The temporal stream CNN and HoppingNet module
mainly imitate people’s perception of transient signals to identify the hopping detail features between
multiple spectrums in the corresponding time spectrum. The spatial stream CNN detection was
developed only to identify whether the global time-frequency spectrum feature graph in the whole
test process contained defective information. Finally, we used a weighted sum to fuse the recognized
scores. As shown in Figure 3, the temporal stream CNN and HoppingNet module can be divided into
four steps: feature extraction, direction convolution, output, and fusion layer.

The input of this system is a time-frequency spectrum diagram of 30 time spectrum diagrams
generated in the whole step resistance module running completely in a period of progressive operation
under the condition of loaded 480 g, and input two branches in the form of images.

We provide the theoretical background for the model in Section 2.
We briefly describe the details of our algorithm in Section 3.1, the database processed in our work

in Sections 3.2 and 3.3. Finally, the experimental details are shown in Section 3.4.

3.1. Branch of Temporal Stream CNN and HoppingNet

3.1.1. HoppingNet

The method of extracting high-dimensional features by a CNN network has some limitations.
The labels of optical flow diagrams produced by traditional methods have errors of dynamic intention,
so their prediction quality is also limited.

We used the optical flow program to generate the hopping features of time spectrums, as the goal
of a network is to learn the residuals [35] between the spectrums. Pre-trained HoppingNet without
a full connection layer can quickly extract features and meet the requirement of multi-frame input
speed of temporal stream CNN. We used an unsupervised learning and pre-trained fully convolutional
neural network (FCN) network to predict the features of the time spectrum hopping characteristics.
We removed the feature graph of the last full convolution segmentation layer and cascaded it with
the T-CNN network, which clusters features into the cascade action identification network. Because
the full convolution network structure can be regarded as an image reconstruction system, each scale
contains information about different importance.

Figure 4 shows the basic structure of HoppingNet, which composed of coding, bridge, and
decoding blocks.

Figure 4. Structure diagram of hopping feature extraction network.
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The general structure of HoppingNet is shown in Table 1.

Table 1. General structure HoppingNet. * = information extraction and weight concatenation at this
layer. Pixel-Pr = prediction at the pixel level. [128, 2048] = There are many repeated blocks in the
encode layer and decode layer. We express the number of convolutional layer channels at the same
position in the block by the brackets of the double or half relation.

Layers (Kernel Size, Stride) Step Type Input Output

ImageInputLayer Encode_Block_1 3 64
Conv_ Relu_Encoder_1 (3 × 3,1) Encode_Block_1 Pad (same) 64 64
*Conv_ Relu_Encoder_2 (3 × 3,1) Encode_Block_1 Pad (same) 64 64
Max_Pooling Encode_Block_ (2–5) Pad (0,0,0,0) 64 64
Conv_ Relu_Encoder_1 (3 × 3,1) Encode_Block_ (2–5) Pad (same) 64 [128,2048]
*Conv_ Relu_Encoder_2 (3 × 3,1) Encode_Block_ (2–5) Pad (same) [128,2048] [128,2048]
Drop_Out Bridge_Block 50% [128,2048] [128,2048]
Max_Pooling Bridge_Block Pad (0,0,0,0) 2048 4096
Conv_ Relu_Bridge _1 (3 × 3,1) Bridge_Block Pad (same) 4096 4096
Conv_ Relu_Bridge _2 (3 × 3,1) Bridge_Block Pad (same) 4096 4096
Drop_Out Bridge_Block 50% 4096 4096
UpConv_ UpRelu_ Bridge_1 (2 × 2,2) Bridge_Block Crop (0,0) 4096 2048
*Depth_ Concatenation_ Decode _1 Decode_Block_ (1–4) 4096 [4096,512]
Conv_ Relu_ Decode _1 (3 × 3,1) Decode_Block_ (1–4) Pad (same) [2048,128] [2048,64]
Conv_ Relu_ Decode _2 (3 × 3,1) Decode_Block_ (1–4) Pad (same) [2048,64] [2048,64]
UpConv_ UpRelu_ Decode_1 (2 × 2,2) Decode_Block_ (1–4) Crop (0,0) [2048,64] [2048,64]
*Depth_ Concatenation_ Decode _1 Decode_Block_5 128 128
Conv_ Relu_ Decode _1 (3 × 3,1) Decode_Block_5 Pad (same) 128 64
Conv_ Relu_ Decode _2 (3 × 3,1) Decode_Block_5 Pad (same) 64 1
Final_Conv_Seg_Out Decode_Block_5 1 Pixel-Pr

Here, we use three groups of loss functions to represent the learning effect of the time spectrum
hopping learning network, and these loss functions are as follows.

The reconstruction loss function, which is calculated as:

Lpixel =
1

hw

h∑
i

w∑
j

ρ

(
I1(i, j) − I2

(
i + Vx

i,j, j + Vy
i,j

))
(1)

where i,j represent the values in the horizontal and vertical coordinates of the pixels in the time
spectrum diagram I, and Vx and Vy are the estimated spectrum hopping in the horizontal and vertical
directions. To reduce the influence of outliers, we used the Charbonnier penalty ρ(x) =

(
x2 + ε2

)α
where h andω are the height and width of spectrums (I1 and I2).

Because most of the spectrum hopping will cause the non-closed interval, we used smoothness loss
to deal with the aperture problem that causes ambiguity in estimating hopping features in non-textured
regions. It is calculated as:

Lsmooth = ρ∇Vx
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where ∇Vx
x and ∇Vx

y are the gradients of the estimated hopping Vx in each direction, and ∇Vy
x and ∇Vy

y
are the same as Vy.

In order to test the learning ability of network reconstruction, I is used here to compare the feature
graph after network reconstruction with the run-out feature generated by the original input graph by
means of X. For this similarity evaluation, we use a comparison parameter to evaluate the reconstruction
quality. SSIM represents the structural similarity between the target and the predicted image.
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where µp1 and µp2 are the mean value of input spectrums, σp1 and σp2 are the variance of spectrums,
and σp1p2 is the covariance of these inputs. c1 and c1 are constants to stabilize division by a small
denominator, which are 0.0001 and 0.001, respectively.

Lssim =
1
N

N∑
n
(1− SSIM(I1n, I′1n)) (4)

We divided the whole picture into 6 × 6 regions, traversing with a stride length of 6. N is the
number of pixel points in each region. By comparing the characteristic graphs I1n and I′1n before and
after the partition reconstruction, we know the learning status of the spectrum hopping information of
the network.

Finally, we combined several loss functions to form an end-to-end training objective function.

LS = Lpixel + Lsmooth + Lssim (5)

Unsupervised pre-training networks are more primitive to high-dimensional features and can
guarantee the initial generalization ability of model learning. In order to increase the learning ability
of the time spectrum hopping characteristics, we defined the contrasting feature colors to represent the
hopping feature. Finally, the way to fuse the network is to refer to article [36], and we achieved good
results in terms of accuracy. Figure 5 shows the true graphs and prediction feature graphs of spectrum
hopping feature recognition. To increase the contrast to graphs, we turned black the background.

Figure 5. (a,b,e,f) Input spectrum graphs; (c,g) optical flow characteristic graphs; (d,h) feature graphs
extracted by HoppingNet.
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3.1.2. Temporal Stream CNN

The features generated by HoppingNet will feed into temporal stream CNN after 30 frames have
been extracted. The function of this structure is to learn the correlation of information of features in the
time-dimension. The general structure of the network is shown in Table 2. The final full connection
layer neuron returns the model’s probability distribution using softmax, and the classification of our
model is four. Finally, we combined this probability with the results of spatial stream.

Table 2. General structure of temporal CNN. Pad = padding. BN = batch normalization.

Layers (Kernel Size, Stride) Type Input Output

ImageInputLayer 15 15
Conv_ Relu_BN_1 (7 × 7,2) Pad (same) 15 128
Average_Pooling (2 × 2) Pad (0,0,0,0) 128 128
Conv_ Relu_2 (5 × 5,2) Pad (same) 128 512
Average_Pooling (2 × 2) Pad (0,0,0,0) 512 512
Conv_ Relu_ 3 (3 × 3,1) Pad (same) 512 1024
Conv_ Relu_ 4 (3 × 3,1) Pad (same) 512 2048
Conv_ Relu_ 5 (3 × 3,1) Pad (same) 2048 4096
Average_Pooling (2 × 2) Pad (0,0,0,0) 4096 4096
Fully_Connection_Drop_Out 50% 4096 2048
Fully_Connection_Drop_Out 50% 2048 512
Fully_Connection 512 4

3.2. The Branch of Spatial Stream CNN

Because the time-frequency spectrum is the superposition of the time spectrum in the
time-dimension, the model is required to learn the high-dimensional features of correlated pixels
rather than single adjacent pixels. Therefore, we use the S-CNNs structure that can recognize spatial
information to learn the pixels of the spatial connection between the spectrums.

In traditional CNN, any layer receives data from the upper layer for input, and then performs
convolution and activation on the next layer. This process is performed in sequence. Similarly, S-CNN
also regards the rows or columns of feature maps as a layer and uses convolution plus nonlinear
activation to realize deep neural network in space. S-CNN extends the deep convolutional neural
network to a rich spatial level. This enables spatial information to spread on the same layer of neurons
and enhances the spatial information, which is particularly effective for identifying structured objects.

The four-direction convolution extracts high-dimensional features from the CNN structure,
extracts information between layers of pixels, and finally inputs them into the recognition layer.
As shown in Figure 6, the spatial information of the time-frequency spectrum is extracted from the
high-dimensional feature map extracted by the CNN, and the correlation between the pixel is mapped
in the space along with four different directions. Finally, it summarizes it in another high-dimensional
feature layer. A simplified version of spatial stream CNN can be composed of the following four parts:

1. Feature extraction: the high-dimensional features layer of the CNN network contains rich spatial
relationships. It uses 512 high-dimensional channels to replace the traditional RGB 3-channel
input. The first four convolution structures of the spatial stream CNN are the same as shown in
Table 1.

2. Direction convolution: the direction convolution extracts pixel correlation information of different
directions from the high-dimensional features layer with width (W) of 128, height (H) of 128,
and 256 channels (C) in four directions: downward, upward, right, and left. The direction
convolution kernel size is 3 × 3, and all pieces share a set of convolution kernels. Directional
convolution not only mentions the high-dimensional features between adjacent pixels, but also
learns the spatial relations between distant pixels, so that time-frequency spectrum features
in the whole-time domain can be perceived. The nonlinear activation function rectified linear
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units (ReLU) has become the most widely used activation function because it can effectively
prevent the gradient from disappearing and accelerate the convergence speed during the training
process. All slices share a set of convolution kernels, so the structure is similar to the RNN
structure. The convolution information in the previous slice is transferred to the next slice, and the
mathematical transformation between each input value X and its output X’ can be formulated as:

X′i, j,k =


Xi, j,k j = 1

Xi, j,k + f
(∑

m

∑
n X′m, j−1,k+n−1

)
×Km,i,n), j = 2, 3, · · · , H

(6)

where X’ is a three-dimensional tensor, and the convolution direction is alone with four directions.
j represents the number of convolutions from the position at the beginning of the direction, and i,k,
respectively, represent the number of layers in the direction of the convolution and the position of
the convolutional slice in the same layer. When j is equal to different values (except when it is
equal to 1), i,k are the number of slices in different directions. In the above way, the weights in the
tensor will be adjusted between different directions in the high-dimensional space to realize the
correlation of the details of each position.

3. Output: this block is consist of three fully connection layers.
4. Fusion: we fuse two streams’ scores with a spatial to temporal stream ratio of 1:1.5.

Figure 6. Schematic diagram of spatial direction convolution;ω = 3.

3.3. Model Implementation

We used the same type of sensor group to compare the sound signals on the same envelope,
and get the direction of the strongest signal. In terms of hardware, the bionic ear sensor simulates
the cochlea and auricle structure of human beings. In terms of software, it adjusts the distribution
characteristics of input signals by using the Mel spectrum [37] and A-weight [38] method to process
signals. It obtains signal extraction parameters similar to the auditory perception curve of human ears.

Figure 7 shows the pictures of different workpieces and their corresponding time-frequency
spectrum characteristic pictures. The red circle represents the unstable surface, broken gear, and litter
generated by sintering, which will interfere with the operational of the whole system. Figure 8 shows
one of the main patterns we identified, artifacts with noisy sound, which do not cause faults but
seriously affect the human senses.
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Figure 7. (a) The workpiece with normal sound and its characteristic pictures. The first two are inner
gear, the second one is outer gear, and both with pure time-frequency spectrum. (b) The workpiece
with low sound, in the low frequency band there is a noise that is not perceptible to the human. (c) The
workpiece with collision sound. The main features are covered by the collision features. (d) The
workpiece containing noise sound.
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Figure 8. (a–c) Lowering process; (d) interfering collision process in the rising process; (e–g) lifting
process; (h) interfering collision process in the lowering process.

All patterns in this paper do not refer to a single mechanical defect, but to the patterns that
make people feel uncomfortable. Since the workpiece in the deceleration module was formed by
powder metallurgy technology, it was difficult to analyze and form a single fault test group. Therefore,
we directly used sensory characteristics to group the tested samples. Fusing with the edge detection
results, which makes the above characteristics easy to find, we can figure out what kind of pattern of
the artifact affects people.

These definitions were put forward by the quality control team. The system aims to detect the
workpiece that is disturbing to the human senses. Most patterns will not be converted or broken
like traditional mechanical defects, which directly affect the user experience. In order to make the
discriminant perception of the system to be closer to human beings, we used the contribution matrix in
PCA to reduce the discriminant feature dimension when screening data, and classified the workpiece
together with experienced quality control workers. We extracted the 14 dimensional features including
three-layer wavelet packet entropy, time-domain signal kurtosis, time-domain signal average variance,
a decibel value after weighting, time-domain signal root mean square (RMS), a Hilbert envelope
characteristic value, frequency-domain signal peak width, frequency-domain signal energy and
time-domain signal kurtosis, time-domain signal slanting degrees, time-domain signal margin, index
of time-domain signal pulse, and frequency-domain power spectrum.

Finally, as shown in Table 3, after the analysis of more than 13,000 workpieces, we determined
the five dimensions of PCA as the discriminating quantity, and distinguished four major types of
defective workpieces.

It can be seen from Table 3 that the contribution matrix reaches an inflection point when the
feature dimensions are reduced to five dimensions, so we chose the five-dimensional PCA components
with higher efficiency to classify the data. When screening data, we took 10 full cycles for analysis
at the sampling rate of 10 kHz, and we only selected the workpieces that were clearly identified by
experienced workers for classification.
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Table 3. Contribution matrix of principal component analysis of the eigen quantities of 14 dimensions.
When the dimensions are reduced to five to reconstruct the eigen signals, the loss quantity shows an
inflection point.

Component Initial Eigenvalues
Total % of Variance Cumulative %

1 9,293 66.376 66.376
2 2.140 15.283 81.658
3 0.958 6.843 88.501
4 0.475 3.393 91.894
5 0.423 3.020 94.913
6 0.329 2.351 97.264
7 0.245 1.747 99.011
8 0.051 0.365 99.376
9 0.048 0.342 99.718

10 0.023 0.165 99.883
11 0.010 0.070 99.954
12 0.005 0.037 99.991
13 0.001 0.008 99.999
14 0.000 0.001 100.000

Component Extraction Sums of Squared Loadings
Total % of Variance Cumulative %

1 9.293 66.376 66.376
2 2.140 15.283 81.658
3 0.958 6.843 88.501
4 0.475 3.393 91.894
5 0.423 3.020 94.913

Experimental results show that the model trained by pre-screened data has faster convergence
and higher accuracy than that trained by original and unscreened feature signals. It can be seen from
Figure 7 that the tagged data have low noise, relatively clear time-frequency spectrum characteristics,
and spectrum hopping characteristics. The experimental results show that the model of data training
is more robust.

Through this anthropomorphic fusion recognition system, the inspection task of the front-end
module has been completed. The system will directly judge whether the product is bad if there are any
defects identified. By training the clearly calibrated data, we can identify various types of patterns
classification, and overcome the problem that patterns cannot be analyzed objectively by humans.

3.4. Experiment Details

3.4.1. The Dataset

In this paper, our dataset was collected by the device shown in Figure 2, and we evaluated
our method on this dataset, shown in Figures 9 and 10. In order to match the spectrum with
the corresponding time-frequency spectrum, we set the sample rate as 10 kHz. We generated
spectrum of discrete Fourier transform (DFT) for every 0.2 s signal, and for every 2000 pieces of
data collected in the spectrum window [39]. A total of 6 s are used for the operation of the module,
so a time-frequency spectrum corresponds to 30 spectrum graphs and 15 hopping characteristic
graphs. Through continuous learning of jump variables, we removed the feature graph of the last full
convolution label and cascaded it with the T-CNN network. All data were normalized in order to
search for generic characteristics. The pattern of the workpiece was divided into four categories, and
the input images were all 256 × 256. Data corresponding to the structure of our model can be divided
into two parts: the overall characteristics of the time-frequency spectrum and time spectrum flow with
the hopping characteristics.
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Figure 9. (a–f) Original image samples; (g–i) main characteristics of the spectrum in the three states,
six in input graphs, and three hopping feature maps.

Figure 10. (a) Time-frequency spectrum; (b) the main energy distribution rule.

During the entire test cycle, a 480 g load was applied to the system to detect the strength of the
powder molded gear set in the module. The detection is divided into three main steps: lowering,
lifting, and interfering collision.

In the corresponding time-frequency spectrum diagram, we adopted normalized clear color
discrimination, as described in Figure 10. We used 4325 positive samples and 9245 negative samples.
Through PCA and with experienced workers working together, we distinguished and collected
data of the sample workpiece with four kinds of relatively clear patterns. Figure 10 shows the 3D
time-frequency spectrum images of different kinds of artifacts.
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3.4.2. The Implementation Process

Our model was trained on one NVIDIA 4 GTX2080 GPUs with 16 GB memory for roughly 10 h.
Experiments were implemented based on the deep learning framework TensorFlow. The operating
system was Windows 10.

The input image size of the spectrum is 224 × 224, which is cropped from the original 256 random
jitter. The hopping characteristics identification network is a total convolutional neural network, which
identifies the hopping features of 30 spectral graphs as high-dimensional features of 128 dimensions
and sends them into the time network. The time network consists of five convolution layers and
three FC layers, and the final softmax score is calculated by using the average score. The spatial
CNN network proved its powerful ability in image detection with the spatial relationships, while the
structure of spatial CNN is very complex and has complex directional convolution, which is a kind
of black-box operation for us. In order to prevent overfitting, we enhanced the training data and,
with random horizontal flipping and RGB jittering, adjusted the exposure curve.

Similar results were also achieved by Alex-net and Resnet-101 [40]. We speculate that the reason for
the failure is that with multiple feature extraction, the network extracts more representative information
and naturally loses detail. However, in some cases, the differences between bad products and good
products in our data lie in small changes. For some pictures, even people can be wrong. Therefore,
we only use artifacts that can clearly distinguish features, and the fusion of multiple defect features is
given to the neural network to fit by itself. According to the appeal, we conducted pre-training for the
spatial network and run-out signal detection network. The difference is that the spatial network adopts
supervised pre-training and the run-out signals detection network adopts unsupervised pre-training
to increase the normality and sensitivity of signal recognition. The method did work and the accuracy
was improved to 96.1%, but it was still too low for our demand. In this case, we used the continuous
finetuning mechanism to further improve the accuracy, but only the action categorical loss function
was computed. In spatial net training, a 224 × 224 sub-image is randomly cropped from the selected
frame, then undergoes random horizontal flipping and RGB jittering. The sub-image is sampled
from the whole frame, not just from its 256 × 256 center. In temporal net training, we computed an
optical flow volume I for the selected training frame, as described in Section 3. From that volume, a
fixed-size 224 × 224 × 2 L input is randomly cropped and flipped. For FC layers, the weight parameters
are initialized from a truncated random normal distribution subject to N ~ (0, 2

n ), where n denotes
the number of connections between two layers. In order to prevent the network from overfitting,
we adopted a mirror to augment the data. The data sample was expanded fivefold by using the
above method.

In our case, a network architecture of two tributaries were modified so that it had two softmax
classification layers on top of the last fully connected fusion layer. One softmax layer computes global
feature scores, and the other one computes the local hopping characteristic scores. Each layer is
equipped with its own loss function coming from the respective dataset. For each workpiece, we made
the corresponding time-frequency spectrum graph and 15 hopping characteristic graphs generated
by 30 frames of the spectrum. The overall training loss is computed as the sum of the individual
tasks’ losses, and the network weight derivatives can be found by back-propagation. We selected
the cross-entropy function as the overall loss function of our model. During the training process,
the stochastic gradient descent (SGD, momentum = 0.9) with mini-batches of weight samples was
applied to update the weight parameters. When we trained one branch, we froze the weight of the other
branch, until the performance was stable, and we carried out the whole weight training. Temporal and
spatial streams are complementary, as their fusion significantly improves on both. The learning rate is
initially set to 10−2, and then decreased according to a fixed schedule. The rate is changed to 10−3 after
30 K iterations, then to 10−4 after 50 K iterations, and stopped after 60 K iterations.
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4. Results

In our system, similarity to human perception is the evaluation criterion of system performance.
Here, we worked with the staff of a professional QC group to get the accuracy. The formula for
calculating the accuracy is defined by Equation (7). To evaluate the performance of our method,
we validated our module on a dataset and achieved the final detection accuracy of 96.1%. Through a
confusion matrix, we obtained the accuracy and recall rate of the system, and passed the comparison test
of the production QC group. Table 4 shows the performance of the model under different augmentation
methods of input data and parameters.

Table 4. (a) Different accuracy of model based on different dropout ratio, fusion ratio, and method of
pre-training; (b) different configuration of input data; (c) correct detection of each network.

(a) Training Setting

Setting Accuracy (%)

Dropout ratio (0.9) 91.7
Dropout ratio (0.7) 93.1
Dropout ratio (0.5) 93.6

Sum fusion ratio (1:1) 87.6
Sum fusion ratio (1:2) 91.6

Sum fusion ratio (1:1.5) 93.8
Pre-trained 94.2

Pre-trained + finetuning 96.1

(b) Input Configuration

Configuration Accuracy (%)

Spectrogram stacking (S = 30) 87.5
Spectrogram stacking (S = 20) 88.4
Spectrogram stacking (S = 15) 91.2

Cropped-jittering 92.5
Calsse-weight 94.2

(c) Comparison of Models

Method Accuracy (%)

Improved dense trajectories 78.2

Temporal CNN 78.3

Spatial CNN 81.2

Two-stream (SVM fusion) 95.8

Two-stream (average fusion) 93.6

Ours (1:1.5 sum) 96.1

We fused the softmax scores of the two branches at a ratio of 1:1.5. Finally, the overall loss was
used to carry out fine-tune [41] the trained network, and high accuracy was obtained. The experiment
shows that our model has the ability to distinguish defect-free and defective images in our dataset
and achieve higher accuracy than others, which proves the effectiveness of our two-stream module.
In Table 5, we compared the results of several other models with identifying local features and global
features in the operating status of the stepper motor.
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Table 5. According to the data of this task, several mainstream models are tested.

Method Accuracy (%)

VGG-19 (time-frequency spectrum) 78.2
Densenet201 (time-frequency spectrum) 84.5

Double-branch learning [26] 88.4
Spatiotemporal convolutional—neural [28] (time spectrum) 93.8

Ours (1:1.5 sum) 96.1

The detection results of our model on the four kinds of samples are shown in Figure 11. In the
process of training, we used the method of classification weights in the final layer to solve the
problem of the unbalanced data set. As our content involved the perception of good and bad samples,
the accuracy of this model is constituted by true-positive (TP), true-negative (TN), false-positive (FP),
and false-negative (FN) values by.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Figure 11. Confusion matrix. NS, normal sound; LS, low sound; N, noise; CS, collision sound.

5. Conclusions

In this study, we adopted a two branch (spatial stream and temporal stream) concatenated
HoppingNet to simulate the ventral and dorsal flow system of the human perception system. We used
the bionic ear to recognize the sound; the signal characteristics were more consistent with the sensitivity
of the human ear and could simulate the sound echo of the cochlea. What we identified in the dataset
of the system and what differentiates it from other models is that defective artifacts are not defined
as a particular kind of mechanical or electrical fault, but also as individuals that adversely affect
human perception. We used PCA to subdivide the dataset along with experienced quality control team
members, making the perception characteristics of the intelligent system very close to the humans.
We added a batch normalization (BN) layer at the end, because the network would not converge
well when overall training was carried out. After many experiments, our end-to-end system finally
achieved very good results. The accuracy and objectivity of the analysis are far better than those of a
single person in the quality control team.

Our research shows that the deep learning model could replace the human perception system to
complete a series of industrial detection under certain hardware conditions.
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However, there are still many difficulties in our approach, such as the high cost of dataset
production and too many training model parameters. In the future, we hope to make more lightweight
sensing models in the field of industrial testing to improve the efficiency of production.
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