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Abstract: This paper presents an algorithm to solve the multilevel location–allocation problem
when sabotage risk is considered (MLLAP-SB). Sabotage risk is the risk that a deliberate act
of sabotage will happen in a living area or during the transportation of a vehicle. This can
change the way decisions are made about the transportation problem when it is considered.
The mathematical model of the MLLAP-SB is first presented and solved to optimality by using
Lingo v. 11 optimization software, but it can solve only small numbers of test instances. Second,
two heuristics are presented to solve large numbers of test instances that Lingo cannot solve to
optimality within a reasonable time. The original differential evolution (DE) algorithm and the
extended version of DE—the modified differential evolution (MDE) algorithm—are presented to
solve the MLLAP-SB. From the computational result, when solving small numbers of test instances
in which Lingo is able to find the optimality, DE and MDE are able to find a 100% optimal solution
while requiring much lower computational time. Lingo uses an average 96,156.67 s to solve the
problem, while DE and MDE use only 104 and 90 s, respectively. Solving large numbers of test
instances where Lingo cannot solve the problem, MDE outperformed DE, as it found a 100% better
solution than DE. MDE has an average 0.404% lower cost than DE when using a computational time
of 90 min. The difference in cost between MDE and DE changes from 0.08% when using 10 min to
0.54% when using 100 min computational time. The computational result also explicitly shows that
when sabotage risk is integrated into the method of solving the problem, it can reduce the average
total cost from 32,772,361 baht to 30,652,360 baht, corresponding to a 9.61% reduction.

Keywords: location–allocation problem; renewable energy crops; differential evolution algorithm;
modified differential evolution algorithm; risk conditions

1. Introduction

Managing logistics and operating costs is the most important issue for managers to think about.
Operating a logistics system includes managing transportation and inventory. Transportation in the
real world not only has traveling costs, which include fuel costs, but in some areas special issues
need to be considered. For example, in three southern provinces of Thailand, bombings often occur
due to conflict among different groups. These three provinces are Narathiwat, Pattanee, and Yala.
Their main business is selling palm. There are many palm fields that need to have palm collected at
collecting points and then transported to factories, which will transform palm into the final product.
All along this route there is a risk of bombing, which can generate sabotage risk and costs besides
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the transportation costs. Decision-makers face the problem that if they consider only costs, this will
affect the safety of people who are involved in logistical activities. Therefore, the management of the
logistical system in this special area needs to be reconsidered.

Palm is one of many sources of renewable energy. Energy is an important factor for the
development of businesses, industries, and logistics. Most energy that we use comes from fossil
fuels and is not renewable. This is one of the main causes of global warming. Therefore, renewable
energy from plants is a good option that many countries are interested in. Sugar cane, cassava, and oil
palms are renewable energy plants that can be grown in certain geographic locations in some countries.
For example, Brazil was one of the leading countries that grew sugarcane to produce ethanol fuel
in 2012 and 2013 (Bargos et al. 2016). In addition, a case study investigating growing energy plants
was performed by Bojić et al. (2013), and the optimal siting and size of bioenergy facilities using
geographically dependent renewable resources was studied by Sultana and Kumar (2012).

Thailand is the only country in the world that can grow all three renewable energy plants all
year round, especially oil palms. Oil palms play an important role in the transportation industry
and are supported by the government to be grown in many areas according to the oil palm industry
development plan. Starting from 2012 until 2021 in the three southern border provinces, the plan is to
establish stability, to reduce social inequality, and to create peace. Information from 2004 to 2012 shows
that 14,074 violent incidents occurred in the provinces, including 2478 bomb explosions in civilian
areas and transportation routes. Narathiwat, one of the three southern border provinces, had the
most violent incidents, 5021. These facts threaten palm producers when palms are being delivered
to both palm-collecting centers and palm oil extraction factories. A study by Krahomwong (2016)
shows that the most important problem for the industry is transporting oil palms in the three southern
border provinces. Narathiwat has the largest area of oil palm cultivation and the biggest logistics
problem as well. The high transportation cost in this province is due to improper palm-collecting center
locations, causing higher costs for oil palm manufacturers and palm-collecting centers themselves.
Because of the unpeaceful incidents in the three southern border provinces, the authors would like to
present a solution that can decrease operating costs and risks. We will focus on Narathiwat Province
and explore three important aspects in order to set mathematic conditions. The aspects are as follows:

(1) The lowest total operating cost.
(2) The lowest emission from transportation.
(3) The lowest risk of sabotage that might happen along transportation routes and at

palm-collecting centers.

Managing transportation logistics for peaceful conditions needs to be reconsidered. Generally,
the only things decision-makers need to consider when making decisions about transportation logistics
are the total operating or transportation costs. Aside from making decisions on transportation logistics
under sabotage risk for the area or the road that is normally used to transport the goods, under these
conditions decision-makers face the difficulty of making decisions regarding the risk while keeping
the cost as low as possible.

This case study is very complicated, and several factors need to be carefully considered in order
to reach a break-even point for the investment. Metaheuristic algorithms are applied and used in
a lot of research, and the differential evolution algorithm (DE), another method, has gained a lot of
attention and can effectively solve problems, such as truck sequencing problems in cross-docking
operations in a study by Liao et al. (2012) and the dynamic berth allocation problem in a study by
Şahin and Kuvvetli (2016).

The differential evolution (DE) algorithm was first proposed by Storn and Kenneth (1997). It is
presented to solve over continuous optimization. Since then, DE has been successfully used to solve
various combinatorial optimizations, such as by Pitakaso (2015); Pitakaso and Kanchana (2016) used
DE to solve assembly line balancing, Storn and Kenneth (1995) and Nearchou (2006) applied DE
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to solve machine layout, Lampinen and Ivan (1999) used DE to solve the manufacturing problem,
and Sethanan and Rapeepan (2016b) used it to solve generalized assignment problems.

Many researchers have been successful at using DE to solve transportation problems such as
Vehicle Routing Problem (VRP) (Boon et al. 2013; Huan and Wen 2012; Akkararungruangku and
Kaewman 2018) and VRP with pickup and delivery system (Lai and Cao 2010). The location routing
problem (LRP) is also a problem that some researchers are interested in, such as Su et al. (2016) and
Drexl and Schneider (2015). Thongdee and Rapeepan (2015) successfully employed the original DE to
solve the multilevel location–allocation problem (MLLAP). They used DE to find a good location to
establish an ethanol plant using bagasse and tapioca waste as the raw material, and these two materials
are delivered from the sugar factory and tapioca starch. The objective function is to minimize total
distance to reduce environmental impact. In our study, we solve a problem in the same class as MLLAP,
but besides being interested in environmental impact, sabotage risk is our main interest, because the
case study is in an area where the risk of a deliberate act is quite high. Therefore, the decision-making
of MLLAP will shift the interest so that not only the distance between point to point is interesting but
also the risk of bombs.

DE has been successfully applied to many combinatorial optimizations. This because it is
simple to apply to solve problems and uses only a few parameters. Many researchers have tried
to improve the efficiency of DE by adding a few behaviors to the original DE and calling it modified
DE (MDE). Pitakaso and Kanchana (2016) suggested using a good combination of different mutations
and recombination formula. Yong et al. (2018) presented a new strategy to select a solution for the
mutation process. Wang et al. (2016) introduced the use of cumulative population distribution with
the DE mechanism. Sethanan and Rapeepan (2016a) added more steps to the original DE to introduce
a local search strategy by using reborn vectors. The computational results show that adding new
attributes can improve the efficiency of DE, because MDE outperforms the original DE in finding
good solutions.

From the review we can see that introducing new behaviors to DE can increase the solution
quality. Among the studies mentioned above, some add more intensification behavior to search
more intensively in some interested areas (Sethanan and Rapeepan 2016a, 2016b), and some use
more diversification with the original DE to enhance its capability to explore more searching space
(Wang et al. 2016; Yong et al. 2018); both ways are successful. In this paper, the original DE has
both diversification and intensification behavior. The proposed heuristics will first be searched for
intensively, and when a better solution cannot be found within the predefined condition, the process
that can enhance the capability of the diversification behavior of DE will be used. Therefore, this paper
has two main contributions: (1) a new class of MLLAP is introduced, MLLAP-SB, and (2) new attributes
of DE are introduced so that the original DE has more diversified behavior.

The paper is organized as follows: Section 2 presents the problem definition and mathematics in
which the authors can see the whole body of the proposed problem; Section 3 presents the proposed
heuristics in which the differential evolution (DE) algorithm is explained; and Sections 4 and 5 are the
computational results and conclusion.

2. Problem Description and Mathematical Formulation

The model used to solve the location–allocation problem of supporting renewable energy
cultivation in the three southern border provinces has two levels of decision-making. From the
starting point of the research of Nanthasamroeng et al. (2008) and Mayachearw (2012), who studied
the mentioned problem, we now investigate the activities and areas for growing oil palms in more
detail. The increase in products under current circumstances is shown in Figure 1.



Adm. Sci. 2018, 8, 39 4 of 17
Adm. Sci. 2018, 8, 39 4 of 17 

Person 1

$

Location 1 Factory 1

Person 2

$

Location 2 Factory 2

Person I

$

Location J Factory L
 

Figure 1. Oil palm transportation activities at each level. 
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Figure 1. Oil palm transportation activities at each level.

Indices

i = Oil palm producer number 1, 2, . . . , n has a certain number of oil palms each day

j = Area chosen to be a palm-collecting center

l = Oil palm factory

Decision Variables

qij Number of oil palms of producer i sent to palm-collecting center j (kg)
Qajl Number of oil palms collected at palm-collecting center j sent to factory l (kg)

xij =

{
1 i f producer i sends palms to collecting center j
0 otherwise

zj =

{
1 i f collecting center j is chosen
0 otherwise

yjl =

{
1 i f collecting center j sends palms to f actory l
0 otherwise

Parameters

dij Distance from producer i to palm-collecting center j (km)
dji Distance from palm-collecting center j back to producer i (km)

Gojl Distance from palm-collecting center j to factory l (km)
Gol j Distance from factory l back to palm-collecting center j (km)
ni Number of transportation rounds by each producer i

Api Number of palms producer i can send each day (kg)
ci Existing transportation cost of producer i (baht/km)

Coj Existing transportation cost of palm-collecting center j (baht/km)
laj Land price of each palm-collecting center j (baht)
Adj Surface adjustment cost of palm-collecting center j (baht)
Buj Construction cost of palm-collecting center j (baht)
Ovj Other costs of palm-collecting center j (baht)
f 1i Emission factor from using diesel fuel to transport oil palms by producer i (baht/km)
f 2j Emission factor from using diesel fuel to transport oil palms by palm-collecting center j (baht/km)
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Rij Possibility of bomb explosion on route from producer i to palm-collecting center j
Rji Possibility of bomb explosion on route from palm-collecting center j back to producer i

Popij
Average population density on route from producer i to palm-collecting center j that has
sabotage risk

Popji
Average population density on route from palm-collecting center j back to producer i that has
sabotage risk

RRjl Possibility of bomb explosion on route from palm-collecting center j to factory l
PPOjl Average population density on route from palm-collecting center j to factory l that has sabotage risk
NNj Possibility of bomb explosion at palm-collecting center j
PPj Average population density at palm-collecting center j that has sabotage risk
g Distance of bomb explosion affecting population with a radius of 0.1 km using formula πr2

Trpj Number of routes for transferring palms from palm-collecting center to factory (integer)
Capj Capability of palm-collecting center j

Vj Capability of vehicles of palm-collecting center j (kg)
Facl Capability of factory l (kg)
M Maximum amount of oil palm producer

Bomb Compensation costs from sabotage (baht)

2.1. Objective Function

The objective function is the sum of the lowest total operating cost, the cost of emitting pollution
from transportation, the cost of securing transportation routes, and the lowest cost of operating a
palm-collecting center that has sabotage risk.

Min
I

∑
i=1

J
∑

j=1
xij
(
dij + dji

)
cini +

J
∑

j=1

L
∑

l=1
yjl

(
Gojl + Gol j

)
CojTrpj

+
J

∑
j=1

zj
(
laj + Adj + Buj + Ovj

)
+

I
∑

i=1

J
∑

j=1
f 1ixij

(
dij + dji

)
ni

+
J

∑
j=1

L
∑

l=1
f 2jyjl

(
Gojl + Gol j

)
Trpj + [Bomb(

I
∑

i=1

J
∑

j=1

((
RijPopij

)
+
(

RjiPopji
))

gxijni

+
J

∑
j=1

L
∑

l=1
2
(

RRjl gPPOjlyjlTrpj

)
+

J
∑

j=1
NNjPPjgzj)]

(1)

2.2. Constraint Functions

The constraints are the limitations and conditions of the decision variables the decision-maker
needs to take care of. The objective function needs to be minimized when all constraints addressed
below are satisfied.

∑ j=1
J xij = 1 ∀i (2)

∑ J
j=1qij = Api ∀i (3)

∑ I
i=1xijqij ≤ Capj ∀j (4)

qij ≤ Mxij ∀i,j (5)

J

∑
j=1

zj ≥ 1 (6)

xij ≤ zj ∀i,j (7)

∑ L
l=1yjl ≤ 1 ∀j (8)

Qajl ≤ Myjl ∀i,j (9)
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∑ J
j=1yjlQajl ≤ Facl ∀l (10)

Trpj ≥
∑ I

i=1qijzj

Vj
∀j, Integer (11)

∑ L
l=1Qajl = ∑ I

i=1qij ∀j (12)

The objective function (Equation (1)) consists of eight parts. The first part shows the total cost
of transferring palms from producer i to palm-collecting center j. The second part shows the cost
of transferring palms from palm-collecting center j to factory l. The third part is the cost of land
investment, surface adjustment, construction, and other operating costs at palm-collecting center j.
The first three parts focus on the lowest total operating process, while the fourth and fifth parts
concentrate on fee rates for emitting carbon dioxide. The sixth part shows the level of safety of
transferring palms from producer i to palm-collecting center j. The seventh part shows the level
of safety of transferring palms from palm-collecting center j to factory l. The last part shows the
possibility of a bomb explosion at the palm-collecting center.

Constraint function (2) ensures that all producers send their palms to a palm-collecting center.
Constraint function (3) ensures that each producer sends the palms on hand to palm-collecting center j.
Constraint function (4) ensures that the number of palms producer i sends to palm-collecting center j
does not exceed the capacity of palm-collecting center j. Constraint function (5) states that if no palms
from producer i are being sent to the palm-collecting center

(
xij = 0

)
, then the number of palms being

sent must equal 0
(
qij = 0

)
. Constraint function (6) advises that palm-collecting center j has more

than one location. Constraint function (7) states that if palm-collecting center j is open, there must be
producer i sending its palms to the center. Constraint function (8) ensures that a palm-collecting center
must send all palms to factory l. Constraint function (9) states that if the palms at palm-collecting center
j are not sent to a factory

(
yij = 0

)
, then the number of palms being sent must equal 0

(
Qajl = 0

)
.

Constraint function (10) ensures that the number of palms from palm-collecting center j must not
exceed the capacity of factory l. Constraint function (11) represents the limit of transportation routes
from palm-collecting center j to factory l. Finally, constraint function (12) ensures that the number
of palms sent from palm-collecting center j to factory l must equal the total number palm-collecting
center j had on hand.

3. Proposed Heuristics

Generally, the differential evolution (DE) algorithm comprises four steps: (1) generating the
initial solution, (2) performing the mutation process, (3) performing the recombination process, and (4)
performing the selection process. In our modified DE (MDE), one step is added to these general
steps. When the best solution is not updated for the predefined iterations (in our pretest, the best
value of the unchanged solution is 25 iterations), the best solution will produce the offspring vectors.
The offspring vectors will be increased and reduced using our designed mechanism, which will be
explained later. This step is called the best vector reproduction process; thus, in total, the MDE
is composed of five steps: (1) generating the initial solution, (2) performing the mutation process,
(3) performing the recombination process, (4) performing the selection process, and (5) performing the
best vector reproduction process.

DE was first developed to solve continuous optimization. To let DE be applicable to combinatorial
optimization, it is necessary to design a decoding method well.

The flowchart of the proposed heuristics is shown in Figure 2.
From Figure 2, we can explain the process step-by-step as follows:

(1) Generate the initial population (NP) according to the size of D-dimensional vectors that are set by
the number of producers, the number of palm-collecting centers in the candidate process, and the
number of oil palm factories. This step can be executed by generating random numbers [0, 1] in
an array in each vector, as shown in Table 1.
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Figure 2. Modified differential evolution (MDE) algorithm.

The vector generated in Table 1 has D-dimensions that have to be divided into three groups.
The first group is the vector for the farmer: Table 1 has five farmers (the name of the farmer is shown
in the first row, while the second row shows the demand of each farmer, and the third row is the
randomly generated number). The second group is the information of the collecting center: in rows 1,
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2, and 3, this is the name of the collecting center, its capacity, and the randomly generated number,
respectively. The last group is the factory details, which are its name, its capacity, and the randomly
generated number. The vector in Table 1 can be decoded by using decoding methods. The decoding
method is composed of five steps, as follows:

(a) Arrange the values of random numbers in each group in ascending order. From Table 2, the order
of the field is 1, 5, 2, 4, and 3, which have 14, 4, 11, 4, and 13 tons of palm available in the field,
respectively. The order of the collection center is 5, 4, 3, 2, and 1. All the collecting centers in
the example have a capacity of 20 tons. Finally, the factory order is 1 and 2, each of which has a
capacity of 35 tons.

(b) Assign the farm in the first order of the farmer group to the first collecting center in this
group, and this farm and collecting center will be assigned to the first list in the factory group.
The second farmer in the farmer order is assigned to the first collecting center as long as it has
enough capacity; if it does not have enough capacity, the second collecting center in the list will
be used. This mechanism is also used with the factory level. From step 1, field 1 (14 tons) will be
assigned to collecting center 5 (20 tons). Field 1 has 14 tons available; therefore, collecting center
5 has 6 tons of available space for the next field to be assigned in. Thus, field 5 can be assigned to
collecting center 5. Resulting from that, collecting center 5 has 2 tons remaining, which means
that if no field can be assigned to collecting center 5, then collecting center 5 is closed. After the
collecting center is closed, we will decide to transport palm to another factory, and collecting
center 5 will deliver the product to factory 1, which is first on the factory list.

(c) Repeat step 2 until all farms are assigned. At this step, all fields will be assigned to exactly one
collecting center, and the assigned collecting center will deliver the product to one of the factories.
The result is shown in Table 3.

(d) Determine the number of rounds of trucks (30 tons) that will be used to deliver palms from the
collecting center to the factory (delivery of palms from the farmer to the collecting center means
the direct shipping form of the farmer to the collecting center and its parameters). For example,
collecting center 5 has a total 18 tons of palm to deliver. Therefore, it needs 2 rounds, because the
truck has 15-ton capacity. On the first round, the truck will deliver 15 tons, and the remaining
3 tons will be delivered in the second round. Results of calculating numbers of rounds are shown
in Table 3.

Table 1. Encoding random numbers [0, 1] in each vector.

Farmer Collecting Center Factory

1 2 3 4 5 1 2 3 4 5 1 2
14 11 13 4 4 20 20 20 20 20 35 35

NP1 0.266 0.377 0.910 0.609 0.282 0.921 0.737 0.044 0.084 0.016 0.841 0.860

Table 2. Arranging random numbers in each vector.

Order 1 2 3 4 5 1 2 3 4 5 1 2

Farmer Collecting Center Factory
Producers 1 5 2 4 3 5 4 3 2 1 1 2

14 4 11 4 13 20 20 20 20 20 35 35
NP1 0.266 0.282 0.377 0.609 0.910 0.016 0.084 0.044 0.737 0.921 0.841 0.860

Table 3. Assignment results of fields, collecting centers, and factories.

Factory Collecting Center Fields #Round of Truck

1
5 (18 tons) 1, 5 2 (15, 3)
4 (15 tons) 2, 4 1 (15)

2 3 (13 tons) 3 1 (15)
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Table 3 shows that factory 1 will serve collecting centers 5 and 4, while factory 2 will serve
collecting center 3. Collecting center 5 will get palm from fields 1 and 5. Fields 2 and 4 will deliver
palm to collecting center 4, and field 3 will deliver product to collecting center 3. Finally, collecting
centers 5, 4, and 3 have 2, 1, and 1 rounds of trucking, respectively, to transport their product to the
assigned factory.

(e) Calculate the total cost of the solution constructed in steps 1–4. In this step, all important data will
be collected and calculated, such as distance, investment to open the collecting center, and the
sabotage cost. The distance from fields to collecting centers is shown in Table 4. The distance
from collecting centers to factories is shown in Table 5. The average density of population living
along the road from fields to collecting centers and from collecting centers to factories (within a
radius of 0.1 km) is shown in Tables 6 and 7, respectively. The possibility of having a bomb in
each road connection is shown in Tables 8 and 9. The investment cost of collecting centers 1, 2, 3,
4, and 5 is 1000, 1200, 1100, 1000, and 1300 baht, respectively.

Table 4. Distance from fields to collection centers (km).

Field 1 2 3 4 5

1 56 54 12 43 32
2 45 45 12 67 23
3 8 43 2 16 89
4 98 45 41 31 6
5 12 23 17 54 24

Table 5. Distance from collecting centers to factories (km).

Factory 1 2

Field

1 65 44
2 32 98
3 23 45
4 54 23
5 34 2

Table 6. Average population along connections of fields to collecting centers (people/km).

Field 1 2 3 4 5

1 140 170 65 200 210
2 45 57 245 432 123
3 189 165 234 176 176
4 200 400 140 300 130
5 200 300 120 80 90

Table 7. Average population along connections of collecting centers to factories (people/km).

Factory 1 2

Field

1 140 320
2 320 98
3 230 450
4 540 230
5 340 200
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Table 8. Probability of bomb occurring between fields and collecting centers.

Field 1 2 3 4 5

1 0.1 0.07 0.08 0.15 0.06
2 0.2 0.12 0.14 0.08 0.1
3 0.2 0.07 0.09 0.08 0.02
4 0.08 0.4 0.01 0.03 0.04
5 0.08 0.12 0.19 0.2 0.02

Table 9. Probability of bomb occurring between fields and collecting centers.

Factory 1 2

Field

1 0.02 0.04
2 0.01 0.34
3 0.02 0.07
4 0.06 0.06
5 0.02 0.1

The emission cost of transport is 4 baht per km (converting carbon dioxide emission to baht),
and the fuel cost is 5 baht per km. The investment cost is 3400 baht when collecting centers 3, 4, and 5
are in operation. The total distance of the connection between all fields to collecting centers is 312 km
(two ways), and the total distance between fields and factories is 334 km. Note that the distance from
collecting center 5 to factory 1 is two-way transport, and each way has to go two rounds; thus, the total
distance used in this plan is 646 km, which costs 3300 baht, and this generates a total emission cost of
2584 baht (4 baht per km). The total density of people who could possibly be affected in the transport
is calculated from the number of people in the connection multiplied by the probability of having a
bomb along that road. For example, the connection from field 1 to collecting center 5 has a population
of 210, and the probability a bomb will occur is 0.06; thus, the probability that people will be affected
by the bomb is 12.6, and each will need 1500 baht to recover when they are injured. Thus, the cost of
this connection is 18,900 baht (this method can also be applied to the connection between collection
centers and factories). The results show that the total sabotage cost is 292,080 baht. Thus, the total cost
for this plan is 301,364 baht.

(2) Perform the mutation process.

The NP mutant vector Vi,j,G is the value adjustment within the same vector using function (13).
In each target vector of NP, it will make a random selection (r1, r2, and r3), and the F value equals 2.0
(Qin et al. 2009; Sethanan and Rapeepan 2016b):

Vi,j,G = Xr1,j,G + F
(
Xr2,j,G − Xr3,j,G

)
(13)

(3) Perform the recombination process.

Each NP trial vector Vi,j,G is the result of the recombination process using function (14) between
target vectors of each present NP and mutant vectors with the possibility of crossing set Cr at 0.8
(Qin et al. 2009; Sethanan and Rapeepan 2016b) in order to change values in each vector:

Ui,j,G =

{
Vi,j,G i f randi,j ≤ Cr or j = Irand
Xi,j,G i f randi,j > Cr or j 6= Irand

(14)

Set randi,j as a random number that has a value between [0, 1], which is within a target vector.
In each present NP and mutant vector, Irand is a random selection of the position that changes value
in both vectors. If the value of randi,j is less than or equal to that of Cr in position j of both of these
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vectors, the mutant value in this position will be in a trial vector. On the other hand, if the value of
randi,j is more than that of Cr in the position, the value in this position will be in a trial vector.

(4) Perform the selection process by using Equation (15) to determine the target vector of the next
processing round

(
Xi,j,G+1

)
that can be selected from the better vector, a current target vector(

Xi,j,G+1
)

or a trail vector
(
Ui,j,G

)
:

Xi,j,G+1 =

{
Ui,j,G i f f

(
Ui,j,G

)
≤ f

(
Xi,j,G

)
Xi,j,G otherwise

(15)

(5) If the best solution is not changed within the predefined iteration, then perform the best vector
reproduction process. This process can be executed by generating a new vector (NV) of DE.
The reproduction of the best vector is performed using Equation (1), but the first two vectors
(r1 and r2) are selected from the current set of vectors (NP), and the last vector is newly randomly
generated. If the new vector cannot find the new best solution, then the number of vectors that
will be reproduced is increased one vector at a time. If the new vector is not able to find a new
best solution when the number of the new vectors generated reaches the maximum limitation
that can be calculated form Equation (16), it will reduce the number of NV until it is reduced
to one. When NV is equal to 1, the reproduction process is terminated. The termination condition
of the reproduction process can be both when NV reaches 1 and when it finds a new best solution.
An example of increasing and reducing NV is shown in Table 10.

Popgr =

(
Npop

2
× (Npop + 1)

)
︸ ︷︷ ︸

Number of population increased

+

(
Npop

2
× (Npop− 1)

)
︸ ︷︷ ︸

Number of population decreased

(16)

Table 10. Format using the number of populations in each iteration.

Number of Iterations to
Find Results Number of Populations in Each Iteration

1 NP′i (1)

Number of population increased
2 NP′i (1), NP′i (2)
3 NP′i (1), NP′i (2), NP′i (3)
4 NP′i (1), NP′i (2), NP′i (3), NP′i (4)
5 NP′i (1), NP′i (2), NP′i (3), NP′i (4), NP′i (5)

6 NP′i (1), NP′i (2), NP′i (3), NP′i (4)

Number of population decreased7 NP′i (1), NP′i (2), NP′i (3)
8 NP′i (1), NP′i (2)
9 NP′i (1)

Set

Popgr = Number of added vectors
Npop = Number of initial population

Figure 3 depicts the proposed problem and heuristics that we designed to solve the multilevel
location–allocation problem. The original version of the problem does not take sabotage risk into
account in the model solving, while the proposed problem integrates sabotage risk into the model
so that the decision-maker can make better decisions. In the proposed methodology, a reproduction
process has been added to introduce new generated vectors to the system, so the proposed algorithm
has more diversification in searching the new solution to allow it to escape from the local optimal.
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The reproduction process will be applied only when the algorithm cannot fulfill the predefined search
conditions, as the algorithm can find a better solution within the predefined iterations.
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4. Computational Results

In this research, we present an MDE that is efficient at solving a multilevel location–allocation
problem. In the case study, we compare the efficiency of the optimal solution from Lingo v.11 to the
traditional DE and our MDE. The proposed heuristics involve coding in Dev C++ using PC Intel Core
i3 CPU 3.70 GHz Ram DDR4 8 GB.

In testing to find the most efficient results of these four algorithms, we compared the computation
time for instance tests with 5, 10, 20, and 50 farms. Each size randomly generates three sets of
parameters; thus, we have 12 random test instances and one real case study. The case study has
77 farms. The number of potential collecting centers is equal to the number of farms, and the number
of factories varies from one to five. Each instance test was repeated five times. The best among all
solutions was taken as representative of the proposed method. Thus, our first experiment was executed
to compare the efficiency of the proposed heuristics with the results generated by Lingo v.11. Table 11
shows the results comparing the proposed method (DE and MDE) with the optimal solution generated
from Lingo v.11. Lingo is executed until it finds an optimal solution, while DE and MDE collect the time
to find the optimal solution, which is equal to the result generated by Lingo as the stopping criterion.

From Table 11, we can see that, on average, Lingo can find an optimal solution in 96,156.67 s,
while DE and MDE can find an optimal solution within 104 s. The computational time of Lingo is
dramatically increased when the number of farms is 10. This means that Lingo cannot find the solution
in the remaining test instances. In the next simulation result, we compare the performance of the MDE
and DE algorithms with a larger number of test instances. In this experiment, we execute DE and MDE
in six test instances (20 and 50 farms) and one real case study (77 farms). The stopping criterion is
90 min computational time, and the results are shown in Table 12.
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Table 11. Comparing results of DE and MDE algorithms with the optimal solution generated by
Lingo v.11.

Instance
Lingo v.11 DE MDE

Cost (Baht) Time (s) Cost (Baht) Time (s) Cost (Baht) Time (s)

5.1 17,563,210 38 17,563,210 10 17,563,210 9
5.2 17,756,540 54 17,756,540 13 17,756,540 11
5.3 17,481,870 49 17,481,870 11 17,481,870 12
10.1 23,165,420 466,760 23,165,420 158 23,165,420 119
10.2 23,223,900 36,633 23,223,900 179 23,223,900 160
10.3 23,223,900 73,406 23,223,900 252 23,223,900 229

Average 96,156.67 104 90

Table 12. Results of seven test instances of DE and MDE using 90 min computational time.

Test Instance
Result (Baht)

DE (a) MDE (b) %dif

20.1 35,067,350 35,012,940 0.16
20.2 35,118,530 35,030,880 0.25
20.3 35,034,940 35,024,930 0.028
50.1 30,483,050 30,253,650 0.76
50.2 36,368,650 36,133,690 0.65
50.3 35,469,520 30,192,920 0.91

Case study 12,925,850 12,917,510 0.06
Average 31,495,413 30,652,360 0.404

Note: %dif = [(a − b)/a] × 100%.

From Table 12, in this group of problems, DE has an average cost of 25,997,859 baht, while MDE
has an average cost of 25,923,139 baht. When we calculate the percentage difference of DE and MDE,
there is a 0.404% difference, but MDE requires 100% lower cost than DE, which means that the modified
version of DE outperforms the original DE.

From Table 13, the results show that when we run long enough, MDE outperforms DE. The next
question is whether there is some sense that DE outperforms MDE. The experiment was executed with
the second group of data. For the stopping criterion we used computational time, which is set to 10, 30,
40, 60, 80, and 100 min, and the results of the simulation are shown in Table 13. The simulation was
executed five times, and the best solution is representative of the simulation. Percentage difference
between cost generated from DE and MDE is calculated from Equation (17):

%di f f =
Cost generated f rom DE− Cost generated f rom MDE

Cost Generated f rom DE
× 10 (17)

Table 13. Percentage difference in cost between DE and MDE using 10, 30, 40, 60, 80, and 100 min as
the stopping criterion.

Time (min) 10 30 40 60 80 100

Instance

20.1 0.0 0.12 0.25 0.28 0.39 0.59
20.3 −0.03 0.12 0.12 0.29 0.37 0.39
20.3 −0.01 0.24 0.18 0.24 0.30 0.48
50.1 0.04 0.08 0.89 0.13 0.43 0.43
50.2 0.10 0.12 0.12 0.32 0.28 0.95
50.3 0.32 0.28 0.18 0.19 0.32 0.33

Case study 0.14 0.43 0.25 0.43 0.12 0.59

Average 0.08 0.20 0.28 0.27 0.32 0.54

From Table 13, we can see that only in instances 20.2 and 20.3 did DE have a better solution than
MDE when run for 10 min; in all other instances, MDE outperformed DE. Figure 4 shows the plot of
average percent difference between DE and MDE.
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From Figure 4, we can see that when using longer computational time, the gap between DE and
MDE is greater, except with computational time of 40 and 60 min, in which the performance of DE and
MDE differs the least. When the runtime from 60 min is increased, the performance of MDE is higher
again. From this, we can conclude that when using longer computational time, DE will be stuck in the
local optimal, while MDE can escape from the local optimal and generate a better solution.

The last experiment focuses on a strategy to deal with transportation logistics when sabotage risk
is considered and the question of whether it is different when we do not take risk into account in the
decision model. This experiment was executed using MDE to solve the second group of problems.
MDE-1 is MDE that takes the last two terms from the objective function (Equation (1)), but after MDE-1
finishes the simulation (90 min run), the best solution is used to calculate the total cost, including
sabotage cost, while MDE is the original version that uses Equation (1) as the objective function.
Table 14 shows the results of MDE and MDE-1 for total cost (including sabotage cost), sabotage cost,
and the percent of sabotage cost generated from MDE and MDE-1. Percent of sabotage cost can be
calculated with Equation (18):

c =
b
a
× 100% (18)

Table 14. Results of MDE and MDE-1.

Test Instances
Result (Baht)

MDE (a) Sub (b) % Sub (c) MDE-1 (a) Sub (b) % Sub (c)

20.1 35,012,940 26,259,705 63.58 38,769,768 32,954,303 82.42
20.2 35,030,880 24,871,925 65.00 37,576,269 21,939,828 69.03
20.3 35,024,930 11,908,476 48.28 36,887,763 29,879,088 78.29
50.1 30,253,650 19,664,872 61.69 31,324,479 23,806,605 79.19
50.2 36,133,690 21,318,877 61.77 36,987,895 29,960,195 78.30
50.3 30,192,920 20,229,256 53.42 32,878,129 29,590,317 83.92

Case study 12,917,510 9,817,308 68.26 14,982,224 11,386,491 76.00

Average 30,652,360 19,152,917 60.29 32,772,361 25,645,261 78.17

MDE-1 (ignoring sabotage cost in the objective function) has 78.17% sabotage cost when compared with total cost,
while MDE has 60.29% sabotage cost. This means MDE-1 has 6.9% higher cost than MDE.

5. Conclusions

This paper presents a modified DE (MDE) to solve the multistage location–allocation problem
when considering sabotage risk as the constraint. The proposed algorithm adds one more step to
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the original version of DE, which is the best vector reproduction process, and this gives MDE better
efficiency, which can be seen in Table 12; it generates better solutions than the original DE in all test
instances. This is because when MDE cannot find an improved solution, it will escape from the local
optimal by introducing a new vector to the system, and this vector will lead the new search space.
Searching for new solutions from the new search space will increase the chances of finding better
solutions for the algorithm. At the same time, diversification of the original DE is improved by the
reproduction process; therefore, MDE outperforms the original DE.

The difference between MDE and DE becomes larger (solution quality of MDE is greater than
that of DE) when using longer computational time. The difference is 0.08% when using 10 min
computational time and 0.54% when using 100 min computational time (see Table 13 and Figure 4).
This means that when the computational time is longer, the performance of MDE is better.

Comparing DE and MDE with the optimal solution generated from Lingo v.11 (see Table 11),
we can see that both can find the optimal solution the same as Lingo, but using less computational
time (Table 11). Lingo uses an average of 96,156.67 s to explore the optimal solution for a small number
of test instances, while DE and MDE use only 140 and 90 s, respectively. This shows that DE and MDE
are indeed suitable for this kind of problem, even when the problem size is small, although sometimes
the heuristics need more time to find a better solution than Lingo. However, in this case, even though
the problem size is small, our proposed heuristics generated the same result as Lingo but used much
less computational time. This was because the decoding method is effective at finding a good solution
in a short computational time.

Managing transportation logistics in the multilevel location–allocation problem when there is
sabotage cost, we need to take care of it in order to generate lower total cost (see Table 14). MDE has
been used to solve the integration model of transportation logistics when sabotage risk is considered.
MDE-1 is the same method, but solves the transportation logistics model without considering the risk.
MDE generates an average total cost of 30,652,360 baht, while MDE-1 generates an average total cost
of 32,772,361 baht for large numbers of test instances. This means that when we consider sabotage
risk in the model, we can reduce cost by 9.61%, even we use the same method to solve the problem.
Therefore, when the special cost term occurs in the objective function, the decision-maker has to take
care of it carefully to get the most effective methodology to get the best answer for the firm.

From the computational results, MDE can generate better solutions than the original version. This is
because its ability to escape from the local optimal is better than that of DE, by introducing a new random
vector. This is because we add the process of enhancing the diversification behavior of DE. Thus, a more
effective process to increase diversification of the algorithm can be added. The algorithm’s designer
can also add new DE processes to intensify the algorithm so that it will have more diversification and
intensification behavior. Another point that can be further studied is to formulate the problem as a
multi-objective model so that multiple cost terms in the problem can be easily traced.
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