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Abstract: Generally, most approaches using methods such as cropping, rotating, and flipping achieve
more data to train models for improving the accuracy of detection and segmentation. However,
due to the difficulties of labeling such data especially semantic segmentation data, those traditional
data augmentation methodologies cannot help a lot when the training set is really limited. In this
paper, a model named OFA-Net (One For All Network) is proposed to combine object detection
and semantic segmentation tasks. Meanwhile, using a strategy called “1-N Alternation” to train
the OFA-Net model, which can make a fusion of features from detection and segmentation data.
The results show that object detection data can be recruited to better the segmentation accuracy
performance, and furthermore, segmentation data assist a lot to enhance the confidence of predictions
for object detection. Finally, the OFA-Net model is trained without traditional data augmentation
methodologies and tested on the KITTI test server. The model works well on the KITTI Road
Segmentation challenge and can do a good job on the object detection task.

Keywords: “1-N Alternation” strategy; OFA-Net; object detection; segmentation; feature fusion

1. Introduction

In recent years, convolutional networks (ConvNets) contributed a lot to the dramatic
improvements in computer vision-related tasks. ConvNets not only boosted image classification
related tasks [1–6] but also made significant progress on object detection [7–13] and semantic
segmentation tasks [14–22]. Object detection and semantic segmentation have a wide spread of
applications from scene understanding to video monitoring, and they are also two important parts of
autonomous driving.

He et al. proposed ResNet [4] in 2015, which overcame the difficulties of training very deep neural
networks and let researchers achieve more and more complex models. Deep neural networks had been
requiring large quantities of data to train [1] and more so after ResNet [4]. Most of us, however, are
not always able to get enough data. Taking image semantic segmentation as an example, especially
for driving environmental image segmentation task, it seems that people are lacking such data all
the time. The famous KITTI semantics benchmark [23] just has 200 train images, and the KITTI road
segmentation benchmark [24] only contains 289 training images, so it seems too few to train a very deep
network, let alone researchers usually have to split training sets to make evaluations. With the high
cost of labeling such data, it is hard work to create custom datasets for your own driving environment.
Although there are several data augmentation methods, such as cropping, rotating, flipping, wrapping,
and over-sampling [25,26] that can help to acquire additional training data; researchers have also
explored many exciting models to get more accurate segmentation results, these models still cannot
work very well when the training data is really limited.

Appl. Sci. 2020, 10, 13; doi:10.3390/app10010013 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-6958-5188
https://orcid.org/0000-0003-3632-988X
https://orcid.org/0000-0002-7838-9410
http://dx.doi.org/10.3390/app10010013
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/1/13?type=check_update&version=2


Appl. Sci. 2020, 10, 13 2 of 15

Zeiler and Fergus [27] demonstrated that the features learned by ConvNets are hierarchical, while
the bottom layers focus on low-level features like corners, edges, etc., the top layers pay more attention
to high-level features. Inspired by this idea, this paper proposes a model called OFA-Net (One For All,
which means One model For All results required) to do driving environment images road segmentation
and object detection tasks.

In view of the fact that object detection data is much easier to label, OFA-Net utilizes KITTI 2D
Object Detection Dataset [28] as a supplementary source to learn the data distribution, which can surely
benefit the performance of road segmentation task. OFA-Net is a special multi-task fusion model [29]
because it can output object detection and semantic segmentation results simultaneously. The model
consists of three parts serving as feature extractor, detection, and segmentation, respectively. It feeds
object detection and semantic segmentation data alternately, and uses two different loss functions
to train each task, respectively. During this process, the model attempts to locate a proper point in
the high dimensional parameter space where it performs well on both. This paper shows that by
mixing object detection data with segmentation data using our “1-N Alternation” strategy, this unified
multi-task learning [29] model can be trained faster, more accurate, with better generalization ability
for the road segmentation task and high prediction confidence for the object detection task. In the
meantime, training a model via fusing these two related datasets can be viewed as a data augmentation
and model regularization method as well.

To conclude briefly, the work of this paper demonstrated that object detection and semantic
segmentation can benefit from each other by borrowing some fusion features when training a unified
fusion model by feeding data alternately. The advantages for the OFA-net with the “1-N Alternation”
strategy are speeding up the convergence, improving segmentation accuracy and enhancing prediction
confidence for object detection.

2. Related Work

Recently, Deep ConvNets play a significant role in image-related work. Hence this paper lays the
emphasis on Deep ConvNets based models. Firstly, some papers on classification, object detection,
and semantic segmentation are reviewed respectively, and then some work on transfer learning,
multi-task learning, and simultaneous detection & segmentation efforts previously are listed carefully.

2.1. Classification, Detection, and Segmentation

Classification Recent years most image classification models utilize ConvNets after the
success of AlexNet [1]. Some researchers claimed that network depth is crucial for network
performance [3,5]. Unfortunately, training a very deep neural network was difficult due to the problem
of vanishing/exploding gradients. ResNet [4] proposed by He et al. is the state-of-the-art structure,
which allows people to train very deep networks without worrying about the problems mentioned
above. Some researchers pointed out that Deep ConvNets learn image features hierarchically, which is,
convolutional kernels of bottom layers extract low-level features while the top layers are to combine
the low-level features as high-level representations [27].

Detection Traditional methods for object detection usually followed a two-step strategy. Firstly,
the model proposed numerous region proposals [30], then classified them to get correct predictions.
RCNN [7] and Fast RCNN [8] were the typical representations of this strategy. These methods were
easy to understand and implement. Nevertheless, due to the multi-stage training pipeline, it is too slow
and contains too much repetitive computation and cannot be trained end-to-end. Although the Faster
RCNN [9] model made use of RPN (Region Proposal Network) and solved these problems partially,
it was still too slow to use. Fortunately, there are several models that have been proposed to use only
one Deep ConvNet trainable end-to-end to make detections directly, such as YOLO models [10,11,13]
and SSD [12]. These models are superior to those region proposal-based models mainly for their
fast train and inference speed, and thus more appropriate for real-time object detection work. Thus,
the OFA-Net model leverages a lot from the YOLO models [10,11,13].
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Segmentation For the semantic segmentation task, some early approaches attempted to adapt the
model architectures designed for image classification directly to pixel-wise label prediction [31].
Despite the results surpassing traditional models, which heavily relied on low-level features
hand-engineered by humans [32–35], they still appeared fairly coarse [17]. Researchers tried a lot
to fine the segmentation results. FCN (Fully Convolutional Network) [14] replaced the last fully
connected layer with a convolutional layer and then added an up-sampling layer to recover the
image size. The biggest problem of FCN is the network lost a lot of information due to the pooling
layers, thus led the results not fine enough. To aggregate multi-scale contextual information with
no resolution lost, Yu and Koltun created dilated convolution modules [16]. To fine the prediction
result, Badrinarayanan et al. designed an encoder-decoder architecture [15], in which the encoder
network was identical to normal ConvNets and the decoder network was to learn the map between the
low-resolution encoder and high-resolution feature maps whose size is identical to the input images.
Recently, Chen et al. [21,22] combined the dilated convolutional module and the encoder-decoder
architecture together and borrowed the idea of the SPP (Spatial Pyramid Pooling) [6,20] to create an
ASPP module (Atrous Spatial Pyramid Pooling) for better performance on multiple scale segmentation.

2.2. Transfer Learning and Multi-Task Learning

Transfer Learning refers to the problem in the machine learning field that focuses on storing
knowledge obtained from a task and applying it to a different but related task [36]. Transfer learning
has been demonstrated on various computer vision-related tasks from image recognition [27,37] to
detection and segmentation [7,38]. The reason why it works is that features learned by Deep ConvNets
are hierarchical [27]. Both object detection and semantic segmentation need Deep ConvNets as the
infrastructure, hence these two tasks require similar features.

Multi-Task Learning (MTL) is the strategy that aims to leverage information among multiple
related learning tasks to improve the performance of all those tasks [39]. MTL obviously utilizes
fusion features because it learns features useful for every related task. Simultaneous detection and
segmentation can be seen as an application of multi-task learning, and more details will be given in
the next section. The OFA-Net leverages this idea and demonstrates that by training detection and
segmentation alternately, it is able to better the performance on both tasks in some aspects.

2.3. Simultaneous Detection and Segmentation

People have made a lot of effort to achieve simultaneous detection and segmentation. Wu and
Nevatia [40] recruited the Edgelet feature to capture objects’ local shape and then built detection and
segmentation simultaneously on top of it. Meanwhile, they utilized boosting algorithms to enhance
performance. However, due to the dependence on hand-engineered features, their model only worked
on simple datasets. Yao et al. [41] resorted to the convergent message-passing algorithm to inference
their joint object detection, scene classification, and semantic segmentation model, which performed
better than previous work. Hariharn et al. [42] attempted to use ConvNets do simultaneous detection
and segmentation. Their model was built on R-CNN [7] and appeared as multi-stage for they just used
ConvNets as a fixed feature extractor. OFA-Net model described in this paper can also use detection
and segmentation simultaneously but the feature extractor module was unfixed. Making the feature
extractor unfixed has many advantages as it can behave not only as a feature extractor module but a
bridge allowing the detection and segmentation to borrow features from each other.

3. The One for All Network (OFA-Net)

In this paper, a model named OFA-Net is proposed. OFA means “One For All”, which means
that all results wanted can be retrieved with just one model. Next, it is important to explain what “all
results wanted” refers to. “All” not only means simultaneous detection and segmentation, but also
stands for exploring the mutual effects between the two tasks, and proving that the mutual effects are
beneficial to both detection and segmentation in some aspects. The OFA-Net architecture is shown in
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Figure 1. OFA-Net is composed of three modules: the feature extractor module, the object detection
module, and the segmentation module. Finally, an alternate training strategy called “1-N Alternation”
is implemented to train the model and explore the relationships between detection and segmentation
tasks. More details are illustrated in the rest of the paper.

Figure 1. The One For All network (OFA-Net) architecture (rightward arrows indicate the forward
process while leftward arrows indicate backward process).

Feature Extractor The feature extractor module is the first module in the OFA-Net model, and this
module is almost identical to the ResNet-101 model [4]. The reason why the ResNet model is chosen
as the infrastructure is that using ResNet can train a very deep network. It is not necessary to worry
about the vanishing/exploding gradient problem too much and, therefore, research can focus on
analyzing the reciprocal effects between detection and segmentation. The task of this module is to
process input images and abstract the contextual features required by the following modules. The only
change of ResNet is that the last convolutional layer is replaced with a dilate convolutional layer of
dilation rate 2 for the reason that dilate convolutional module has the ability to aggregate contextual
information without losing resolution [16]. Some other advantages by doing this replacement are
improving the performance on the segmentation task and letting the detection module be able to access
more elaborate contextual information, which can lower the confidence loss value. By training with
the “1-N Alternation” strategy, this module also behaves as a fusion bridge that permits detection and
segmentation tasks to borrow features from each other. More details will be given later.

Object Detection Another crucial module of the OFA-Net model is the object detection module.
There are two types of object detection models currently, one is the region proposal-based method [7–9],
and the other is the non-region proposal-based method [10,11,13]. The non-region proposal-based
method, such as YOLO, performs training and inference faster. This research recruits the structure
of YOLO and implements it as an abbreviated version. Just as YOLO models did, every input image
is divided into 11 × 39 cells, and if the center of an object falls into a cell, that cell is in charge of
predicting the corresponding object. In this work, the original YOLO model is simplified by reducing
the anchors to 3 at each cell. This simplification is based on the observation that when combined with
segmentation and using the dilated convolutional module, the model has already retrieved enough
information for detection with a small number of anchors. Another factor in reducing the number of
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anchors is that the KITTI 2D Object Detection dataset [28] does not contain so many small instances
that need a large number of anchors to detect.

Segmentation The last module of the OFA-Net model is the segmentation module. Following
the implementation of Chen et al., the module is illustrated in Figure 1. This module uses ASPP
(Atrous Spatial Pyramid Pooling) [18,21,22] to aggregate contextual feature information at different
scales. An encoder-decoder structure [15] is also adapted to combine low-level features with those
high-level ones and then an up-sampling operation is utilized to restore the resolution of the feature
maps generated by the former layers. You can see a lot of applications of the dilate convolutional
module in the segmentation part of the OFA-Net model. Dilate convolutional modules allow the
model to keep the resolution of feature maps while getting more contextual information. Additionally,
it enables the OFA-Net model to enlarge the receptive field while keeping the number of parameters
unchanged [16].

4. Training Details

4.1. Initialization

Initialization is crucial for Deep ConvNets [43]. As features learnt by Deep ConvNets are
applicable to many related datasets and tasks, even distant tasks [44] using transfer learning to
initialize the model is a good approach. The feature extractor module was initialized with pre-trained
ResNet 101 parameters except for the last few layers. The Relu function [1] was utilized as the activation
function in the OFA-Net model. Considering the rectifier non-linearities, Kaiming initialization [36]
was adapted to initialize the blocks in the rest layers containing detection and segmentation modules.

4.2. Loss Functions and Loss Value Balancing

For the segmentation task, the OFA-Net model resorted to softmax cross-entropy loss function as
many others did [14–22].

The loss function for object detection is more complex owing to the cause that the detection task
requires not only classification outputs but boxes prediction as well. The Softmax cross-entropy loss
function is appropriate for classification tasks whereas it is helpless when encountering the boxes
prediction problem. Mean square error (or L2 loss) function is appropriate to predict bounding boxes
because the bounding boxes prediction problem can be viewed as a regression problem. YOLO loss
function [10] gave a good example of combining these two types of loss functions, thus the model of
this paper recruited it here.

The last point about loss functions is “loss value balance.” The same thinking is also contained
in the YOLO loss function, which assigns different weights to the loss values according to their
importance. In this work, detection and segmentation are considered equally important, therefore,
an adjustment needs to be carried out to make these two loss values approximately equal. During
the training process, our team discovered that the loss value of segmentation is much bigger than
that of detection. Therefore, the segmentation loss value should be divided by a big constant number
K to achieve our goal. To find this big constant number, the values of the two loss functions (one
for the object detection and the other for the semantic segmentation) were recorded during the first
several training iterations, say n iterations. Then, the big constant number K can be computed as the
Formula (1) and the final loss function is shown as the Formula (2), where Lossdection and Losssegmentation
indicate the original loss value of the object detection and segmentation respectively, and K is the big
constant number in the Formula (1) to achieve loss value balance.

K =
∑n

i=0 Losssegmenation

∑n
i=0 Lossdetection

(1)

Loss = Lossdetection +
1
K
× Losssegmenation (2)
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4.3. Alternate Training Strategy

According to the research made by Zeiler [27] and Yosinski [44], the features learned by deep
neural networks can be applicable to some related tasks even those distant ones. Compared with
obtaining object detection data, people are always having difficulties to access massive segmentation
data. Taking the KITTI dataset [23,24,28] as an example, the dataset includes 7481 training images
for detection while only 289 training images for road segmentation and 200 training images for
multi-class pixel-wise semantic segmentation (call “pixel-wise segmentation” later). The cause of
this situation is the case that the cost is much higher to label segmentation datasets. To address this
problem, an alternate training strategy was created in this paper. It firstly feeds detection data into the
model, computes the detection loss function and completes the corresponding backward propagation.
Following this, feed segmentation data into the model, then compute the segmentation loss function
and accomplish the relevant backward propagation. And repeat these two procedures alternately.
This “one batch of segmentation data feeding with one batch of detection data feeding” method is
called the “1-1 Alternation” strategy. Likewise, “1-N Alternation” means one batch of segmentation
data feeding with N batches of detection data feeding. To make it clear, the process is displayed
in Figure 1. The rightward arrows indicate the forward process while the leftward arrows indicate
the backward propagation process. Different colors (red and blue) are used to identify the alternate
strategy here. For instance, feed segmentation data through blue-rightward arrows (forward process)
and adjust the parameters by the red-leftward arrows (backward process), and the adjusted model
is next used for the detection task following the red-rightward arrows. Using the “1-N Alternation”
strategy, the OFA-Net is able to locate an acceptable point in the high dimensional parameter space
where the model performs well on both tasks.

The performance of the “1-N Alternation” strategy is also tested to seek out the proper mixture
ratio of detection data and segmentation data, where N is equal to 1, 2, and 5. Finally, convergence
speed, IOU (Intersection Over Union) for segmentation, precision for detection, and some additional
related indicators are measured.

4.4. Dataset Split and Experiments

Experiments are performed on the KITTI datasets [23,24,28]. The datasets are split in Table 1.

Table 1. Datasets split.

Dataset Total Train Validation

2D object detection 7481 6000 1481
Road segmentation 289 240 49
Pixel-wise segmentation 200 160 40

The “distance” between object detection and pixel-wise segmentation was shorter than that of
object detection and road segmentation because both object detection and pixel-wise segmentation
have similar categories, such as cars, persons, bicycles, buses etc., while road segmentation has just
two categories: road and non-road. The performances of the OFA-Net were compared in accordance
with this different distance. The following parts of this paper summarize the mutual effects between
these related tasks and concludes some rules to train a reliable model.

4.5. Hyper Parameters

Adam optimizer [45] was recruited to train the OFA-Net model. The model adopts a learning
rate of 1 × 10−5, and a weight decay of 5 × 10−4 is applied to all layers. The OFA-Net is also equipped
with batch normalization which can stabilize the learning process. The learning rate decreases by the
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Formula (3) every 10 epochs, where current_epoch indicates the current epoch value, and max_epochs
indicates the maximum epoch value that our program will run.

lr = lr × (
1 − current_epoch

max_epochs
)0.9 (3)

5. Results Analysis

5.1. How Does Detection Affect Segmentation?

Firstly, the model pays attention to the impacts on segmentation performance. To figure out the
influences on segmentation task by mixing detection data, the IOU index is collected over training
epochs. The results are presented in Figures 2 and 3. The legend “1-N” means the “1-N Alternation”
strategy is employed to train the model. The models were trained and evaluated on the train and
validation sets specified in Table 1.

Figure 2. IOU (intersection over union) of road segmentation over epochs.
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Figure 3. IOU (intersection over union) of pixel-wise segmentation over epochs.

Figure 2 displays the results of mixing road segmentation data with detection data, and the
IOUs are evaluated when N is equal to 0, 1, 2, and 5. What is discovered is that by adding detection
images as an additional training data source, the model performs better anyway. Specifically, when
joining detection images, the model converges fairly faster compared with training only with road
segmentation data, especially during the first few epochs. To be more specific, considering the
performance on the validation set, the first epoch of the “1-2 Alternation” model performs almost
comparable to the 10th epoch of the “1-0 Alteration” (without detection data). This phenomenon tells
the fact that the features for object detection have a strong correlation with the segmentation task.
Figure 2 also shows that the “1-2 Alternation” model got about 2% improvement compared with the
“1-0 Alternation” model. Another thing observed is that the “1-2 Alternation” model behaves a little
better than the “1-1 Alternation” model. So, is it beneficial for a bigger N all the time? To solve this
question, N was increased to 5 but the result shows that it is not always better for a bigger N. If N is
too big, the IOU curve will fluctuate over epochs and sometimes performs even worse than the model
without detection data.

Figure 3 describes the results of mixing pixel-wise segmentation data with object detection
data. Let N be equal to 0, 1, 2, and 5 again, the model produces similar results found in Figure 2.
And considering the aim of KITTI pixel-wise segmentation is to pick fine area of objects like cars,
persons and so on, the distance between this task and detection task is shorter than that of road
segmentation and detection tasks, and as a consequence of which, the improvement of IOU is more
obvious (approximately 9% improvement).

Based on the findings mentioned above, a suggestion is that when the segmentation dataset is
limited or difficult to collect due to high labeling cost or some other reasons, people should try to
label some detection data with the amount of one or two times of the segmentation data. By adding
these detection data to the training processes, people should get a much better result. From this aspect,
the “1-N Alternation” strategy can be viewed as a data augmentation methodology. Notice that in
Figures 2 and 3 the IOUs on the training sets are very similar regardless of the value of N, whereas
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the IOUs on the validation sets change a lot due to different values of N, which means the model
generalizes better when N is appropriate. Therefore, the strategy designed in the OFA-Net model can
be seen as a regularization method as well.

5.2. How Does Segmentation affect Detection?

The OFA-Net model is evaluated on the detection validation sets and the results are shown in
Table 2. An interesting discovery is that when training with the segmentation data, the confidence
of the objects with “enough” instances [28] (Cars, Persons) becomes higher. This arises from more
detailed scene information supplied by the segmentation task. Due to the small amount of validating
instances of the cyclist category, it cannot benefit from this. Besides, some cyclist objects were classified
into the person category with segmentation data added as the supplementary data source. Therefore,
if applying the OFA-Net model and the “1-N Alternation” training strategy to the object detection
applications, “enough” validation instances for object detection are needed. Now, the question is what
“enough” means. To give an answer to it, the number of instances over the number of images ratio
for each category, say R[category], is calculated as the Formula (4). Notice that RCar and RPerson are 4.7
and 1.3, respectively, while RCyclist, RVan, RTruck, and RTram are much smaller than 1, specifically, 0.07,
0.52, 0.17, and 0.03 respectively. What can be concluded from these ratio values is that the “enough”
instances cannot be less than the number of images, or the R[category] at least should be greater or equal
to 1. Based on this finding, one suggestion is that the amount of validating instances for each category
in the detection datasets should not be smaller than the number of images in those datasets.

R[category] =
Num o f Instances f or Category

Num o f Images
(4)

Table 2. Confidence changes with/without segmentation data

Confidence Without Seg Data With Seg Data

Car 0.9323 0.9947
Person 0.8725 0.9241
Cyclist 0.7052 0.6908
Van 0.8324 0.7925
Truck 0.8893 0.7236
Tram 0.7614 0.6867

5.3. OFA-Net Results

The OFA-Net model was tested on the official KITTI test server and the results were also
compared with other’s models, including the MixedCRF model [46], the ALO-AVG-MM model [47],
the HybridCRF model [48], and the HID-LS model [49]. The results of the comparisons are given in
Table 3 [50]. The meaning of the indexes in Table 3 is shown in Table 4. Table 3 shows that the OFA-Net
model has significant advantages over other models especially on the index of MaxF and REC.
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Table 3. Road segmentation evaluation results [50] ∗.

Benchmark Model MaxF AP PRE REC FPR FNR

UM_ROAD

OFA-Net 92.08 % 82.73 % 87.87 % 96.72 % 6.08 % 3.28 %
MixedCRF 91.57 % 84.68 % 90.02 % 93.19 % 4.71 % 6.81 %
ALO-AVG-MM 91.15 % 83.82 % 89.07 % 93.33 % 5.22 % 6.67 %
HybridCRF 90.99 % 85.26 % 90.65 % 91.33 % 4.29 % 8.67 %
HID-LS 93.10 % 86.38 % 91.89 % 94.33 % 3.79 % 5.67 %

UMM_ROAD

OFA-Net 95.43 % 89.10 % 92.78 % 98.24 % 8.41 % 1.76 %
MixedCRF 92.75 % 90.24 % 94.03 % 91.50 % 6.39 % 8.50 %
ALO-AVG-MM 94.05 % 90.96 % 94.82 % 93.29 % 5.60 % 6.71 %
HybridCRF 91.95 % 86.44 % 94.01 % 89.98 % 6.30 % 10.02 %
HID-LS 94.89 % 91.46 % 95.37 % 94.42 % 5.04 % 5.58 %

UU_ROAD

OFA-Net 92.62 % 83.12 % 88.97 % 96.58 % 3.90 % 3.42 %
MixedCRF 85.69 % 75.12 % 80.17 % 92.02 % 7.42 % 7.98 %
ALO-AVG-MM 89.45 % 79.87 % 85.40 % 93.90 % 5.23 % 6.10 %
HybridCRF 88.53 % 80.79 % 86.41 % 90.76 % 4.65 % 9.24 %
HID-LS 89.81 % 82.33 % 88.11 % 91.58 % 4.03 % 8.42 %

URBAN_ROAD

OFA-Net 93.74 % 85.37 % 90.36 % 97.38 % 5.72 % 2.62 %
MixedCRF 90.59 % 84.24 % 89.11 % 92.13 % 6.20 % 7.87 %
ALO-AVG-MM 92.03 % 85.64 % 90.65 % 93.45 % 5.31 % 6.55 %
HybridCRF 90.81 % 86.01 % 91.05 % 90.57 % 4.90 % 9.43 %
HID-LS 93.11 % 87.33 % 92.52 % 93.71 % 4.18 % 6.29 %

∗ The results surpass other models are labeled in bold. Lower is better in the last two columns. Higher is better in other columns.

Table 4. Meaning of the indices in Table 3 ∗.

Index Meaning

MaxF Maximum F1-measure
AP Average precision as used in PASCAL VOC challenges
PRE Precision
REC Recall
FPR False positive rate
FNR False negative rate

∗ The four latter measures are evaluated at the working point MaxF.

The OFA-Net model surpasses other models on the index of MaxF for the UMM_ROAD,
UU_ROAD, and URBAN_ROAD benchmarks. To be specific, for the MaxF index, the MaxF value of
the OFA-Net model is 0.54% higher on the UMM_ROAD benchmark, 2.81% higher on the UU_ROAD
benchmark and 0.63% higher on the URBAN_ROAD benchmark than the second-best model in the
five models listed. The OFA-Net model beats all other 4 models listed in Table 3 on the index of REC.
Specifically, for the REC index, the REC value of the OFA-Net model is 2.39% higher on the UM_ROAD
benchmark, 3.84% higher on the UMM_ROAD benchmark, 2.68% higher on the UU_ROAD benchmark,
and 3.67% higher on the URBAN_ROAD benchmark than the second-best model in the five models
mentioned above.

For a better understanding of the advantages of the OFA-Net model on segmentation tasks, there
are four groups of comparisons displayed in Figure 4. Each group has the outputs of the OFA-Net
model, the MixedCRF model, the ALO-AVG-MM model, the HybridCRF model, and the HID-LS
model from top to bottom, respectively. Here, red areas denote false-negatives, blue areas correspond
to false-positives and green areas represent true positives. What can be seen from Figure 4 is that the
outputs of the OFA-Net model have fewer red areas compared with others, which means, the OFA-Net
model can get lower false negative rate. This is in line with the last column of Table 3. In this paper,
false-negatives indicate that the road area cannot be recognized (the road area is identified as non-road
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area). The OFA-Net model here has a very low false-negative rate, thus has a very good ability to
recognize road areas, which is helpful for autonomous driving.

(a) Persp_umm_road_000066 (b) Persp_um_road_000077

(c) Persp_uu_road_000082 (d) Persp_um_road_000095
Figure 4. Visualization of comparisons with other models (each group has the outputs of OFA-Net,
MixedCRF, ALO-AVG-MM, HybridCRF, and HID-LS from top to bottom, respectively. Find the
meaning of different road types from the research made by Fritsch, J., etc. [24].)
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The object detection and pixel-wise semantic segmentation were not tested on the server because
just several common categories of them were used to explore the relationships between segmentation
and object detection tasks and to find a new training strategy that both tasks can benefit from. For a
better intuitive feeling of the object detection effects of the OFA-Net model, some visualizations of the
OFA-Net outputs are displayed in Figure 5.

Figure 5. Visualization of the OFA-Net outputs.
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6. Conclusions

In this work, a ConvNet model named OFA-Net was designed and a “1-N Alternation” strategy
was created to train the OFA-Net. During which the relationships between object detection tasks and
semantic segmentation tasks were explored, and the mutual enhancement effects between them were
also found. Due to the segmentation task always lacking data, the findings in this paper pointed out
that people can use some easily obtained object detection data as the supplementary data source to
augment segmentation datasets; vice versa, the segmentation data is helpful to the detection task.
What is more, the “1-N Alternation” strategy can do a feature fusion job in the OFA-Net model and
can also be recruited as a regularization methodology. The OFA-Net model can get more accurate
segmentation/detection results, converge more quickly, and achieve lower false negative rates, thus
performing much better than the other models. In summary, the work described in this paper
explored things behind related learning tasks and created a multi-task learning model named OFA-Net.
The OFA-Net works well on the KITTI datasets. Furthermore, our team next is going to replace the
feature extractor module with the MobileNet [51] and adapt this work to low-power devices.

Author Contributions: conceptualization, S.Z. and Z.Z.; methodology, S.Z.; software, S.Z.; validation, S.Z. and
Z.Z.; formal analysis, S.Z.; investigation, S.Z.; resources, S.Z. and Z.Z.; data curation, S.Z.; writing—original draft
preparation, S.Z.; writing—review and editing, L.S.; visualization, S.Z.; supervision, W.Q.; project administration,
W.Q.; funding acquisition, W.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Key Research Plan of Jiangsu Province under the Grant BE2017035
and BE2019311.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks.
Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [CrossRef]

2. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition,
localization and detection using convolutional networks. arXiv 2013, arXiv:1312.6229.

3. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 27–30 June 2016; pp. 770–778.

5. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:1409.1556.

6. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual
recognition. In European Conference on Computer Vision; Springer: Zurich, Switzerland, 2014; pp. 346–361.

7. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 23–28 June2014; pp. 580–587.

8. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 11–18 December 2015; pp. 1440–1448.

9. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015; pp. 91–99.

10. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
27–30 June 2016; pp. 779–788.

11. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. arXiv 2017, arXiv:1612.08242.
12. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector.

In European Conference on Computer Vision; Springer: Amsterdam, Netherlands, 2016; pp. 21–37.
13. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.

http://dx.doi.org/10.1145/3065386


Appl. Sci. 2020, 10, 13 14 of 15

14. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3431–3440.

15. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for
image segmentation. arXiv 2015, arXiv:1511.00561.

16. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
17. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep

convolutional nets and fully connected crfs. arXiv 2014, arXiv:1412.7062.
18. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation

with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal.
Mach. Intell. 2018, 40, 834–848. [CrossRef]

19. Lin, G.; Milan, A.; Shen, C.; Reid, I. RefineNet: Multi-path Refinement Networks for High-Resolution
Semantic Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

20. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 2881–2890.

21. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image
segmentation. arXiv 2017, arXiv:1706.05587.

22. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable
convolution for semantic image segmentation. arXiv 2018, arXiv:1802.02611.

23. Alhaija, H.A.; Mustikovela, S.K.; Mescheder, L.; Geiger, A.; Rother, C. Augmented reality meets computer
vision: Efficient data generation for urban driving scenes. Int. J. Comput. Vis. 2018, 126, 961–972. [CrossRef]

24. Fritsch, J.; Kuehnl, T.; Geiger, A. A new performance measure and evaluation benchmark for road detection
algorithms. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems
(ITSC 2013), The Hague, Netherlands, 6–9 October 2013; pp. 1693–1700.

25. Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning.
arXiv 2017, arXiv:1712.04621.

26. Wong, S.C.; Gatt, A.; Stamatescu, V.; McDonnell, M.D. Understanding data augmentation for classification:
When to warp? arXiv 2016, arXiv:1609.08764.

27. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In European Conference on
Computer Vision; Springer: Zurich, Switzerland, 2014; pp. 818–833.

28. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark
suite. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

29. Ruder, S. An overview of multi-task learning in deep neural networks. arXiv 2017, arXiv:1706.05098.
30. Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J.

Comput. Vis. 2013, 104, 154–171. [CrossRef]
31. Farabet, C.; Couprie, C.; Najman, L.; LeCun, Y. Learning hierarchical features for scene labeling. IEEE Trans.

Pattern Anal. Mach. Intell. 2013, 35, 1915–1929. [CrossRef]
32. Shotton, J.; Johnson, M.; Cipolla, R. Semantic texton forests for image categorization and segmentation.

In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK,
USA, 23–28 June 2008; pp. 1–8.

33. Brostow, G.J.; Shotton, J.; Fauqueur, J.; Cipolla, R. Segmentation and recognition using structure from motion
point clouds. In European Conference on Computer Vision; Springer: Marseille, France, 2008; pp. 44–57.

34. Sturgess, P.; Alahari, K.; Ladicky, L.; Torr, P.H. Combining appearance and structure from motion features
for road scene understanding. In Proceedings of the BMVC-British Machine Vision Conference, BMVA,
London, UK, 7–10 September 2009.
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