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Abstract: The falling weight deflectometer (FWD) is a widely used nondestructive test (NDT) device in
pavement infrastructure. A FWD test measures the surface deflections subjected to an applied impact
loading and the modulus of pavement layers can be determined by back-calculating the measured
deflections. However, the modulus of asphalt layers is significantly influenced by temperature; hence,
the temperature correction must be considered in back-calculation to evaluate the moduli of asphalt
layers at a reference temperature. In addition, the in situ temperature at various pavement depths is
difficult to measure. A model for evaluating the temperature at various depths must be established to
estimate the in situ temperature of asphalt layers. This study collected the temperature data from
a FWD test site to establish a temperature-evaluation model for various depths. The cored specimens
from the test site were obtained to conduct dynamic modulus tests for asphalt layers. The FWD
tests were applied at the FWD test site and the back-calculation was performed with temperature
correction using the frequency-temperature superposition principle. The back-calculated moduli of
asphalt layers were compared with the master curve of dynamic modulus to verify the application
of the frequency-temperature superposition principle for FWD back-calculation. The results show
that the proposed temperature-evaluation model can effectively evaluate the temperature at various
depths of pavement. Moreover, the frequency-temperature superposition principle can be effectively
employed to conduct temperature correction for FWD back-calculation.

Keywords: FWD; frequency-temperature superposition; dynamic modulus test; asphalt pavement
and temperature evaluation model

1. Introduction

The bearing capacity of pavement structure is determined by integrating the modulus of each
pavement layer [1,2]. However, the bearing capacity of pavement structure decreases with increasing
loading and amount of traffic, and it is not efficient to evaluate the in situ structural modulus of
each pavement layer using in situ core drilling. Hence, development of nondestructive tests and
back-calculation for detecting the structural modulus of pavement structures is critical and necessary.

A falling weight deflectometer (FWD) is a widely used nondestructive test in pavement engineering
for evaluating the modulus of each pavement layer. A FWD measures the deflection on the pavement
surface subjected to impact loading. Then, the modulus of the pavement layer can be obtained by
back-calculation of the measured surface deflections [3–6]. The back-calculation analysis conducts
iterations of structural analysis (e.g., finite element analysis and multi-layer theory) until the calculated
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surface deflection matches the measured deflection. Senseney [7] and Ahmed [8] conducted lightweight
FWD tests and a dynamic finite element analysis model was used to analyze and verify experimental
data and to determine the mechanical properties of a road foundation layer comprising a mixture of
limestone and bottom slag from an incinerator. Varma et al. [9] simulated pavement with linear or
nonlinear elasticity in a back-calculation to analyze the deflections for obtaining the material properties
of various layers. Since asphalt material exhibits viscoelasticity with small deformations [10,11],
Kutay et al. [11] employed Schapery viscoelastic theory and performed a back-calculation to determine
the dynamic modulus master curve of asphalt pavement through the surface deflection obtained using
an FWD. During the iteration process, multilayer-viscoelasticity theory was employed to identify the
linear viscoelastic characteristics of asphalt pavement.

Since FWD deflection measurements are related to temperature for asphalt layers, scholars have
proposed that the back-calculation of FWD deflection measurements should be temperature-corrected
to a reference temperature and the temperature-correction should be dependent on the properties of the
asphalt itself [12–15]. However, actual in situ temperature data of asphalt layers are difficult to obtain.
Therefore, a temperature prediction model must first be established for temperature-correction. On the
basis of the BELLS temperature prediction model proposed by Lukanen et al. [16], Park et al. [17]
established a temperature prediction model appropriate for Michigan State in the United States by
using temperature data from the seasonal monitoring of the US Long-Term Pavement Performance
project. Park et al. [18] and Marshall et al. [19] verified another model, named BELLS3, in North
Carolina and Tennessee, respectively. Zheng et al. [20] employed the BELLS equations as a basis for
establishing a temperature prediction model for Henan, China.

In terms of temperature correction, the effect of temperature on the modulus of an asphalt layer
has been assessed using a master curve or by conducting deflection value correction to ensure the
consistency of evaluation standards. The dynamic moduli obtained using a material test system or
through FWD back-calculation were employed to calculate temperature-correction factors, facilitating
comparison between data obtained at the same temperature. The Mechanistic-Empirical Pavement
Design Guide states that dynamic modulus tests should typically be used to evaluate the linear
viscoelasticity of asphalt concrete and determine the effects of various asphalt materials on temperature
and frequency [21–23]. When tests are conducted at different temperatures and load frequencies with
the application of continuous sine waves, the relationship between stress and strain measurements can
be expressed by the complex dynamic modulus (E*). Seo et al. [24] used the S-shaped function for
the master curve to determine that the parameters in the function were influenced by the screening
percentage, void fraction, and asphalt content, respectively. Subsequently, they estimated different
frequencies by using the viscosity and obtained a new master curve equation appropriate for the
use of in situ FWD results, specifically for analyzing in situ material conditions. Solatifar et al. [25]
employed the Witczak model [26–28] to predict the master curve of the dynamic modulus. By using
shift factors acquired in the laboratory, a master curve of FWD data was constructed to serve as the in
situ dynamic modulus master curve, which could be used to determine the extent of material damage.
In the Long-Term Pavement Performance project, Killingsworth [29] investigated the relationship
between deflection, back-calculation results and pavement temperature. The Washington State
Department of Transportation conducted regression analysis on the relationship between the dynamic
modulus of traditional dense-graded asphalt mixtures and pavement temperature and proposed
a temperature-correction coefficient for the back-calculated modulus of the asphalt mixture layer.
Ye et al. [30] and Zhou et al. [31] used the exponential function to perform data fitting and adjusted
the moduli to the reference temperature. Chen et al. [32] developed separate temperature-correction
functions for deflections and moduli, determining that only deflections at test points close to the falling
weight disk were significantly affected by temperature.
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2. Research Objectives and Significance

Since the modulus of asphalt layer is significantly affected by temperature, the temperature
correction must be conducted for the asphalt layer when conducting FWD back-calculation in order
to evaluate the modulus of the asphalt layer at the same temperature. Moreover, measuring the
temperatures at various road depths in situ is difficult, and a model must be established for estimating
the temperature at various depths of asphalt layers. Hence, this study conducted the FWD tests and
collected the temperature data at various depths in roads at the FWD test site constructed by Taiwan’s
Freeway Bureau. The objectives of this study are:

1. To establish a temperature-evaluation model for various pavement depths by performing the
regression analysis of temperature measurements at various depths in the test site.

2. To perform in situ core drilling in the test site and conduct the dynamic modulus test for obtaining
the master curve and the relationship between temperature and frequency.

3. To conduct FWD tests in the test site at different temperatures and to apply the temperature
correction for FWD back-calculation.

4. To verify the effectiveness of the frequency-temperature correction by comparing the master
curve of the dynamic modulus obtained in the laboratory and the back-calculated modulus for
asphalt layers.

3. FWD and Test Site

Figures 1 and 2 are an aerial photograph and a top-view schematic of the FWD test site constructed
by Taiwan Freeway Bureau, respectively. Four types of cross-section which are commonly used in
Taiwan freeway pavement structures were constructed at the test site. The length of the test road is
50m, while the width of each pavement cross-section is 5 m. Figure 3 illustrates the schematic for each
cross-section. For all cross-sections, an aggregate-type subbase with 30 cm thickness was constructed
on a well-compacted subgrade. For cross-sections 2 and 3, a 22-cm-thick bitumen-treated base (BTB)
was paved on the aggregate subbase, whereas the thicknesses of BTB layer were 20 cm and 30 cm
on the aggregate subbase for cross-sections 1 and 4, respectively. A dense-graded asphalt concrete
(DGAC) layer with 15 cm thickness above BTB and 1.5 cm thickness of open-graded asphalt concrete
(OGAC) on DGAC layer were constructed for both cross-sections 1 and 2. In cross-sections 3 and 4,
DGAC layer with 10 cm thickness and 5 cm thickness of stone mastic asphalt (SMA) were laid on the
top of BTB layer. Then, 1.5 cm thickness of OGAC and 3-cm-thick porous asphalt concrete (PAC) were
constructed above the SMA layer in sections 3 and 4, respectively. Table 1 details the asphalt binder
type and the percentage of binder content for DGAC, OGAC, PAC, SMA, and BTB. The PAC and SMA
were made from Type-III modified asphalt binder, whereas the binder types of remaining materials
were AC-20.

Table 1. Asphalt binder type and percentage of binder content.

Asphalt Material Asphalt Cement Asphalt Binder Content

DGAC AC-20 5.0%
OGAC AC-20 5.0%

PAC Type-III modified 5.1%
SMA Type-III modified 6.3%
BTB AC-20 4.5%
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Figure 1. Aerial photograph of the test site. 
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In order to develop the temperature-evaluation model and to conduct the temperature correction
for FWD back-calculation, thermometers were installed in the FWD test site for the measurements of
temperature. Figure 4 shows a photograph of the thermometers buried in the road section. The locations
and depths of the buried thermometers are indicated in Figures 2 and 3, respectively. The specific
depths of thermometers were buried 3.5, 5.5, 7.5, 9.5, 11.5, 13.5, 15.5, 18.5, 20.5, 22.5, and 24.5 cm below
road surface, 11 depths in total. The surface and atmospheric temperature at the test road were also
recorded in the test site using a data miner at a frequency of one record per hour.
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Figure 4. Thermometers placed at the test site.

A PRIMAX 1500 FWD device as shown in Figure 5 was employed in this study. The FWD device
applied an impact loading and the surface deflections were measured at 12 locations such as 0, 200,
300, 400, 500, 600, 700, 900, 1200, 1500, 1800, and 2100 mm away from the center of the falling-weight
disk. Afterwards, the measured deflections can be entered into the back-calculation software to obtain
the modulus of each pavement layer. This research conducted the FWD test at different temperatures
(i.e., in the morning, at noon, and in the afternoon) to investigate the effect of temperature on the FWD
test and back-calculation results.

To determine the modulus and the relationship between temperature and frequency of the asphalt
material layers such as the DENSE and BTB layers, this study performed in situ core drilling on the
test roads. The drilled cores were then subject to dynamic modulus tests in a laboratory to obtain
a master curve of the dynamic modulus and frequency-temperature shift factors. Subsequently,
the ‘frequency-temperature shift factors were used in FWD back-calculation to conduct the temperature
correction. Through comparison of the shifted modulus and the dynamic modulus master curve,
the effectiveness of applying the frequency-temperature shift factors in FWD back-calculation can
be evaluated. In addition, a temperature-evaluation model for different depths of pavement was
established by a regression analysis using the atmospheric temperature data and temperature data of
various depths at the test site.
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4. Pavement Temperature-Evaluation Model

Because pavement surface temperature is strongly influenced by weather conditions and actual
pavement conditions such as shadow [16], the atmospheric temperature was employed as a basis for
establishing the temperature-evaluation model in this study. Temperature data of the test site from
8 February 2018 to 8 February 2019 were collected to perform the regression analysis and develop
the model. Figure 6 presents the over-time variation of atmospheric temperature and temperature
at various road depths on 9 February 2018 as an example, indicating that the 1-day temperature
variation has the form of a sine function. Such functions have frequently been employed as the form
of a temperature-evaluation model for estimating the temperature at various road depths [16,17].
Accordingly, this study also used a sine function as the basis of the temperature-evaluation model.
Moreover, as illustrated in Figure 6, the highest atmospheric temperature occurred around 1 pm,
whereas the highest pavement temperatures at depths of 3.5 and 24.5 cm were at 2 pm and 5 pm,
respectively. Comparison of the atmospheric temperature and pavement temperature at depths of
3.5 and 24.5 cm as examples (Figure 6) revealed a delay of temperature variation, and the delay
time was longer at deeper depths. This temperature delay was caused by the thermal conduction
effect. Conducting the heat received on the road surface to various depths requires time, and hence,
a temperature transmission delay phenomenon was observed. According to the literature on the
temperature-estimated model [16,17], this research attempted to consider the effect of temperature
transmission-delay as a parameter b4 inside the sine function as shown in Equation (1). In Equation
(1), b1–b5 are parameters in the temperature model and TZ is the evaluated temperature (◦C) at depth
Z. The term Tatmo is the atmospheric temperature (◦C), while t is the time of the day for which the
temperature evaluation is being conducted (e.g., for 1:30 pm, t = 13.5). The model parameters such
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as b1–b5 in Equation (1) for different depths were obtained by performing regression analysis on the
temperature measurements at various depths using the least squares method.

TZ = b1 × Tatmo − b2 × sin
(
b3 ×

t
24

+ b4

)
+ b5 (1)

The correlation between model-estimated and measured temperature for various depths was
summarized in Table 2. The results of the correlation coefficient showed that the correlation coefficient
decreased with increasing depth and the correlation coefficient dropped to 0.53 at a depth of
24.5 cm. Furthermore, the slope and intercept in Table 2 were the linear regression function between
measured and estimated temperature. The slope and intercept of the regression function closer to
1 and 0, respectively, indicates that the estimated temperatures were more correlated with measured
temperatures. However, the results showed that the slope deviated from 1 with increasing depth, while
the intercepts diverged away from 0. These results indicated that the temperature model (Equation (1))
cannot accurately estimate the temperature at a deep depth. Hence, this research performed the
correlation analysis between the road temperature at various depths and atmospheric temperature
considering the temperature transmission-delay. Table 3 summarizes the correlation analysis results
of temperatures measured at various depths and the atmospheric temperature. The results show
that if the temperature transmission-delay effect was excluded (e.g., 0 h), the correlation between the
measured temperature at various depths and atmospheric temperature was significantly decreased
with increasing depth. According to the correlation analysis results, the atmospheric temperatures
had the strongest correlations with the temperature at depths of 3.5 and 5.5 cm when its time delay
was 1 h, whereas for depths of 7.5–11.5 cm, the correlation was the strongest with 2 h of time delay.
The atmospheric temperature was most strongly correlated with the temperature at depths of 13.5–15.5,
18.5–20.5, and 22.5–24.5 cm when its time delay was 3, 4, and 5 h, respectively. Thus, the atmospheric
temperature with a longer delay was considered to employed for evaluating the temperature at
deeper depths.

Based on the correlation analysis shown in Table 3, this research introduced a transmission-
delay atmospheric temperature (◦C) Tatmo−trans considering temperature-transmission effect
(e.g., for evaluating the temperature of depth 3.5 cm at 4 pm, Tatmo−trans should be selected as
the atmospheric temperature at 3 pm). Tatmo in Equation (1) was then replaced by Tatmo−trans as shown
in Equation (2). In Equation (2), c1–c5 are the temperature model parameters and these parameters can
be obtained by regression analysis of the measured temperatures at various depths.

TZ = c1 × Tatmo−trans − c2 × sin
(
c3 ×

t
24

+ c4

)
+ c5 (2)

The correlation between measured temperature and estimated temperature using Equation (2)
were shown in Table 2. The results showed that the correlation coefficient decreased with increasing
depth and the correlation coefficient remained high (0.82) at depth of 24.5 cm. Moreover, the slope and
intercept of regression equation between model and measured temperatures were close to 1 and 0,
respectively. These results indicated that the estimated temperatures using Equation (2) had a high
correlation with measured temperatures. Hence, considering the temperature-transmission effect by
the term Tatmo−trans can efficiently estimate the temperature at a deep depth.
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Table 2. Correlation between measured and estimated temperature for various depths.

The Estimated Temperature of Equation (1) The Estimated Temperature of Equation (2)

Depth R2 Slope Intercepts R2 Slope Intercepts
3.5 cm 0.88 1.13 −4.41 0.88 0.95 1.98
5.5 cm 0.83 1.05 −1.72 0.90 1.00 0.26
7.5 cm 0.80 0.95 1.13 0.89 0.99 0.47
9.5 cm 0.74 0.88 3.01 0.89 0.99 0.18
11.5 cm 0.69 0.82 4.50 0.88 0.99 0.25
13.5 cm 0.62 0.62 6.18 0.88 1.00 0.04
15.5 cm 0.61 0.76 6.23 0.86 0.99 0.07
18.5 cm 0.56 0.73 7.20 0.86 0.98 0.66
20.5 cm 0.54 0.74 6.71 0.82 1.00 0.24
22.5 cm 0.53 0.75 6.35 0.82 1.00 0.09
24.5 cm 0.53 0.77 5.36 0.82 1.02 −0.60

Table 3. Coefficient of correlation between atmospheric and pavement temperature at various depths
for various delay times.

Delay Time
0 h 1 h 2 h 3 h 4 h 5 h 6 hDepth

3.5 cm 0.857 0.872 0.806 0.684 0.535 0.387 0.261
5.5 cm 0.816 0.887 0.881 0.809 0.691 0.553 0.416
7.5 cm 0.790 0.876 0.892 0.843 0.744 0.616 0.483
9.5 cm 0.750 0.849 0.889 0.867 0.792 0.683 0.558

11.5 cm 0.714 0.819 0.876 0.875 0.823 0.731 0.618
13.5 cm 0.640 0.759 0.841 0.873 0.853 0.790 0.697
15.5 cm 0.642 0.748 0.824 0.857 0.844 0.790 0.707
18.5 cm 0.600 0.704 0.788 0.837 0.846 0.816 0.754
20.5 cm 0.536 0.631 0.717 0.781 0.814 0.813 0.781
22.5 cm 0.516 0.603 0.686 0.752 0.791 0.801 0.781
24.5 cm 0.489 0.568 0.646 0.713 0.759 0.780 0.773
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According to the analysis results of Equations (1) and (2), the term Tatmo−trans significantly
affected the estimation of temperature at deeper depths. This research attempted to consider the
temperature-transmission effect only by the term Tatmo−trans as shown in Equation (3). In Equation
(3), a1–a4 are temperature model parameters. The model parameters such as a1–a4 in Equation (3) for
different depths were obtained by performing regression analysis on the temperatures measured at
various depths using the least squares method. The analysis results of these parameters are presented
in Figure 7, in which a1, a2, and a4 are the natural logarithm functions of depth and a3 is approximated
to a fixed value—6.564 in this study.

TZ = a1 × Tatmo−trans − a2 × sin
(
a3 ×

t
24

)
+ a4 (3)

Figure 8 compares the temperatures evaluated by Equation (3) (the model temperature) and
the in situ temperature measurements (the measured temperature) for depths of 5.5 and 24.5 cm as
examples. Table 4 summarized the results of correlation between measured and model temperature
at various depths. The correlation coefficients at depths of 3.5 and 5.5 cm were 0.87 and 0.90,
respectively. The correlation coefficient decreased with increasing depth; however, at a depth of
24.5 cm, the correlation coefficient between the model and measured temperatures remained high at 0.82.
Moreover, the slopes of regression equation between model and measured temperatures were within
1 ± 0.05, and the intercepts were all within ±2. The results show that the temperature-evaluation model
using Equation (3) can reflect the temperature at various depths in the road structure. Furthermore,
the model remains effective when estimating the temperature at deep depths. Hence, in order to
reduce the model parameter and to have acceptable accuracy of estimated temperature at deep depths,
this research employed Equation (3) as the temperature model to estimate the pavement temperature
at various depths. The proposed model and obtained parameters a1–a4 were based on the statistical
analysis of temperature measurements in Taiwan. The climate of Taiwan belongs to the subtropics
and the lowest and highest atmospheric temperature of the FWD test site are around 6 and 37 ◦C,
respectively. More applications and validations of the model require further temperature measurements
and analyses for other weather conditions.

Table 4. Correlation between measured and estimated temperature at various depths.

Depth (cm) R2 Slope Intercept

3.5 0.87 0.96 1.91
5.5 0.90 1.01 0.03
7.5 0.89 1.00 0.18
9.5 0.89 1.00 −0.15
11.5 0.88 1.00 −0.07
13.5 0.87 1.00 −0.25
15.5 0.86 1.00 −0.20
18.5 0.86 0.99 0.45
20.5 0.83 1.00 0.11
22.5 0.83 1.00 0.00
24.5 0.82 1.02 −0.64
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5. Dynamic Modulus Test

To verify the FWD back-calculation with temperature correction, core drilling was performed
at the test site. The cored specimens were 10 cm in diameter to satisfy the size requirements of the
test specimens in dynamic modulus test. The drilling depth was approximately 35 cm to ensure that
both DGAC and BTB were contained. Subsequently, the cored specimens were cut to separate DGAC
and BTB, producing DGAC and BTB test specimens of 15 cm in height. However, the surface layers
(PAC, OGAC, and SMA) were too thin to meet the height requirement for dynamic modulus testing.
Consequently, dynamic modulus tests were only conducted on the DGAC and BTB specimens.

Dynamic modulus tests are widely used to evaluate the influence of temperature and frequency
on the properties of asphalt materials. In this study, a material test system was used to perform
the dynamic modulus tests at different temperatures and frequencies. The tests were performed at
15 ◦C, 25 ◦C, 35 ◦C, 45 ◦C, and 55 ◦C, and frequencies of 25, 10, 5, 1, 0.5, and 0.1 Hz were used for
the tests. Figure 9 presents the dynamic modulus test results of DGAC and BTB layers at different
temperatures and frequencies. The frequency-temperature superposition principle was employed to
form the master curve by horizontal shifting (Figure 9) to the reference temperature 35 ◦C in this study.
A sigmoidal function as shown in Equation (4) was employed to create a master curve of dynamic
modulus. In Equation (4), ωr =

ω
aT

is the reduced frequency, aT is the frequency-temperature shift
factor, ω is the frequency, δ is the minimum logarithmic value of |E∗|, δ+α is the maximum logarithmic
value of |E∗|, β and γ are parameters describing the shape of the sigmoidal function.

log|E∗| = δ+
α

1 + eβ+γ(logωr)
(4)

Table 5 presents the sigmoidal function coefficients for the DGAC and BTB specimens obtained by
using the least squares method. Figure 10 illustrates the relationship between the frequency-temperature
shift factor and temperature of the DGAC and BTB specimens, whereas Figure 11 displays the master
curve of dynamic modulus for the DGAC and BTB specimens at 35 ◦C. Then, the relationship between
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frequency-temperature shifted factor and temperature can be formulated as shown in Equations (5)
and (6) for DGAC and BTB, respectively. In Equations (5) and (6), T is the pavement temperature
estimated by the temperature-evaluation model (Equation (3)).

aT = 0.0004 ∗ Exp(0.2244 ∗ T) (5)

aT = 0.0006 ∗ Exp(0.2023 ∗ T) (6)

The frequency-temperature shift factor aT calculated by Equations (5) and (6) is employed to
conduct the temperature correction of FWD back-calculation at different temperatures and then the
corrected modulus will be compared with master curve (Figure 11) to verify the effectiveness of the
temperature correction of back-calculation using the frequency-temperature superposition principle.

Table 5. Parameters of sigmoidal function for dense-graded asphalt concrete (DGAC) and
bitumen-treated base (BTB) analysis.

DGAC BTB

δ 2.210 2.320
α 1.774 1.821
β 0.687 0.858
γ −1.143 −1.033
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This study considered the loading duration of the FWD as 29 ms, corresponding to an approximate
frequency of 17.24 Hz [34]. Since FWD tests were conducted at different temperatures and the
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modulus of asphalt material layer is related to temperature, the back-calculated modulus of the asphalt
layer could not be directly compared with those obtained by the dynamic modulus test. Therefore,
the back-calculated modulus values of asphalt layer had to undergo frequency-temperature correction.
This study employed the frequency-temperature shift factors obtained by the dynamic modulus test to
perform temperature correction for back-calculation at various temperatures.

Figure 13 illustrates the frequency-temperature correction flowchart, while Figure 14 presents
a schematic plot of the frequency-temperature correction. Firstly, FWD back-calculation at different
temperatures was performed to obtain the modulus of the asphalt material layer represented by the
dots in Figure 14. This study used the temperature from the middle of the asphalt material layer
and the temperature was evaluated by the temperature model as shown in Equation (3). According
to the determined temperature, the frequency-temperature shift factor can be obtained through the
dynamic modulus test (Equations (5) and (6)). The back-calculated modulus of the asphalt layer can be
shifted by the same amount of obtained frequency-temperature shift factor shown from the dotted
line in Figure 14. Through temperature correction, the back-calculated asphalt material layer moduli
at different temperatures were shifted to those of the reference temperature, enabling comparison of
asphalt material layer moduli obtained by dynamic modulus test.
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Figure 15 illustrates a comparison of the dynamic modulus master curve of DGAC and the
back-calculated modulus of that layer with frequency-temperature correction. The solid line is the
master curve of DGAC obtained from the dynamic modulus test, while the dotted lines indicate
the ±30% range of the master curve. Table 6 summarizes the percentage of the back-calculated
DGAC results that fell within this ±30% range. The results show that the back-calculated modulus of
DGAC with frequency-temperature correction had more than 70% within the ±30% range, except for
cross-section 1. Figure 16 shows a comparison of the dynamic modulus master curve of the BTB and
the modulus values obtained by FWD back-calculation with frequency-temperature correction. Table 7
presents the percentage of back-calculated BTB results that fell within the ±30% range of the dynamic
modulus master curve. The results show that more than 85% of back-calculated moduli fell within
this range. These results indicate that the proposed frequency-temperature correction can efficiently
correct the FWD back-calculated modulus of asphalt material at different temperatures.
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Table 7. Range distribution of the back-calculated results for the BTB layer.

BTB

Section 1 Section 2 Section 3 Section 4

Number of data 66 66 66 66
Number of data within ±30% 58 58 60 59

Percentage of data within the range 87.88% 87.88% 90.91% 89.39%
Appl. Sci. 2020, 10, x FOR PEER REVIEW 22 of 27 
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By comparing the BTB and DGAC back-calculation results, the BTB results were found to be more
accurate than the DGAC results. The reasons can be summarized preliminarily as: (1) The cross-section
of the DGAC used in the back-calculation combined several other layers (i.e., OGAC, SMA, and PAC);
however, the dynamic modulus master curve of DGAC generated in the laboratory was based on
a single material. Hence, the DGAC results were more unsatisfactory than those for the BTB layer.
(2) The DGAC was relatively close to the road surface and had a relatively large temperature gradient
across its depth. However, the collected temperature adopted for the frequency-temperature correction
was simply selected as the temperature at the middle depth of that layer, which could have led to
a relatively large error in the DGAC material modulus with frequency-temperature correction.

Figure 17 plots the back-calculated modulus of the aggregate subbase layer and subgrade
soil layer. The horizontal axis indicates the number of FWD back-calculated data. Since the
modulus of the aggregate subbase and soil subgrade are not significantly related to temperature,
the frequency-temperature correction does not apply to those layers. The results show the
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back-calculated modulus of the aggregate subbase in cross-section 4 was consistently considerably
lower than that in the other cross-sections. Moreover, the back-calculated modulus of subbase and
subgrade in the same section were mostly consistent. These results revealed that FWD tests and
back-calculation effectively distinguished the modulus of the four cross-sections and the modulus of
the aggregate subbase layer and subgrade soil layer did not strongly influence by temperature, which
is in agreement with these materials’ properties.
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7. Conclusions and Suggestions

This study proposed a temperature-evaluation model for estimating the temperature at various
depth of pavement and conducted the frequency-temperature correction for FWD back-calculation
using the frequency-temperature superposition principle. The proposed temperature-evaluation
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model was developed through the statistical analysis of temperature measurements in a FWD test site.
The in situ cored specimens were obtained from the FWD test site and the samples were subjected to
dynamic modulus tests in the laboratory to determine the frequency-temperature shift factors and
master curves. The FWD back-calculations were performed with frequency-temperature correction and
the back-calculated modulus of the asphalt layer was compared with the master curve. The following
are the conclusions and suggestions.

• The proposed temperature-evaluation model, considering the effect of temperature-transmission
delay, can effectively and reliably estimate the temperature at different depths of the pavement
structure. The estimated temperature at deep depth remains reliable when compared with the
measured temperature (i.e., R2 = 0.82 at depth of 24.5 cm).

• The frequency-temperature superposition principle was employed to conduct the temperature
correction for asphalt material layers. The average percentages of the temperature-corrected
back-calculated modulus within ±30% range of the master curve are 71.59% and 89.02% for
the DGAC and BTB layers, respectively. This result indicates that the frequency-temperature
superposition principle can effectively apply to correct the temperature effect of FWD
back-calculation for asphalt layer.

• The back-calculated results of the subbase and subgrade layers show that the moduli of subbase
and subgrade are not significantly affected by temperature, which is in agreement with the
properties of these materials. The back-calculated modulus of the subbase and subgrade are
mostly consistent in the same section.

• The proposed temperature-evaluation model in this research is developed based on only one year
and local temperature measurements. More temperature measurements should be included in
future research to enhance the accuracy and application of model.

• This research combined several layers (i.e., OGAC, SMA and PAC) with a DGAC layer in
back-calculation. In future research, the moduli of the OGAC, SMA, and PAC layers should be
obtained in a laboratory through dynamic modulus tests and considered as known moduli in
back-calculation to improve the back-calculated results of DGAC.
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