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Abstract: Computer vision systems are insensitive to the scale of objects in natural scenes, so it
is important to study the multi-scale representation of features. Res2Net implements hierarchical
multi-scale convolution in residual blocks, but its random grouping method affects the robustness
and intuitive interpretability of the network. We propose a new multi-scale convolution model based
on multiple attention. It introduces the attention mechanism into the structure of a Res2-block to
better guide feature expression. First, we adopt channel attention to score channels and sort them in
descending order of the feature’s importance (Channels-Sort). The sorted residual blocks are grouped
and intra-block hierarchically convolved to form a single attention and multi-scale block (AMS-block).
Then, we implement channel attention on the residual small blocks to constitute a dual attention and
multi-scale block (DAMS-block). Introducing spatial attention before sorting the channels to form
multi-attention multi-scale blocks(MAMS-block). A MAMS-convolutional neural network (CNN)
is a series of multiple MAMS-blocks. It enables significant information to be expressed at more
levels, and can also be easily grafted into different convolutional structures. Limited by hardware
conditions, we only prove the validity of the proposed ideas through convolutional networks of
the same magnitude. The experimental results show that the convolution model with an attention
mechanism and multi-scale features is superior in image classification.

Keywords: multi-scale features; visual attention mechanism; convolutional neural network;
image classification

1. Introduction

In recent years, deep learning has made a number of breakthroughs in the fields of computer
vision [1,2], natural language processing [3,4], and speech recognition [5,6]. As one of the most
typical deep learning models, convolutional neural networks (CNNs) have made considerable
progress in image classification [7,8], object detection [9,10], image retrieval [11,12], and other
applications. With the richness of image datasets and the improvement of machine performance, CNN’s
powerful feature extraction and generalization capabilities are increasingly favored by the industry.
Several typical CNN models (including AlexNet [13], VGG [14], ResNet [15], etc.) were originally
used for image classification and further demonstrated its versatility in other image processing tasks.
This article will discuss a different convolution model and apply it to image classification.

The visual attention mechanism has proven to be one of the most fascinating areas of cognitive
neuroscience research. Human vision can quickly scan global input information and screen out specific
targets. That is to say, it has the ability to pay attention to certain things while ignoring other things.
By mimicking human visual attention, early attention models are often divided into data-driven
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bottom-up models [16–18] and task-driven top-down models [19–21]. The research on the combination
of deep learning and attention mechanisms has received considerable attention [22–24]. The goal
of this study was to select information from the input that was relatively important to the current
task. In deep neural networks, researchers often use masks to achieve attention. They demarcate
key features in the data by training additional multi-layer weights. This approach naturally embeds
the attention mechanism into the deep network structure and participates in end-to-end training.
Attention models are well suited for solving computer vision tasks such as image classification,
saliency analysis, and object detection.

The same object will show different shapes in different natural scenes. When a computer
vision system senses an unfamiliar scene, it cannot predict the scale of the object in the image in
advance. Therefore, it is necessary to observe image information at different scales. The multi-scale
representation of images can be divided into two types: Multi-scale space and multi-resolution
pyramid. The difference between them is that multi-scale space has the same resolution at diverse
scales. In the visual tasks, the multi-scale approach of multi-resolution pyramid processing targets can
be separated into two categories: Image pyramid and feature pyramid. The image pyramid works best
but the time and space complexity is high, and the feature pyramid is widely used because of its ease
of implementation. In addition, the sizes of the receptive field and the number of network layers of
CNN can also obtain multi-scale features in nature. The smaller receptive field and shallower network
layers can focus on local features, the larger receptive field and deeper network layers can perceive
global information.

CNN has a natural advantage for image processing. At the same time, the attention mechanisms
and multi-scale features are effective means of image processing. Therefore, this paper combines
attention mechanisms and multi-scale features to create a new convolution model for image
classification. Res2Net [25] groups single residual block and constructs hierarchical residual connection
between different groups to achieve multi-scale representation of features. However, the randomness
of its grouping method affects the robustness and intuitive interpretability of the network. We first sort
channels of a single residual block by the attention mechanism, and then group the sorted residual
blocks. This can achieve multi-scale representation of features, highlight important features and
suppress interference information. Further, we conduct an attentive analysis for each group to improve
the accuracy of image classification.

2. Related Work

2.1. Different Convolution Methods

Convolution is the core operation of CNN for feature extraction. LeNet [26] first used
the “single-layer convolution + single-layer pooling” structure. In order to extract more features,
AlexNet [13], VGG [14], etc., began to adopt a “multi-layer convolution + single-layer pooling”
structure. These network structures only improve the way in which the convolutions are superimposed.
NIN [27] employs a multi-layer perceptron convolutions instead of traditional convolutions, where
“1*1” convolution can adjust the number of hidden layers and increase the nonlinear expression of the
network. Inception [28–30] series performs convolution operations in a single convolutional layer with
multiple different receptive fields, which take into account multi-scale feature learning of the network.
Depth-wise separable [31,32] convolution considers the channel and space of the feature map separately
by the depth-wise convolution process and the point-wise convolution process. ShuffleNet [33] and
IGCNets [34] increase the interaction between different groups through different forms of grouping
and interleaved convolution. These network models have improved the sizes of the convolution
kernels, including the widths, heights, and number of channels. Dilated convolution [35] multiplies
the range of receptive fields by inserting “0” into the convolution kernel. Deformable convolution [36]
gives the convolution kernel deformation capability according to given rules. SPS-ConV [23] uses the
improved SLIC algorithm for super-pixel segmentation of images. This cluster-based convolution is
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easier to adapt to the complex geometric transformation of the image. These convolutional network
models have improved the form of the convolution kernel.

Here are some singular convolution models. Selective Kernel networks [37] allows the
network to adaptively adjust the receptive field sizes based on the input multi-scale information.
Highway networks [38] allow unimpeded information flow across several layers on information
highways. WideResNet [39] is an uncharacteristic example. It increases the performance of the
network by expanding the width of the network instead of the depth. The feature recalibration
convolution [22] automatically acquires the importance of each feature channel through self-learning,
and then enhances useful features and suppresses unhelpful features according to their importance.
Res2Net [25] proposes a new convolution backbone that groups single residual blocks and integrates
more granular convolution operations. We try to give this convolution backbone a whole new
meaning. First, the importance of each channel in a residual block is sorted by feature recalibration
convolution. Then, the sorted residual blocks are grouped and layer-wise convolutions are performed.
Finally, the results of the layer-wise convolution are concatenated and channel fusion is performed
using a “1 × 1” convolution.

2.2. Multi-Scale Features

Here we only discuss multi-scale representation of images based on multi-resolution pyramids,
which can be divided into two categories: Image pyramid and feature pyramid. Classic pedestrian
detection algorithms, such as “Haar + Adaboost” and “HOG + SVM”, use image pyramids to handle
multi-scale targets. The image pyramid is a multi-scale representation of a single image. It consists of
a series of different resolution versions of the original image. The Gaussian pyramid and the Laplacian
pyramid are two common image pyramids, the former for downsampling images and the latter
for upsampling images. Image pyramid processing multi-scale representation can achieve optimal
results, but its time and space complexities are too high. Therefore, the feature pyramid becomes the
protagonist of multi-scale representation.

U-Net [40] adopts a symmetric encoder–decoder structure to combine high-level features with
low-level features to obtain richer multi-scale information. SSD [41] uses feature maps from different
convolutional layers for object detection at different scales. FPN [42] employs the feature pyramid
to scale the features of different layers, and then performs information fusion. Built on the FPN,
PANet [43] adds a bottom-up pyramid to effectively transfer positioning information to other layers.
ZigZagNet [44] further improved PANet, allowing different layers to interact to enhance bidirectional
multi-scale context information. MSPN [45] and M2Det [46] have each completed two or even multiple
FPN cascades, which proves that a simple superimposed FPN structure can obtain multi-scale features
more effectively. UPerNet [47] and Parsing R-CNN [48], respectively, concatenate PPM modules and
RoIAlign operations with FPN to obtain rich multi-scale information.

Most feature pyramid methods represent multi-scale features in a layer-wise manner. Res2Net [25]
learns multi-scale representations from a novel and more granular perspective. It makes a multi-scale
representation into each residual block, allowing a single network layer to have different sizes of
receptive fields. However, Res2Net’s grouping of residual blocks is random. We attempted to introduce
attention mechanisms into the grouping tasks of Res2Net, so that more important information has the
most hierarchical feature representation.

3. Approach

3.1. Multi-Scale Convolutional Model Based on Single Attention

ResNet proved that using residual blocks to learning the residuals between inputs and outputs is
simpler and more efficient than learning the mapping between them directly. Res2Net further adopts
grouping convolution to construct finer quadratic residual connections in the residual block, allowing
the network to have richer receptive fields to learn multi-scale features. However, the random grouping
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of Res2Net in the residual block affects the robustness and intuitive interpretability of deep neural
networks. This section will introduce a multi-scale convolutional model based on single attention
(AMS-CNN). AMS-CNN is superimposed by multiple AMS-blocks. Its core content is the addition
of the “Channels-Sort” module to Res2-block. The ”Channels-Sort” module ranks each channel in
the residual block in descending order by feature importance. The AMS-block then groups the sorted
residual blocks and performs secondary residual learning. Finally, the ”1 × 1” convolution is used to
adjust the number of channels and fuse all channel features. AMS-bclok subtly combines the attention
mechanism with multi-scale features through the Channels-Sort module, which can focus on specific
targets and achieve multi-scale observation of objects. The AMS-block structure is shown in Figure 1.
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Figure 1. The structure schematic of three blocks. The former is Res-block, the middle represents
Res2-block, and the latter describes AMS-block.

As shown in Figure 1, Res2-block is a decomposition of the traditional Residual block, so that the
model can learn multi-scale features in a single residual block. AMS-block introduces the Channels-Sort
module based on the structure of Res2-block. The other difference from Res2-block is that we perform
secondary residual learning for each grouping of the residual block, as shown in the right of Figure 1,
where X1 is transformed to Y1. This can further enrich the receptive fields of convolution operations
and increase multi-scale information. The structure of the Channels-Sort module is illustrated in
Figure 2.

h

w

c1

X0 X

h

w

c2

V V

w

h

c2

w

h

c2

X XV ~ ~

Figure 2. The structure schematic of Channels-Sort module.
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As shown in Figure 2, X0 obtains X via a normal convolution operation or a convolution operation
that introduces channel attention [22,24] or space attention [23,24]. The dotted box indicates the
Channels-Sort module. The first half performs the Squeeze-and-Excitation operation, and the second
half sorts the channels of the feature maps in descending order according to the feature importance
learned by Squeeze-and-Excitation. The process of transforming X into V adopts two methods: Global
average-pooling and depth-wise convolution, where V = [V1, V2].

V1 = DWConV(Ka, X) =
c2

∑
i=1

(Kai � Xi) (1)

V2 = GlobleAvgPool(X) (2)

V = ReLU(Concat(V1, V2)) (3)

where ”DWConV′′ means depth-wish convolution [31], and Ka is the convolution kernel of X to V, Ka

= [Ka1, Ka2, ..., Kac2], where the number of channels of the convolution kernel is 1. ”GlobleAvgPool”
represent global average-pooling operation. Finally, V1, and V2 are connected in series along the
direction of the feature channel and activated by the ReLU function to obtain V.

V
′
= Sigmoid(ConV(Kb, V)) = Sigmoid(Kb1 �V) (4)

After the convolution and activation operations, V obtains the vector V′ that characterizes the
importance of the feature channels. The convolution kernel is Kb (Kb = [Kb1]) and the activation
function is ReLU.

X
′
= Add(Multiply(V

′
, X), X) = (V

′ ⊗ X)⊕ X (5)

where V′ represents an important factor of the feature channel. X′ is first multiplied by X and V′

element by element, and then the result is added to X element by element. The ⊗ and the ⊕ represent
element-by-element multiplication and addition, respectively.

Ṽ = Top_K(V
′
, c2) (6)

X̃ = Batch_Gather(X
′
, Ṽ) (7)

The function Top_K(data,k) indicates that the first k data are extracted in order. As Equation (6),
when the value of k is the channel number c2, it means that we sort the vector V′ in descending order.
The � in Figure 2 represents channels sorting of X′ based on the index values of Ṽ, which can be
implemented by the Tensorflow built-in function Batch_Gather(∗). The implementation algorithm of
AMS-block is as shown in Algorithm A1 (Appendix A).

3.2. Multi-Scale Convolutional Model Based on Multiple Attention

The residual block with feature importance ordering processed by the Channels-Sort module
is divided into n small blocks by equal grouping operation, where X = [X1, X2, ..., Xk, ..., Xn].
From front to back, the importance of each group to the classification results is gradually reduced.
Therefore, it enables more important features to expresses in more scales. Next, we introduce a spatial
attention block before the Channels-Sort module to capture more distinguished local features, forming
a multi-scale convolutional block with dual attention (DAMS-block). This process can be obtained in
the X to Y stages of Figure 2. For a more fine-grained image classification, we further constructed the
multi-scale convolutional block with multiple attention (MAMS-block). On the basis of DAMS-bclok,
we pay attention to each residual small block after grouping. The channel attention analysis is
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performed on the small blocks in the same residual block in order to better realize the feature
fusion between different small blocks. A network structure in which a plurality of MAMS-blocks is
superimposed is called MAMS-CNN. The DAMS-block and the MAMS-block are given in Figure 3.
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Y4Y1 Y2 Y3
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SP Attention

SP Attention

Figure 3. The structure schematic of DAMS-block and MAMS-block.

As shown in Figure 3, channel attention analysis is performed in each residual small block,
and more detailed features can be observed in the receptive fields of different scales. For the operation
between the small blocks, we chose to use the channel fusion of “1 × 1” convolution instead of
adding them by element. The main reason is that different small groups focus on different features.
Simple addition will blur the attention information, but channel fusion will get more attention features.
Specific operations are as shown in Equations (8) and (9).

Fse :



Fsq : V = GlobleAvgPool(Xk)

Fex : V
′
= Sigmoid(Dense(Dense(V, c/r), c))

Fscale : X = Add(Multiply(V
′
, Xk), Xk)

(8)

Yk =



Fse(X1) k = 1

Fse(ConV(Concat(Yk−1, Xk), {1× 1})) 1 < k < n

ConV(Concat(Yn−1, Xn), {1× 1}) k = n

(9)

The “SE-block” in Figure 3 performs the Fse(∗) operation. Where Fse(∗) means to perform
a Squeeze-and-Excitation operation, that is, channel attention. Fse(∗) is divided into three phases:
Squeeze operation, excitation operation, and reweight operation. See reference [22] for details.
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The parameter n represents the number of groups per residual block (e.g., n = 4 in Figure 3).
Conv(∗,{1 × 1}) fuses channel information and adjusts the channel number using “1 × 1” convolution.
Concat(∗) means that two convolutional blocks are connected in series along the direction of the
feature channel.

4. Experiments

4.1. Datasets and Experimental Details

In this section, we perform experiments on four image datasets, including CIFAR-10, CIFAR-100,
FGVC-Aircraft [49], and Stanford Cars [50]. The CIFAR-10 consists of 60,000 32× 32 images in 10 classes,
with 6000 images per class. There are 50,000 training images and 10,000 test images. The CIFAR-100 is
just like the Cifar-10, except it has 100 classes containing 600 images each. There are 500 training images
and 100 testing images per class. The FGVC-Aircraft consists of 10,000 images. They are divided into
100 categories. This dataset includes 6667 training images and 3333 test images. The Stanford Cars
consists of 16,185 images in 196 categories. This dataset is splited into 8144 training images and 8041
test images. Figure 4 shows partial examples of these datasets.

(a) CIFAR-10 (b) FGVC-Aircraft (c) Stanford Cars

Figure 4. The schematic images of four datasets.

The algorithm in this manuscript is implemented on the Keras 2.2.4 framework backed by
Tensorflow 1.11.0. In addition, the graphics card model is a GeForce GTX 1080 and the programming
language and version is Python 3.5.2. The first half of epoches has a learning rate of 0.1, the third
quarter of epoches has a learning rate of 0.01, and the last quarter of epoches has a learning rate of 0.001.
For example, when epoches are equal to 300, the learning rates of the models were 0.1, 0.01, and 0.001,
at 1–150 epochs, 151–225 epochs, and 226–300 epochs. The experiments adopt the SGD algorithm
with momentum, where the momentum value is 0.9. Convolutional network structures, such as
ResNet-50 and ResNet-101, are not used, mainly because their parameters are too large. The improved
models based on these mainstream convolutional structures are difficult to complete under our existing
experimental conditions. We only verify the validity and feasibility of the proposed methods with
convolution models of the same magnitude.

4.2. Experiments on CIFAR-10 and CIFAR-100

In this section, we adopt ResNet, SE-CNN and Res2-CNN as reference to verify the effectiveness
of our proposed models from three aspects: Test accuracy, time complexity, and computational
complexity. Among them, SE-CNN and Res2-CNN, respectively, add SE-blocks and Res2-blocks
to the ResNet-32 structure. The structures of ResNet-32 and its various improved models are shown in
Table 1. ResNet-32 consists of four convolutional blocks, a global average pooling layer, and a dense
layer. There are two convolution operations in one residual block, in each square bracket. The three
parameters of the convolution kernel are the number of feature channels after convolution, the sizes
of the convolution kernels, and the strides. When dimension reduction is required, the strides are
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equal to 2. The number of repetitions of each residual block is established according to the subsequent
parameter ”stack_n”, which is 5, 4, or 1 in ResNet-32.

Table 1. The simple structures of several convolutional networks with residual module.

Model Conv1 Conv2 Conv3 Conv4 Dence

ResNet-32

(n1, 3 × 3, 1)

[
n1, 3 × 3, 1
n2, 3 × 3, 1

]
× 5

[
n2, 3 × 3, 1
n3, 3 × 3, 1

]
× 4

[
n3, 3 × 3, 1
n3, 3 × 3, 1

]
× 4

GAP
(8,8)

Dence
(10/100)

[
n2, 3 × 3, 2
n2, 3 × 3, 1

]
× 1

[
n3, 3 × 3, 2
n3, 3 × 3, 1

]
× 1

SE-CNN – –
Res2-CNN_A/B Res2-block Res2-block
AMS-CNN_A/B AMS-block AMS-block

DAMS-CNN_A/B DAMS-block DAMS-block
MAMS-CNN_A/B MAMS-block MAMS-block

As showed in Table 1, for CIFAR-10 and CIFAR-100, the number of convolution channels n1, n2,
and n3 of ResNet-32 takes values of 16, 32, 64, and 32, 64, 128, respectively. Several other network
models are implemented on the basis of ResNet-32. SE-CNN adds SE-block to each residual block
of ResNet-32, adding a total of 15 SE-blocks. Considering the computational complexity and time
complexity, we designed both A and B structures for the proposed methods. As showed in Table 1,
Structure A adds a corresponding block after Conv2 and Conv3 of ResNet-32. Structure B replaces
the underlined convolutional layers with the corresponding block. The corresponding blocks include
AMS-block, DAMS-block and MAMS-block. For comparison purpose, Res2-CNN uses the same two
architectures, such as Res2-CNN_A and Res2-CNN_B.

Table 2 shows the test accuracy and time complexity of CIFAR-10 under different models.
The parameter ”Groups” indicate the number of grouping feature channels. The values in the
experiments are 2, 4, and 8. Here ResNet and SE-CNN do not perform group convolution, which
is commensurate with a value of 1. The parameter ”SPE” means “seconds per epoch”, which is
the number of seconds required to execute each epoch. Owing to the different grouping methods,
the parameters that need to be trained throughout the networks are also very different. For comparison,
ResNet and SE-CNN adopt a 32-layer network structure, and other models adopt distinct layers to
make the overall parameters quantity close to ResNet-32.

For ResNet-32, the classification accuracy of CIFAR-10 is as high as 92.49% with only 0.46M
parameter. SE-CNN introduces SE-block in the ResNet-32 architecture, which increased the test
accuracy by 0.26%. Res2-CNN_A and Res2-CNN_B have improved the test accuracy by 0.28% and
0.39%, respectively, and their time complexity has gradually increased. Comparing different grouping
forms of Res2-CNN, it can be concluded that the best result is achieved when the number of groups is
4. It can be seen from Table 2 that under the condition of only adding a small number of parameters,
the classification accuracy of our proposed model is over 93%. Compared to ResNet, the test accuracy
classification of AMS-CNN_A and AMS-CNN_B increased by 0.82% and 0.86%. Unlike Res2-CNN,
the more channel groupings of AMS-CNN has, the better its performance, which mainly reflects the
advantages of multi-scale functions. DAMS-CNN added spatial attention to AMS-CNN. The test
accuracy classification of the two structures increased by 1.09% and 1.11%, and the highest result was
93.60%. Overall, the time complexity of several models corresponding to structure A is lower, while
structure B takes more time. The main time consumption is in the process of sorting the channels by
feature’s importance. As can be seen from the FLOPs values, the computational complexities of the
algorithms are on the same order of magnitude. This is because we control the size of the parameters
of the network. Figure 5 shows the trend of changes in the test loss of CIFAR-10 for various network
models. The downward tendency of structure B is more obvious than that of structure A, indicating
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that the more AMS-block or DAMS-block is used, the more powerful the network is. The overall
performance of DAMS-CNN is better than AMS-CNN.

Table 2. The FLOPs (floating point operations) and SPE (seconds per epoch) of the residual networks
carrying different convolution models, and the classification accuracies of these networks on the
CIFAR-10 dataset.

Model Groups Accuracy (%) Parameters SPEFPS FLOPs

ResNet-32 1 92.49 0.46M 22 1.87 × 106

SE-CNN-32 1 92.75 0.47M 29 1.90 × 106

Res2-CNN_A
2 92.64 0.49M 26 1.96 × 106

4 92.77 0.49M 27 1.95 × 106

8 92.25 0.48M 29 1.94 × 106

Res2-CNN_B
2 92.77 0.49M 55 1.97 × 106

4 92.88 0.47M 65 1.88 × 106

8 92.82 0.44M 90 1.78 × 106

AMS-CNN_A
2 93.16 0.50M 29 2.01 × 106

4 93.13 0.49M 33 1.97 × 106

8 93.31 0.49M 37 1.95 × 106

AMS-CNN_B
2 93.18 0.50M 80 2.01 × 106

4 93.14 0.50M 112 1.72 × 106

8 93.35 0.46M 169 1.57 × 106

DAMS-CNN_A
2 93.58 0.50M 31 2.02 × 106

4 93.39 0.49M 33 1.97 × 106

8 93.41 0.49M 37 1.95 × 106

DAMS-CNN_B
2 93.33 0.50M 91 2.01 × 106

4 93.39 0.50M 128 1.72 × 106

8 93.60 0.46M 185 1.58 × 106
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(a) AMS-CNN
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Figure 5. Test loss of various network structures on CIFAR-10.

We adopt ResNet-32 as the network foundation model and limit the network parameters around
1.9M. Table 3 shows the test accuracies and time consumption of ResNet-32 and its various deformation
models on the CIFAR-100. As before, we add an SE-block to each residual block of ResNet-32 to form
SE-CNN. In addition, Res2-CNN, AMS-CNN and DAMS-CNN employ both A and B structures. At the
same time, we have different groupings for the proposed models. We did not use the MAMS-CNN
model for the CIFAR-10 and CIFAR-100 datasets. This is because the CIFAR datasets is relatively
simple, and an overly complex feature learning model can lead to overfitting. It is worth noting that
when we train AMS-CNN and DAMS-CNN, we increase the network weight attenuation coefficient
”weight_decay” from 0.0001 to 0.0005, in order to avoid over-fitting caused by complex models.
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Table 3. The FLOPs and SPE (seconds per epoch) of the residual networks carrying different
convolution models, and the classification accuracies of these networks on the CIFAR-100 dataset.

Model Groups Accuracy (%) Parameters SPE FLOPs

ResNet-32 1 73.09 1.87M 32 7.50 × 106

SE-CNN 1 74.19 1.90M 42 7.61 × 106

Res2-CNN_A
2 73.47 1.96M 36 7.85 × 106

4 73.48 1.95M 37 7.80 × 106

8 74.19 1.94M 39 7.75 × 106

Res2-CNN_B
2 74.35 1.95M 80 7.81 × 106

4 74.35 1.86M 94 7.47 × 106

8 75.17 1.76M 117 7.05 × 106

AMS-CNN_A
2 75.32 2.01M 40 8.06 × 106

4 75.25 1.97M 42 7.88 × 106

8 75.36 1.95M 47 7.78 × 106

AMS-CNN_B
2 75.31 1.98M 111 7.96 × 106

4 75.87 1.98M 154 6.80 × 106

8 75.42 1.82M 201 6.22 × 106

DAMS-CNN_A
2 75.52 1.99M 38 7.99 × 106

4 75.34 1.97M 43 7.80 × 106

8 75.25 1.94M 48 7.71 × 106

DAMS-CNN_B
2 75.41 1.99M 125 7.97 × 106

4 75.38 1.99M 167 6.81 × 106

8 75.43 1.82M 216 6.23 × 106

As can be seen from Table 3, when using mode_A training for various networks, the number of
seconds it takes to process the images of the entire dataset is almost the same. However, when using
the mode_B, the time complexity will increase a lot. For example, the SPE value of DAMS-CNN_B
is more than six times that of ResNet-32. Under the same conditions, the performance of the
three models we proposed exceeding the capabilities of Res2-CNN, SE-CNN, and ResNet. For the
CIFAR-100, we achieved a maximum test accuracy of 75.87%, which was 2.78%, 1.68%, and 2.39%
higher than the previous three comparison models. In addition, the performance of AMS-CNN_B is
higher than that of AMS-CNN_A, which shows that adopting more AMS-block is beneficial to the
improvement of network performance. Moreover, the performance of DAMS-CNN_A is better than
that of AMS-CNN_A, indicating that the introduction of spatial attention mechanism on the basis
of the latter is beneficial to feature learning. However, the overall performance of DAMS-CNN_B is
not higher than DAMS-CNN_A. Through analysis, we believe that the network has been over-fitted.
Therefore, we have not discussed the more complex model (MAMS-CNN) for the basic CIFAR dataset.
Similar to the previous experiments, the computational complexities of the algorithms are on the
same order of magnitude. Similar to Figure 5, structure B in Figure 6 is more efficient than the
structure A, while DAMS-CNN is better than AMS-CNN. The overall loss of CIFAR-100 is large and
fluctuates greatly during training. This happens because the image classification of the FIFAR-100 is
more complex.



Appl. Sci. 2020, 10, 101 11 of 18

0 50 100 150 200 250 300

epoches

1

2

3

4

5

6

7
te

st
 lo

ss

AMS-CNN_A2
AMS-CNN_B2
AMS-CNN_A4
AMS-CNN_B4
AMS-CNN_A8
AMS-CNN_B8

(a) AMS-CNN

0 50 100 150 200 250 300

epoches

1

2

3

4

5

6

7

te
st

 lo
ss

DAMS-CNN_A2
DAMS-CNN_B2
DAMS-CNN_A4
DAMS-CNN_B4
DAMS-CNN_A8
DAMS-CNN_B8

(b) DAMS-CNN

Figure 6. Test loss of various network structures on CIFAR-100.

4.3. Experiments on Fine-Grained Image Datasets

In this section, we will adopt the proposed models for fine-grained image classification,
including FGVC-Aircraft and Stanford Cars. Fine-grained images have the character of “small
differences between classes and large differences within classes”. Compared to the CIFAR dataset,
we experimented with more complex network structures. All of the models in Table 4 are based on the
ResNet structure. The ResNet structure here includes six convolution blocks, a global average pooling
layer, and a dense layer. The number of output nodes of the networks is 100 and 196 depending
on the datasets. The three parameters of each convolutional layer represent the number of channels
after convolution, the size of the convolution kernel, and the stride. The default value of ”Stride”
is 1, which can be omitted. ”Conv1” uses three different scales of receptive fields to capture richer
features. The convolution kernels in all remaining residual blocks are 3× 3, 3× 1, and 1× 3, in order
to obtain rich features while reducing parameters. SE-CNN adds an SE-block to each residual block
in ResNet for a total of 21 SE-blocks. For Res2-CNN, AMS-CNN, DAMS-CNN, and MAMS-CNN,
we only experimented with the structure A mentioned in the previous section. This is to reduce the
complexity of the models in order to complete the experiments under limited equipment conditions.
We add Res2-block, AMS-block, DAMS-block, and MAMS-block after each large convolution block.
Four corresponding special modules are added to each convolution model.

Next, we will compare the classification accuracy and time complexity of the six convolution
models of ResNet, SE-CNN, Res2-CNN, AMS-CNN, DAMS-CNN, and MAMS-CNN for fine-grained
image sets under the same volume parameters. The trainable parameters of the networks in
the experiments are between 10M and 11M. Among them, four models (Res2-CNN, AMS-CNN,
DAMS-CNN, and MAMS-CNN) employ group convolution and the number of channel groupings
are unified to 4. Table 5 gives the experimental results for the FGVC-Aircraft dataset; Table 6 shows
the experimental data for the Stanford Cars dataset. In the experiment, we compressed the size of
the images of the two datasets into 224× 224. Due to the limitations of the experimental equipment,
we did not choose to use the commonly used image size of 448 × 448. The learning rates of the models
were 0.1, 0.01, and 0.001, at 1–190 epochs, 191–270 epochs, and 271–360 epochs. The network weight
attenuation coefficient ”weight_decay” is set to 0.0005, in order to avoid over-fitting caused by complex
models. It is worth noting that we did not use pre-training networks and fine-tuning techniques
throughout the experiments.



Appl. Sci. 2020, 10, 101 12 of 18

Table 4. The simple structures of several convolutional networks with residual module.

Model Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Dence

ResNet

(16, 7, 2)
(16, 5, 2)
(16, 3, 2)

[ 48, 3 × 3
48, 3 × 1
48, 1 × 3

]
× 3

[ 64, 3 × 3
64, 3 × 1
64, 1 × 3

]
× 2

[ 128, 3 × 3
128, 3 × 1
128, 1 × 3

]
× 2

[ 192, 3 × 3
192, 3 × 1
192, 1 × 3

]
× 5

[ 256, 3 × 3
256, 3 × 1
256, 1 × 3

]
× 5

GAP
(7, 7)

Dence
(100/196)

[ 64, 3 × 3, 2
64, 3 × 1, 1
64, 1 × 3, 1

] [ 128, 3 × 3, 2
128, 3 × 1, 1
128, 1 × 3, 1

] [ 192, 3 × 3, 2
192, 3 × 1, 1
192, 1 × 3, 1

] [ 256, 3 × 3, 2
256, 3 × 1, 1
256, 1 × 3, 1

]
SE-CNN – – – –

Res2-CNN Res2-block Res2-block Res2-block Res2-block
AMS-CNN AMS-block AMS-block AMS-block AMS-block

DAMS-CNN DAMS-block DAMS-block DAMS-block DAMS-block
MAMS-CNN MAMS-block MAMS-block MAMS-block MAMS-block
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Table 5. The FLOPs and SPE (seconds per epoch) of the residual networks carrying different
convolution models, and the classification accuracies of these networks on the FGVC-Aircraft dataset.

Model Accuracy (%) Parameters SPE FLOPs

ResNet 83.05 10.32M 87 4.13 × 107

SE-CNN 84.22 10.39M 95 4.17 × 107

Res2-CNN 82.27 10.71M 94 4.35 × 107

AMS-CNN 85.42 10.85M 100 4.35 × 107

DAMS-CNN 85.57 10.85M 104 4.58 × 107

MAMS-CNN 86.56 10.90M 111 4.37 × 107

Table 6. The FLOPs and SPE (seconds per epoch) of the residual networks carrying different
convolution models, and the classification accuracies of these networks on the Stanford Cars dataset.

Model Accuracy (%) Parameters SPE FLOPs

ResNet 82.84 10.33M 119 4.12 × 107

SE-CNN 83.09 10.41M 132 4.16 × 107

Res2-CNN 83.80 10.73M 129 4.28 × 107

AMS-CNN 88.65 10.87M 142 4.34 × 107

DAMS-CNN 89.02 10.87M 146 4.34 × 107

MAMS-CNN 89.15 10.93M 156 4.36 × 107

The parameters of the networks are shown in Tables 5 and 6, and the values are between 10M
and 11M. Since the datasets FGVC-Aircraft and Stanford Cars, respectively, contain images with 100
and 196 categories, the final output nodes of the networks are different. Therefore, the amount of
parameters in Table 6 is slightly higher overall than Table 5. For FGVC-Aircraft, the test accuracies
of MAMS-CNN reached 86.56%, which was 3.51%, 2.34%, and 4.29% higher than ResNet, SE-CNN,
and Res2-CNN, respectively. At the same time, the performance of multi-scale networks with single
attention, dual attention and multiple attention is getting higher and higher, indicating that the
attention mechanisms have a natural advantage in image classification. It is worth noting that
Res2-CNN does not show good performance on FGVC-Aircraft. For Stanford Cars, the MAMS-CNN
network structure also achieved the best results, with a test accuracy rate of 89.15%, which is 6.13%,
6.06%, and 5.53% higher than ResNet, SE-CNN, and Res2-CNN, respectively. Even compared to
the AMS-CNN and DAMS-CNN models, their performance is also improved by 0.50% and 0.13%,
respectively. On the other hand, it can be seen that the more complicated the network structure is,
the more time is consumed. However, for a dataset with an overall number of more than 10,000 images,
the time complexity is within the tolerable range. Comparing two fine-grained datasets, we can see
that our proposed models have better improvement effect on Stanford Cars than FGVC-Aircraft,
because the former has more local features for fine-grained image recognition than the latter. As can
be seen from the FLOPs and SPE, under similar computational complexity conditions, the time
complexities are significantly different because the Channels-Sorting consumes a lot of time. As can
be seen in Figure 7, from AMS-CNN to MAMS-CNN, the performance of the test loss is more stable.
Comparing the three structures on two different datasets, it can be seen that the test loss on Stanford
Cars are much less fluctuating and the final loss values are smaller. This is consistent with the
performance of the networks on both datasets.
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Figure 7. The test loss of various network structures on FGVC-Aircraft and Stanford Cars.

4.4. Comparisons with Prior Methods

In the previous sections, our focus was to demonstrate the effectiveness of the proposed modules
on the same scale. we have added comparative experiments for the four datasets. We have added
comparative experiments for the CIFAR-10 and CIFAR-100. In addition we compare our results
with several other fine-grained classification models, including FV-CNN, DVAN, Random Maclaurin,
Tensor Sketch, LRBP. All of these models do not use bounding box information and part annotation.
The classification accuracies of the mentioned methods are shown in Tables 7 and 8.

Table 7. The classification accuracies of these models on the CIFAR datasets.

Model Accuracy (%)

CIFAR-10 CIFAR-100

NIN [27] 91.19 64.33
HighWay Net [38] 92.28 67.61

ResNet-110 [15] 93.57 78.84
SENet [22] 95.60 –

WideResNet(28, 10) [39] 95.35 79.87
MAMS-CNN (Ours) 95.83 80.03

Table 8. The classification accuracies of different models on the two fine-grained datasets.

Model
Accuracy(%)

Aircrafts Cars

FV-CNN [51] 81.46 87.79
DVAN [52] – 87.10

Random Maclaurin [53] 87.10 89.54
Tensor Sketch [53] 87.18 90.19

LRBP [54] 87.31 90.92
MAMS-CNN (Ours) 87.72 90.89

For the CIFAR dataset, the structure of our model is built on the WideResNet structure, adding
three MAMS-CNN modules. For the fairness of the experiment, we ran WideResNet and our model on
the same platform. The results demonstrate that our model has improved accuracy by 0.48% and 0.16%
on CIFAR-10 and CIFAR-100, respectively. For FGVC-Aircraft and Stanford Cars datasets, we connect
a MAMS-block after each residual block and raise the convolution kernel of Conv5 and Conv6 in
Figure 4 to 256 and 512. The parameter quantities of the two networks reached 31.59M and 31.64M,
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respectively. As can be seen from the test results, although we did not specifically study fine-grained
images, we still achieved good results on two fine-grained datasets.

5. Conclusions

Attention mechanisms and multi-scale features are two important measures for dealing with
computer vision tasks. AMS-block first uses channel attention to arrange the feature maps in
descending order, then performs two residual convolutions on the feature maps. It subtly integrates
the attention mechanism and multi-scale features into the convolution model for image classification.
At a more detailed level of research, we propose DAMS-block and MAMS-block. Based on this,
the novel convolution model we construct can not only focus on important features and ignore
disturbing information, but also enable significant features to have multi-scale expression through
feature sorting. The classification results of MAMS-CNN on multiple image sets, including standard
image sets and fine-grained image sets, demonstrate its powerful classification performance. On the
other hand, MAMS-block is easy to graft into the deep learning model for end-to-end training, which
is one of its advantages. However, more intuitive applications of attention mechanisms and multi-scale
features are image tasks other than image classification, such as object detection, saliency analysis.
Next we will try to introduce MAMS-block into further image processing models to maximize its value.
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Abbreviations

The following abbreviations are used in this manuscript:

Res-block Residual block
ResNet Superimposed by multiple Res-blocks
SE-block Squeeze-and-Excitation block
SE-CNN Superimposed by multiple SE-block
Res2-block Hierarchical residual-like connections within residual block
Res2-CNN Superimposed by multiple Res2-blocks
AMS-block A multi-scale convolutional block based on single attention
AMS-CNN Superimposed by multiple AMS-blocks
DAMS-block A multi-scale convolutional block based on dual attention
DAMS-CNN Superimposed by multiple DAMS-blocks
MAMS-block A multi-scale convolutional block based on multiple attention
MAMS-CNN Superimposed by multiple MAMS-blocks
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Appendix A

Algorithm 1: AMS-block algorithm
Require: Input feature maps(x), number of channels(n)
Define AMS_block(x, n):

Use the SE-block to get the channels importance dictionary “dict”
Sort the “dict” and record the index: Index← tf.nn.top_k(dict, n)
According to the record of index, y is sorted by x: y← tf.batch_gather(y, index)
Divide the sorted channels into k groups, denoted as [y1, y2, ..., yk]
Perform a convolution operation on the first group: z← Conv(y1)
For i in (2, k) do:

Add the feature maps after convolution and the current group: y← Add(yi, z)
Perform a convolution operation on this group: y′ ← Conv(y)
Group each group along the channels: z← Contant(z, y′)
Assign y to z: z← y′

End for
Add the x and z by using the residual learning idea: z← Add(z, x)
Use point-wise convolution to get the feature maps: Block← Conv(z)
Return block
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