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Abstract: In predicting the response of track from a moving train only one track is generally considered.
However, the effect of ground vibrations from one track and its effect on the nearby tracks has not
been studied completely. Therefore, in the present paper, the effect of track irregularities and speed
on the prediction of two-way tracks response is investigated. For this purpose, a three-dimensional
dynamic finite element (FE) model capable of simulating interactions between the train and track by
using a nonlinear hertz contact method was developed. The model uses tensionless stiffness between
the wheel and rail to couple them. The model components including the sleeper, ballast, and soil
domain are represented by solid brick elements. The rails are modeled as 3D Euler–Bernoulli beam
elements. An iterative numerical algorithm was established for the integrations of the train and
track interface. A comparative analysis was performed at various speeds and rail surface irregularity
wavelengths. With the increase in speed, the results showed a significant increase in the adjacent
tracks response and can induce much larger track vibrations at high frequency.
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1. Introduction

Railways are a paramount and economical means for mass transportation and offer a suitable
alternative to traffic congestion. However, in populated areas, ground vibrations induced by the moving
trains is problematic. To examine this problem, various train–track models have been proposed to
study the generation of ground vibrations and their propagation due to moving loads. Most of the early
train–track models to study the effect of moving loads were based on analytical and semi-analytical
methods [1–4]. However, these methods are hard to formulate, limited to the specific types of problems,
consider many simplified assumptions and difficult to implement to study the wave propagation due
to moving loads. Therefore, a better understanding of the ground vibrations and wave propagation
during the design and the construction of such facilities is highly desirable [5].

To study the ground vibration due to moving load, Xia et al. [6] developed a theoretical
train–track–subsoil interaction model and also considered track irregularities. This interaction model
takes account of quasi-static as well as dynamic excitation between the vehicle and track. The results
showed that the track unevenness could significantly increase the vibrations in the ground at a
given speed.

With the progress of computer technology, more sophisticated methods such as boundary
element method (BEM), finite element method (FEM) and combined or hybrid methods have been
introduced to solve ground vibration problems. Many researchers considered BEM [7–9] or combined
methods [10–14] to study the effect of moving train on ground vibration and surrounding structures.
Generally, these methods are mostly formulated in the frequency domain because of computational
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efficiency. However, these methods are limited to linear problems and become inconvenient for solving
complex geometries.

The FEM precisely predict the ground vibrations and can give a replica of engineering insight of
operational conditions. The FEM can easily solve nonlinear problems with complex geometries. El
Kacimi et al. [15] used three-dimensional finite element (FE) coupled train–track model to predict the
track vibration at high speed. Their findings revealed that a series of waves radiating from the loading
point formed a Mach cone, which caused the loss of symmetry in ground vibration at critical speed.
The effect of rail surface irregularities was not considered in this study which is the main source of the
increase in ground vibration in the train–track interaction problem. Moreover, to simplify the problem
it was assumed that the track has symmetry all along the track. A half finite element domain with a
single rail, half of the track and ground along the track was modeled to study the ground vibration
due to moving load. This assumption is not useful while considering track irregularities. Furthermore,
a lot of FEM based parametric studies have been carried out to investigate the effect of moving load
under different track and ground conditions [16–22].

The impact of train induced vibrations on adjacent structures and attenuation of ground vibration
was studied by many researchers (e.g., [23–28]). In these studies, only one track or symmetry along the
track (only one single rail) is considered to predict the track and ground vibrations due to moving
loads. In real-world practice, two-way tracks are mostly constructed; and one track can easily be
affected by the ground-borne vibrations induced by a moving train on the nearby track which has
been ignored in previous studies. Therefore, for two-way tracks, the excitation on both tracks due to
moving trains should be considered. To this end, a better model reflecting the overall responses, due to
separate excitation on two tracks and the effect of waves propagating from one track to the other track
needs to be studied.

In this study, a model comprising three-dimensional soil domain and two-way track to investigate
the effect of radiating waves from one track to the nearby track is developed. This model also considers
the nonlinear train–track interaction and the rail–sleeper–ballast–soil interaction. Moreover, Lysmer
boundary is considered to avoid the reflection of the wave from the soil domain. Finally, the results
of this numerical simulation and the effect of different classes of irregularities on tracks at different
speeds are discussed.

2. Train-Track-Soil Interaction Model

A time-domain Train-Track-Soil interaction model was developed to study the effect of different
level of track irregularities on the response of two adjacent railway tracks. In this study, three separate
models are considered (1) train model, (2) track and soil model and (3) track irregularities. The train
was modeled as a quarter train model [15]. A track consisting of two rails was placed on sleepers
that were connected by rail-pads. The rails were modeled as 3D-beams and rail pads as distributed
spring-dashpot elements, which transmit all the forces caused by the moving train to the track–soil
system. The other parts of the track (i.e., sleeper and ballast) and soil domain were modeled as solid
elements. Lysmer and Kuhlmeyeer boundary condition was incorporated to prevent the reflection of
stress waves from the edges of the domain [29]. Furthermore, Non-linear Hertz contact theory was
utilized to couple train and track. The track irregularity was modeled as a stationary Gaussian random
process based on power spectral density function. A detailed explanation of each model is given
as follows:

2.1. Train Model

A quarter train model was used to simulate the vehicle body. The quarter train model consists
of a quarter car body, half bogie, and a wheel. Each of these components is modeled as a rigid mass
connected by two suspension systems (i.e., primary and secondary suspension systems). Figure 1
illustrates a schematic layout of the quarter train model, where the masses of quarter of a car body, half
of a bogie and a wheel are denoted by mw1, mw2 and mw3 respectively. The primary suspension system
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which connects the wheel and bogie has stiffness kw2 and damping cw2 the secondary suspension
system connects bogie and car body has stiffness kw1 and damping cw1. KH presents the Hertz contact
spring. The equations of motion for the given train model are derived as:

M
..
vw(t) + C

.
vw(t) + Kvw(t) = F(t), (1)

where M, C and K are the mass, damping and stiffness matrices of the train system, and F is the load
vector. Equation (1) can be written in expanded form as:


mw1 0 0

0 mw2 0
0 0 mw3




..
vw1
..
vw2
..
vw3

+


cw1 −cw1 0
−cw1 cw1 + cw2 −cw2

0 −cw2 cw2




.
vw1
.
vw2
.
vw3

+


kw1 −kw1 0
−kw1 kw1 + kw2 −kw2

0 −kw2 kw2




vw1

vw2

vw3


=


mw1g
mw2g
mw3g

+


0
0

Fw/r


(2)

In which:
mw1 = mw1/8 (3)

mw2 = mw2/4, (4)

where mw1, mw2 and mw3 are the masses of car body, bogie, and a wheel, respectively and vw1, vw2 and
vw3 are the vertical displacements of the car, bogie, and wheel, respectively.
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The coupling of wheel and rail can be obtained through the interaction forces between the wheel
and rail and is given [15] as:

Fw/r =

 KH(vw3 − vr − irr)
3
2 , if vw3 − (vr − irr) < 0,

0, if vw3 − (vr − irr) > 0,
(5)

where Fw/r is the interaction force between wheel and rail, KH is the contact spring constant, vw3 and
vr are the vertical displacements of the respective wheel and rail at the point of contact, and irr is the
surface irregularity of the rail surface.

2.2. Track–Soil Model

To investigate the ground vibration due to a moving train, the parts of the track such as the
sleeper and ballast, and soil domain are modeled as a homogeneous material. The rail is modeled
as a 3D Euler–Bernoulli beam. Three-dimensional (3D) FEM is adapted to model the track and soil.
The geometry, material damping, radiational damping and mesh size of the model are the critical



Appl. Sci. 2020, 10, 11 4 of 17

parameters. The track (i.e., sleeper and ballast) and soil are modeled as brick elements. The governing
equation of motion for track and soil is given as:

M̃
..
v(t) + C̃

.
v(t) + K̃v(t) = F̃(t), (6)

where M̃, C̃ and K̃ are the total mass, damping and stiffness matrices of complete track and soil model
which includes rail, sleepers, ballast and soil domain.

M̃ = Mts + Mr (7)

K̃ = Kts + Kr (8)

C̃ = Cts + Cr + Cs,p, (9)

where Mts and Mr are the mass matrices of track–soil and rail, respectively; Kts, Kr are the stiffness
matrices of track–soil and rail, respectively, and Cts, Cr are the material damping matrices of track/soil
and rail respectively. Radiational damping coefficient is presented as Cs,p.

Mts =

∫
Ve

ρNTNdV (10)

Kts =

∫
Ve

BTcBdA, (11)

where ρ is the density of respective material and N the shape function field. In the stiffness matrix, c is
the matrix of material constant and B is the strain matrix.

The Rayleigh damping is used to calculate the material damping, a linear combination of the mass
matrix and stiffness matrix.

Cts = αtsMts + βtsKts (12)

Cr = αrMr + βrKr, (13)

where αts, βts , αr and βr are the Rayleigh damping coefficients. Material damping calculated by this
method is frequency dependent and can be predicted using Equations (12) and (13), for the constant
damping ratio, the scalar values of the coefficients in the linear combination can be calculated as given
in [30].

The Lysmer and Kuhlmeyeer model [29] for infinite media is used to formulate the artificial
boundary. The Lysmer boundary is a way to avoid the full reflection of waves by the domain boundaries.
This is critical because reflected waves may cause resonance in the domain that does not actually exist
in reality. The implementation of this kind of boundary is very easy and compatible with finite element
modeling as it is a simple connection of dampers to all degrees of freedom of soil boundary nodes
and the other end is fixed. The radiational damping coefficient of these dampers can be calculated by
Equation (14).

Cs,p = ρAVs,p, (14)

where A is the cross-sectional area of the element, ρ is the mass density and Vs,p are the wave velocity
depending upon the type of wave (shear wave velocity Vs or compressional wave velocity Vp).

A wide range of frequencies are excited in the wave propagation problems. To solve this problem
easily is to select a high cutoff frequency to get an accurate solution. Selecting the mesh size of elements
is very important for defining the proper time step, correct wave front propagation through space from
one point to the other, and stability of the solution. The Courant–Friedrichs–Lewy (CFL) method has
been used as in [31].

∆h ≤
λ
4
=

V
4 fmax

(15)
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∆t <
∆h
V

, (16)

where ∆h is maximum nodes spacing; λ is the smallest wavelength; V is the lowest wave velocity of
interest; fmax highest frequency present in the simulation; and ∆t is the time step.

2.3. Track Irregularities

The main source of ground vibrations is the loads of the wheels acting on the rail. The track
irregularities are considered to increase the ground vibrations. In the present study, the track
irregularities are numerically generated using the power spectral density function (PSD), developed
by the USA Federal Railway Administration [32], and is given as:

S(φk) =
Aφ2

2(φ2
k + φ2

1)

φ4
k(φ2

k + φ22)
, (17)

where A, φ1 and φ2 are the constants defined in the actual measurement depending on the type of
irregularity and rail quality. According to the practice by the Federal Railway Administration, USA,
the level of track irregularities is categorized into six classes ranging from class1 (bad quality) to class6
(good or finest) [33]. The random vertical track irregularities irr are modeled as a stationary Gaussian
random process based on the PSD function and can be written as:

irr(y) =
Nk∑

k=1

ak cos(φky + θk) (18)

ak = 2
√

S(φk)∆φ (19)

φk = φmin + (k− 0.5)∆φ (20)

∆φ =
φmax −φmin

Nk
, (21)

where ak is the amplitude of the wave, φk is the circular spatial frequency within the range of upper
(φmax) and lower (φmin) limits of route frequency, θk is the random phase angle with a uniform
distribution between 0 and 2 π, Nk represents the number of harmonic functions, and y is the global
coordinates along the rail.

3. Numerical Analysis Procedure

The equation of motion for train Equation (1) and the equation of motion of track and soil
Equation (6) are coupled by the loads of the train due to its weight and interaction forces

{
Fw/r

}
. The

interaction forces depend on the position of the wheel on the rail, track irregularity, and time-dependent
displacement of the rail. To integrate the two sub-systems (i.e., train and track–soil), an iterative scheme
has been used which considers the contact force equilibrium as given in [34]. This iterative method
also incorporates the Newmark integration method to solve the coupled train–track–soil dynamic
system equations. The complete algorithm is given as follows:

Step 1: at first time step and iteration (i = 1), train responses t
i{vw}, t

i

{ .
vw

}
andt

i

{ ..
vw

}
and track

responses t
i{v},

t
i

{ .
v
}

andt
i

{ ..
v
}

are assumed initially as zero.
Step 2: after first time step, the second iteration (i + 1) starts with the computation of the interaction

force vector of all wheels t+∆t
i+1

{
Fw/r

}
. The vertical contact forces of k -th wheel can be evaluated from

the last known responses of the wheel and rail at the position of contact by using equation Equation (5).
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Step 3: this vertical contact forces with gravity loads of train given in Equation (2) are applied
on rail as external loads. The track/soil responses at (i + 1) iteration with the time step (t + ∆t) are
computed by the following equations.

([K] + a1[M] + a2[C])t+∆t
{v} = t+∆t{F(t)} + [M]

(
a1

t
{v} + a3

t
{ .
v
}
a4

t
{ ..
v
})

+[C]
(
a2

t
{v} + a5

t
{ .
v
}
+ a6

t
{ ..
v
}) (22)

t+∆t
{ .
v
}
= a1

(
t+∆t
{v} − t

{v}
)
− a5

t
{ .
v
}
− a6

t
{ ..
v
}

(23)

t+∆t
{ ..
v
}
= a1

(
t+∆t
{v} − t

{v}
)
− a3

t
{ .
v
}
− a4

t
{ ..
v
}

(24)

Step 4: after getting the response of track/soil at a given time step, update the rail responses in
Equation (5) at every position of wheels on rails defined as t+∆t

i+1 {v}. Before moving to the next iteration,
the convergence of the solution must be checked by the following equation.

‖
t+∆t
i+1 {v} −

t+∆t
i {v}‖

‖
t+∆t
i+1 {v}‖

≤ ε, (25)

where the t+∆t
i+1 {v},

t+∆t
i {v} are the displacements of track at present and previous iterations and ε is the

specified tolerance. If the convergence criterion is satisfied, return to the initial iteration (or Step 2) for
the next time step otherwise move to step 5.

Step 5: if the convergence criterion is not satisfied, take the rail displacement at a given time {vr}

from t+∆t
i+1 {v} and calculate t+∆t

i+1

{
Fw/r

}
by using Equation (5). Then, apply it on wheels as external force

and obtained t+∆t
i+1 {vw}, t+∆t

i+1

{ .
vw

}
and t+∆t

i+1

{ ..
vw

}
by solving equations Equations (22)–(24). Now take {vw3}

from t+∆t
i+1 {vw} and turn to step 2 for the next iteration.

4. Numerical Results and Discussions

4.1. Numerical Validation

In this section, a three-dimensional finite element model (FEM) is developed for the analysis of the
soil domain. The accuracy of the developed FE model is verified against the Boussinesq’s solution [35].
The constant vertical point load is applied to the soil domain with the dimensions 10× 20× 5 m. The
properties of the domain are: Elastic modulus E = 0.11 GPa and Poisson’s ratio υ = 0.45. The vertical
point load P of magnitude 20 kN is applied on the boundary of the soil domain as shown in Figure 2.
The boundary along yz-plane is fixed in x direction to present the symmetrical boundary condition to
validate the results of the soil domain with Boussinesq’s solution. Figure 3 illustrates the comparison
between numerical and analytical displacements at the line of observation. The longitudinal and
vertical displacements obtained by analytical and numerical methods are in close agreement, as shown
in Figure 3a,b, respectively.
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4.2. Effect of Train Speed and Track Irregularities

After validating the results of the soil model against Boussinesq’s solution, the train is modeled as
a quarter train model. Figure 4 presents the configuration of the train on one rail. Table 1 shows the
properties of the quarter train model. Track with sleepers at a spacing of 0.7 m centers with dimensions
2.5 m × 0.35 m × 0.25 m is considered. The rail was modeled using a beam element for which the
properties are given in Table 2. The track and soil were modeled as three-dimensional solid elements.
The depth of the domain is taken to 5 m and the distance between the two tracks is 6.5 m. Table 3
summarizes the properties of the track and soil. Rail-pads are represented by a combination of a
spring-damper system to combine the rails and sleepers. The profile of the analyzing domain is shown
in Figure 5.
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Table 1. Train properties [15].

Parameters Value

Axle load, P (kg) 17,679.22
Car mass, mw1 (kg) 55,963.86

Bogie mass, mw2 (kg) 3312.313
Wheel mass, mw3 (kg) 1016.047

Hertz contact Stiffness, KH
(
GN/m1.5

)
93.7

Secondary suspension stiffness, kw1 (N/m) 1.31 × 103

Primary suspension stiffness, kw2 (N/m) 3.28 × 103

Secondary suspension damping, cw1 (Ns/m) 90
Primary suspension damping, cw2 (Ns/m) 30

Table 2. Rail properties [15].

Parameters Value

Eastic Modulus, E (GPa) 210
Density, ρ (kg/m3 ) 7897

Bending stiffness around x, Ix (m4) 1.245 × 10–5

Bending stiffness around z, Iz (m4) 4.526 × 10–6

Torsional stiffness around y, Jy (m4) 6.554 × 10–3

Table 3. Material properties of sleeper, ballast, and soil [15].

Parameters Value

Sleeper (Concrete)
Elastic Modulus, E (GPa) 10

Poisson ratio, 0.2
Density, ρ ( kg/m3 ) 2400

Primary wave velocity, Vp (m/s) 2151.6
Secondary wave velocity, Vs (m/s) 1317.6
Rayleigh wave velocity, Vr (m/s) 1201.2

Ballast
Elastic Modulus, E (GPa) 0.13

Poisson ratio, 0.4
Density, ρ ( kg/m3 ) 1600

Primary wave velocity, Vp (m/s) 417.3
Secondary wave velocity, Vs (m/s) 170.3
Rayleigh wave velocity, Vr (m/s) 160.3

Soil
Elastic Modulus, E (GPa) 0.025

Poisson ratio, 0.45
Density, ρ ( kg/m3 ) 1800

Primary wave velocity, Vp (m/s) 229.5
Secondary wave velocity, Vs (m/s) 69.2
Rayleigh wave velocity, Vr (m/s) 65.6
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In this paper, only one train car was considered to generalize the response of ground under
loadings due to different levels of track irregularities on two tracks. Various experimental trials were
carried out for different speeds at 30 m/s, 40 m/s, 50 m/s and 60 m/s, to study the effect of track quality
on ground vibrations. Six (06) classes or levels of track irregularities were selected and calculated using
the numerical generation method based on the PSD function. Table 4 shows the six track classes and
the values of their parameters A, φ1 and φ2.

Table 4. Track classes and parameters [33].

Parameters
Track Classes

6 5 4 3 2 1

A
(
×10−6 m

)
0.0954 0.1675 0.2968 0.5300 0.9540 1.6748

φ1
(
×10−3 m−1

)
23.94 23.94 23.94 23.94 23.94 23.94

φ2(×10−2m−1 ) 13.123 13.123 13.123 13.123 13.123 13.123

4.3. Track Dynamic Response

A simulation tool for the dynamic analysis of the coupled train–track–soil system is developed in
MATLAB. In order to investigate the effect of various levels of track irregularities on two-way train
tracks responses, two (02) different analysis cases were considered as follows:

1. Train is considered only on right track (no train on left track)
2. Trains on both tracks, but moving in the opposite direction

Each case is further consisting of sub-cases depend upon the moving train and track condition as
given in Table 5.
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Table 5. Train and tracks condition on the left and right track.

Case 01 (Left Track/Right Track)
Train Moving Only on Right Track

Case 02 (Left Track/Right Track)
Trains Moving on Both Tracks But Opposite in Direction

no train/no irregularities no irregularities/no irregularities
no train/class 01 class 01/no irregularities
no train/class 02 class 02/no irregularities
no train/class 03 class 03/no irregularities
no train/class 04 class 04/no irregularities
no train/class 05 class 05/no irregularities
no train/class 06 class 06/no irregularities

\ class 01/class 01
\ class 02/class 01
\ class 03/class 01
\ class 04/class 01
\ class 05/class 01
\ class 06/class 01
\ class 02/class 02
\ class 03/class 02
\ class 04/class 02
\ class 05/class 02
\ class 06/class 02
\ class 03/class 03
\ class 04/class 03
\ class 05/class 03
\ class 06/class 03
\ class 04/class 04
\ class 05/class 04
\ class 06/class 04
\ class 05/class 05
\ class 06/class 05
\ class 06/class 06

4.3.1. Case 01

To get the general effect of moving train on one track and its effect on the adjacent track, it was
considered that the train is moving only on right track, and there is no train moving on the left track.
For analysis at different speeds, seven different conditions for the track were considered (one with no
irregularities and six different levels of irregularities). The track irregularities were calculated by using
the PSD function which is considered as input for train pass-by simulations that are the source from
the track. The numerical method explained in Section 3 was used to investigate the effect of different
interface conditions between the train and track due to different levels of track irregularities. Vertical
displacements were obtained from the above-mentioned track conditions and at different speeds are
plotted in Figure 6. Moreover, Figure 7 presents the maximum displacement at the center of both
tracks. The results indicated that a train moving on the right track at low speed has little effect on the
left track. The vertical displacement on the left track is increased up to 1.88 mm at high speed and
worse track conditions on the left track.
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4.3.2. Case 02

The second case considered that the trains were moving on both tracks in the opposite direction.
Figure 8 presents the plots of the vertical response at the center of both tracks which is calculated by
assuming the different levels of track irregularities on the left and right tracks at different speeds. The
maximum displacements at the center of both tracks for case 02 are shown in Figure 9. The maximum
displacements in case 01 and case 02 were compared. The maximum displacement at the center of
tracks was 8% higher than that of case 01 at low speed. However, the difference increased up to 30% at
high trains speed.

The results for the two-way track show that the moving train on one track can influence the
response of the adjacent track. However, this influence significantly increases with the speed of the
trains and is highly affected by the track’s conditions. The ground vibrations radiating from one track
causes an increase in ground response of nearby track. These vibrations in nearby track acts as the
increase in the unevenness of the track and vice versa. This increase in track unevenness leads to an
increase in the dynamic impact forces due to the interaction between the wheel and track, which causes
an increase in the track vertical response when the train is moving on both tracks.

4.4. Frequency Analysis

The effect of train speed on the frequency component of ground response is very important to
understand. For this reason, time history response and frequency spectrum of the ground acceleration
at the center of track for selected cases given in Table 5 are studied. Time history and frequency
spectrum of ground acceleration from case 01 (train moving only on the right track) are shown in
Figure 10. In case of a train speed of 30 m/s the sharp peaks appear at 2.9 Hz and 11.05 Hz (Figure 10b),
which are in close agreement with the results computed using the numerical model proposed by
Kouroussis, G., et al. [36]. The given numerical model shows that the peaks at certain frequencies in
the ground response spectrum are the function of train geometry (distance between loads or position
of wheels) and speed of the train. Similarly, at the train speed of 60 m/s dominant peaks of ground
acceleration appear at 5.7 Hz and 22 Hz, as shown in Figure 10d.
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Time history and frequency spectrum of ground acceleration at the center of track from case 02
(trains on both tracks moving in the opposite direction) is shown in Figure 11. It is interesting to note



Appl. Sci. 2020, 10, 11 15 of 17

that for the ground response at the train speed of 30 m/s a group of peaks appear near the frequencies
that are deemed to be induced from the geometry of train against the train speed. Moreover, at the
train speed of 60 m/s not only various peaks at low frequencies but also significant peaks at high
frequencies are clearly visible in the frequency spectrum (Figure 11d). A significant increase in the
number of peaks at different frequencies in frequency spectrum when trains are traveling on both
tracks can be attributed greatly to the fact that vibration radiating from one track due to moving train
significantly affect the nearby track.
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5. Conclusions

A 3D finite element coupled train–track–soil model is used to predict ground vibration. This study
focuses on vibrations radiating from one track and its effect on the nearby track response. At first, the
sub-modeling technique is adopted to model the coupled train–track–soil model. The ground, ballasts
and sleepers are represented by 3D solid elements and rails on both tracks are modeled by Euler’s
beam. The train model and tracks are coupled through dynamic interaction forces between wheels and
rails. Finally, a stepwise numerical procedure is used to solve the train–track–soil system. A detailed
parametric study is conducted to investigate the influence of track irregularities on the two-way tracks
responses at different speeds of the trains. The following conclusions are drawn from the present work.

(1) When the train is moving on one track, the vibration increase as the train speed increases and the
track conditions change from good to worse due to track irregularities.

(2) The speed of the train has a significant effect on ground vibration. For a given track condition, an
increase in speed (when train is moving on one track) causes an increase in ground response as
well as shift the response spectra towards high-frequencies e.g., for train speed of 30 m/s the peak
appears at 2.9 Hz, whereas it is around 5.7 Hz for 60 m/s.
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(3) The waves propagating due to moving trains on one track have a great influence on a nearby
track. When trains are moving on two adjacent tracks the ground vibration induced by each
track causes deformation in the tracks. These deformations in the tracks increase the level of
track irregularities which consequently cause an increase in impact forces due to the interaction
of moving train and track. Based on the results, it is concluded that the response of a track can
increase up to 30% when trains are moving on both tracks.

(4) The tracks have shown significantly different responses when trains are moving on two adjacent
tracks. At the speed of 30 m/s a series of low-frequency peaks appear in response spectrum,
whereas at speed of 60 m/s the track response spectrum not only exhibits peaks at low frequency
but also at high frequency (up to 33 Hz). This significant change in track response is due to the
wave propagation from one track to the other track.

(5) Further studies are needed on the mitigation of track vibration so that a track does not get affected
by ground vibration induced by the nearby track.
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