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Abstract: Low-cost techniques, such as mid-infrared (MIR) spectroscopy, are increasingly necessary to
detect soil organic carbon (SOC) and nitrogen (N) changes in rangelands following improved grazing
management. Specifically, Adaptive Multi-Paddock (AMP) grazing is being implemented to restore
grassland ecosystems and sequester SOC often for commercialization in C markets. To determine
how the accuracy of SOC and N predictions using MIR spectroscopy is affected by the number of
calibration samples and by different predictive models, we analyzed 1000 samples from grassland
soils. We tested the effect of calibration sample size from 100 to 1000 samples, as well as the predictive
ability of the partial least squares (PLS), random forest (RF) and support vector machine (SVM)
algorithms on SOC and N predictions. The samples were obtained from five different farm pairs
corresponding to AMP and Conventional Grazing (CG), covering a 0–50 cm soil depth profile along a
latitudinal gradient in the Southeast USA. Overall, the sample size had only a moderate influence
on these predictions. The predictive accuracy of all three models was less affected by variation in
sample size when >400 samples were used. The predictive ability of non-linear models SVM and
RF was similar to classical PLS. Additionally, all three models performed better for the deeper soil
samples, i.e., from below the A horizon to the –50 cm depth. For topsoil samples, the particulate
organic matter (POM) content also influenced the model accuracy. The selection of representative
calibration samples efficiently reduces analysis costs without affecting the quality of results. Our
study is an effort to improve the efficiency of SOC and N monitoring techniques.

Keywords: machine learning; multi-paddock grazing; particulate organic matter; rangeland monitoring;
sample size

1. Introduction

The ability to rapidly screen thousands of soil samples with a cost-effective and re-
producible methodology is an extremely attractive prospect for improving soil carbon
and health. Therefore, high-throughput technologies are needed as a low-cost alterna-
tive capable of accelerating screening and monitoring soil more effectively. Mid-infrared
spectroscopy (MIR) as a tool for soil analysis is a promising alternative for scaling up
conventional laboratory assays in vast areas with a high carbon sequestration potential in
order to mitigate climate change impacts [1,2].

Grassland soils have a significant potential for soil organic carbon (SOC) sequestration
at scale [1]. They also stock high amounts of nitrogen (N) per unit of SOC [3]. N availability
may limit SOC sequestration in these soils depending on environmental conditions [4,5].
Over the years, several methods have been proposed to estimate a wide range of soil
properties in grasslands and rangelands. Remote sensing, for example, has been widely
applied to monitor temporal and spatial patterns [6,7]. Unfortunately, the use of remote
technology to predict soil properties still has some limitations, resulting in inaccurate values
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with substantial uncertainties when estimating SOC and N stocks [8,9]. This is mostly due
to visible near-infrared (VNIR) and shortwave (SWIR) spectral ranges, which have a low
spatial resolution and can be affected by atmospheric distortion leading to an extremely
low signal-to-noise ratio [10]. On the other hand, MIR has demonstrated the potential to
achieve high accuracy for C and N predictions even in soils formed with different parent
materials [1,2]. However, the precision and performance of MIR at the project scale have
not been tested to quantify SOC and N content under different land management practices.

Given the huge demand for these analyses to improve soil health and promote ecosys-
tem service markets, rigorous testing of MIR approaches is needed to optimize throughput
and the cost of quantifying SOC and N in response to changes in management practices.
For example, this could help compare the SOC sequestration potential by the adoption
of regenerative grazing management, such as Adaptive Multi-Paddock (AMP), with con-
ventional grazing (CG) [11,12]. Despite the well-known potential of MIR spectroscopy to
obtain highly accurate soil C and N information, research on sample size and adequate
calibration set size has not received much attention. It has been challenging to get clear and
consistent guidelines for the optimal calibration set size, given that predictive accuracy is
also partly determined by sampling design (i.e., spatial scales, sampling depth, land use)
as well as the choice of model algorithms [13,14].

Consequently, over the last few decades, chemometrics/machine learning tools have
been increasingly applied to spectral data in order to maximize the models’ predictive ac-
curacy for estimating soil parameters. The predictive power of emerging machine learning
algorithms can offer substantial gains in accuracy relative to conventional chemometric
methods. Partial least squares (PLS) is a linear and commonly chemometric technique used
to estimate different soil properties. However, PLS is sometimes less accurate when using
non-linear data [15,16]. Therefore, greater attention to non-linear modeling techniques is
being paid, as such methods offer greater flexibility over linear methods, owing to their
ability to capture more complicated relationships between specific spectral reflectance
signatures and soil properties [17].

Additionally, a strategy for selecting an optimal calibration sample size is critical
in order to build models with a satisfactory predictive ability. This is mainly because
larger datasets may not always reduce model uncertainty. While many samples are often
required to obtain robust calibrations in order to detect changes in SOC or N stock following
improvements in management [18], analyzing a large number of samples for C and N on an
elemental analyzer slows throughput and increases costs. Furthermore, measurements can
be limited due to low helium supply [19]. Therefore, this study aims to optimize calibration
sample sizes by evaluating how SOC and N estimation accuracy is affected by the number
of calibration samples using different predictive models. The specific objectives of this
study are to: (1) identify the optimal conditions for building SOC and N calibrations (e.g.,
sample size, sampling locations) in grazed pasture soils, (2) evaluate different machine
learning algorithms for SOC and N predictions, and (3) compare the cost-effectiveness of
using an optimal calibration dataset without affecting the model’s accuracy.

2. Materials and Methods
2.1. Study Sites and Soil Sampling

The study sites and sampling details have been previously presented by [12]. Briefly,
sites represented a latitudinal gradient from Adolphus, Kentucky, through Woodville, Mis-
sissippi (Figure 1). The samples were collected in different soil series as defined in USDA
Soil Taxonomy including Emory silt loam, Hartsell fine sandy loam, Loring silt loam, Trim-
ble gravelly silt loam, and Cumberland gravelly/non-gravelly, ranging from loam to silty
clay loam. The selection of the most representative five pairs of neighboring AMP and CG
farms was based on the farms that most closely represented our definition of AMP grazing
with a neighbor practicing CG, which is the most common and representative grazing. At
each farm, 42 soil cores were sampled following the VM0021 “Soil Carbon Quantification
Method” [20], for a total of 420 cores. At each farm pair, soil cores were distributed in
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two representative catenae on a common soil type across paired farms, with three sam-
pling zones (e.g., upper, middle, and lower slope) per catena (Supplemental Figure S3),
and seven cores per sampling zone. Soil cores (1 m deep) were collected with a Giddings
hydraulic probe mounted on an ATV using 5 cm in diameter sleeves, and further separated
by depth in the laboratory. For this study we used the A horizon (0 to approx. 20 cm;
topsoil) and the increment depths below A to 30 and 30–50 cm.
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Figure 1. Study area showing the five pairs of adaptive and conventional grazing farms. Study sites
are located in a latitudinal gradient from Adolphus, Kentucky, through Woodville, Mississippi. The
map was elaborated in ArcGIS Pro using existing data sources USDA—NASS 2017, Census data.

2.2. Soil Analysis

Soil C and N concentrations were initially determined by dry combustion on a Costech
ECS 4010 elemental analyzer (Costech Analytical Technologies, Valencia, CA, USA) on
2 mm sieved, finely ground and oven-dried soil samples as described in detail in [11]. In
the few soils positive to the fizz test, soil inorganic C concentrations were quantified using
an acid pressure transducer connected to a voltage meter [21] and subtracted from the total
C concentration to determine SOC concentrations.

Soil organic matter physical fractionations were separated by size and density [22] on
the 2 mm sieved samples composited by sampling zone and depth layer, to obtain a light
particulate organic matter (POM), heavy POM, and a mineral associated organic matter
(MAOM) as described in [12]. All fractions were analyzed for %C and %N on an elemental
analyzer as described above for the bulk soils. For the purposes of this study, the light and
heavy POM C values were used.
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2.3. MIR Measurements

For spectral analysis, air-dried soil samples (<2 mm) were ground using a mortar and a
pestle and subsequently analyzed using a Digilab FTS 7000 spectrometer (Varian, Inc., Palo
Alto, CA, USA) with a Pike AutoDIFF diffuse reflectance autosampler (Pike Technologies,
Madison, WI, USA) for spectral analysis. The MIR (4000–400 cm−1) pseudo absorbance
was obtained using a KBr background and deuterated triglycine sulfate detector. Each
spectrum was made of 64 co-added scans and 4 cm−1 resolutions.

2.4. Sample Selection

A Kennard–Stone (KS) algorithm was used to split the whole dataset (1612 spectra)
into a training set (1000 spectra), and a validation dataset of 612 spectra (Figure 2). The
KS was performed to ensure two subsets that follow the statistical distribution of the
original dataset [23]. From the training subset, ten sample sizes of an increasing number
of calibration samples, ranging between 100 and 1000, were randomly obtained to avoid
optimistically biased performance estimates. Five replicates of each sample size were
generated using the R package dplyr [24].
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2.5. Model Calibration

Prior to applying the machine learning algorithms, the spectra were preprocessed
using the Savitzky–Golay smoothing filter method. The partial least squares (PLS), random
forest (RF), and support vector machine (SVM) models were trained comparatively to
develop calibration models for predicting C and N content. The machine learning analyses
were implemented using the Caret package in the R software [25], using the default method
for optimizing hyperparameters. These algorithms were selected because they differ in
their linear and non-linear functional capabilities. PLS is a linear regression model that can
work efficiently with spectral data at a lower computational capacity [26]. While SVM and
RF have non-linear fitting capabilities, they differ in computational demand [27,28].
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2.6. Model Validation

To objectively reflect the models’ predictive performance, the validation was carried
out using an external dataset (610 samples), which was not involved in the model training
process. Therefore, we assessed the model’s accuracy as a function of the number of
calibration samples while keeping the validation dataset constant. This type of validation
is more rigorous in order to avoid over-optimistic calibrations that may be unable to cope
with unknown samples [29]. Different metrics were computed to quantify the overall model
performance; root mean square error (RMSE), coefficient of determination R-square (R2),
mean absolute error (MAE), and Nash–Sutcliffe efficiency coefficient (NSE). As regards
these statistics, the best model should have the highest R2 and NSE, and the lowest RMSE
and MAE. The metrics RMSE and MAE are scale-dependent metrics with the same unit of
measurement as the dependent variable, whereas NSE and R metrics are dimensionless
metrics. Compared with MAE, the RMSE give a relatively high weight to large errors
because the errors are squared before averaging. The sensitivity of the RMSE to outliers is
the most common concern with the use of this metric; however, RMSE tends to become
larger than MAE as the sample size increases [30,31]. The R2 value close to 1 indicates
that the predicted values may fit the measured data, whereas NSE shows how well the
predicted data fit to the 1:1 line. When NSE = 1, it indicates a perfect match of the model to
the measured data [32,33]. The metrics were calculated as follows:

RMSE =

√
∑n

i=0 (yi − ŷi)
2

n
(1)

R2 =
∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − yi)

2 (2)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3)

NSE = 1− ∑n
i−o(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (4)

where yi and ŷi correspond to the measured and predicted values, respectively; yi is the
mean value of the measured value and n is the number of measured data.

ANOVA was conducted to test statistical differences between medians of sample
sizes. Subsequently, Fisher’s Least Significant Differences test (LSD) was applied when the
Kruskal–Wallis results had statistical significance. After testing the effect of sample size, we
selected the smallest size that was able to provide more accurate estimates for SOC in order
to evaluate the impact of sampling depths and farm soils on C estimates. Model residuals
(residual = measured − predicted) were standardized by dividing them using standard
deviation [34]. The positive and negative values of the standardized residuals also indicate
whether the expected values might be over- or underestimated by the model. The effect
of particulate organic matter (POM) on the model accuracy was evaluated by plotting the
standardized residual corresponding to the C model against the heavy sand-sized and free
light POM content.

3. Results
3.1. Descriptive Analysis of Soil Data

This dataset covers a broad range of SOC and N concentrations and climatic conditions
(Table 1). In AMP grazing sites, SOC ranged from 1.28 ± 0.86 to 1.87 ± 1.36 and from
0.13 ± 0.09 to 0.21 ± 0.14 for N in the 0–20-cm depth increment. SOC and N concentrations
were higher in farm pair 5 relative to the other in 0–20 cm depth increments. For these soil
profiles (farm pair 5), the climate is slightly warmer and wetter with MAT of 19 ◦C and
MAP of 1649 mm. For CG soils, lower values of SOC ranging 1.03 ± 0.63 and 1.4 ± 0.87



Environments 2022, 9, 149 6 of 18

were found in the topsoil (0–20-cm) compared with AMP grazing. In the deepest soil
depth increment (30–50 cm), SOC ranged from 0.26 ± 0.42 to 0.13 ± 0.07, while the N
concentrations differed slightly among sites.

Table 1. Soil and climate characteristics in the neighboring adaptive multi-paddock (AMP) and
conventional (CG) grazed pairs included in this study, data are from [11]. Mean and standard
deviation of soil organic carbon (SOC), nitrogen (N), and bulk density (BD) are shown for each depth
increment. Climate variables correspond to mean annual precipitation (MAP) and mean annual
temperature (MAT).

Location MAT (◦C) MAP
(mm)

Grazing
Practice Year n Depth

(cm)
SOC
(%)

N
(%)

BD
(g/cm3)

Farm
1

AMP
13 40 0–20 1.38 ± 0.83 0.16 ± 0.09 1.11 ± 0.20

17 20–30 0.29 ± 0.08 0.04 ± 0.01 1.22 ± 0.11
Adolphus, 13.8 1316 20 30–50 0.24 ± 0.07 0.05 ± 0.01 1.12 ± 0.15

Kentucky
CG

6 91 0–20 1.40 ± 0.87 0.16 ± 0.09 1.14 ± 0.14
43 20–30 0.29 ± 0.09 0.04 ± 0.01 1.10 ± 0.26
29 30–50 0.18 ± 0.04 0.04 ± 0.01 1.15 ± 0.12

Farm
2

AMP
12 96 0–20 1.51 ± 0.96 0.17 ± 0.09 1.34 ± 0.12

37 20–30 0.47 ± 0.33 0.07 ± 0.02 1.45 ± 0.10
Sequatchie, 14.7 1432 44 30–50 0.29 ± 0.14 0.05 ± 0.01 1.53 ± 0.10

Tennessee
CG

- 91 0–20 1.28 ± 0.77 0.15 ± 0.08 1.41 ± 0.16
44 20–30 0.30 ± 0.14 0.05 ± 0.02 1.55 ± 0.10
44 30–50 0.26 ± 0.42 0.05 ± 0.04 1.61 ± 0.10

Farm
3

AMP
29 91 0–20 1.28 ± 0.86 0.13 ± 0.09 1.45 ± 0.19

44 20–30 0.26 ± 0.08 0.03 ± 0.01 1.62 ± 0.1
Fort

Payne, 15.1 1417 43 30–50 0.14 ± 0.04 0.02 ± 0 1.67 ± 0.05

Alabama
CG

17 78 0–20 1.03 ± 0.63 0.11 ± 0.06 1.52 ± 0.11
39 20–30 0.23 ± 0.08 0.03 ± 0.01 1.67 ± 0.12
33 30–50 0.13 ± 0.07 0.02 ± 0 1.74 ± 0.12

Farm
4

AMP
24 92 0–20 1.35 ± 0.97 0.15 ± 0.10 1.4 ± 0.15

44 20–30 0.31 ± 0.16 0.04 ± 0.01 1.40 ± 0.10
Piedmont, 15.7 1352 36 30–50 0.18 ± 0.11 0.03 ± 0.01 1.47 ± 0.12

Alabama
CG

- 88 0–20 1.28 ± 0.75 0.12 ± 0.07 1.31 ± 0.21
40 20–30 0.34 ± 0.15 0.04 ± 0.01 1.45 ± 0.16
31 30–50 0.25 ± 0.26 0.03 ± 0.02 1.50 ± 0.19

Farm
5

AMP
10 90 0–20 1.87 ± 1.36 0.21 ± 0.14 1.24 ± 0.19

45 20–30 0.3 ± 0.13 0.05 ± 0.01 1.44 ± 0.08
Woodville, 19 1649 45 30–50 0.15 ± 0.05 0.03 ± 0.01 1.41 ± 0.34

Mississippi
CG

38 89 0–20 1.46 ± 1.00 0.16 ± 0.10 1.22 ± 0.22
45 20–30 0.27 ± 0.08 0.05 ± 0.01 1.42 ± 0.09
43 30–50 0.15 ± 0.03 0.04 ± 0.01 1.47 ± 0.22

This high soil variability along the latitudinal gradient (Figure 1) encompassed soil-
specific spectra characteristics in each farm pair (Supplementary Figure S1). The PCA score
plots of the MIR spectra generated a clear separation of the five farm pairs into clusters,
indicating high heterogeneity in the soil composition of the spectral database (i.e., organic
matter, iron oxides and clay), while there were spectral similarities between CG and AMP
soils in each pair. Pair 3 appears to show a greater separation than the other 4 farm pairs.

The calibration and validation datasets of the measured SOC and N concentration
followed a right-skewed distribution (Supplementary Figure S2). In fact, most of the
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SOC values are in the 0.01–1% range, while the highest values are at 5%. Similarly, most
values ranged from 0.01 to 0.1% for N concentration, with the highest values at 0.5%. As
expected, the sample distributions of the validation and calibration datasets split by the
Kennard-Stone algorithm were the same.

3.2. Model Comparison and Influence of Training Sample Size

The performance of the PLS, SVM, and RF models for predicting SOC (Figure 3) and N
(Figure 4) values improved rapidly when the training dataset was increased to 400 samples.
The standard deviation of all the different sample sizes was higher in a small-sized set
(100–200 samples), both for SOC and N. We can observe a rapid decrease in RMSE and
MAE in the 100 to 400 sample range. RMSE and MAE have similar values for all datasets,
with RMSE sometimes being slightly larger. The prediction accuracy did not improve
with over 400 samples for any model. A similar pattern of results was observed when
the three different models were used to predict N (Figure 4). In addition, all models
underestimated SOC when concentrations were above 2.0% (Figure 5). The same behavior
was observed for N concentrations above 0.20% (Figure 6). The effect of sample size differed
among models; for example, according to RMSE, R-square, and Nash–Sutcliffe criteria, the
PLS model performed better than the RF and SVM models when sample size increased
(Figures 3 and 4). The RF model yielded more accurate C and N predictions with sample
sizes in the range of 400–600. However, when the sample size used for calibration was
higher (n = 1000), the prediction was more scattered, tending to strongly overestimate both
SOC and N (Figures 5 and 6).
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Figure 3. Box-plots graph showing the ability performance of partial least squares (PLS), random
forest (RF) and support vector machine (SVM) models for predicting soil organic carbon (SOC) content
using various calibration sampling size (100–900 samples). Each boxplot represents the results for the
five random repetitions for each sample sizes. The performance metrics include (A) coefficient of
determination root mean square error (RMSE), (B) coefficient of determination (R-square), (C) mean
absolute error (MAE), and (D) Nash–Sutcliffe.
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Figure 4. Box-plots graph showing the ability performance of partial least squares (PLS), random
forest (RF) and support vector machine (SVM) models in for predicting soil total nitrogen content
using various calibration sampling size (100–900 samples). Each boxplot represents the results for the
five random repetitions for each sample sizes. The performance metrics include (A) coefficient of
determination root mean square error (RMSE), (B) coefficient of determination (R-square), (C) mean
absolute error (MAE), and (D) Nash–Sutcliffe.
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random forest (RF) and support vector machine (SVM). The validation included and external test
set comprised of 612 observations. For each sample size, the graphs represent an average of the five
calibrations randomly extracted from the total dataset (n = 1000 samples).
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Figure 6. Comparison between the soil nitrogen (N) values measured by elemental analyses and
the MID predicted values using the three different training algorithms, partial least squares (PLS),
random forest (RF) and support vector machine (SVM). The validation included and external test
set comprised of 612 observations. For each sample size, the graphs represent an average of the five
calibrations randomly extracted from the total dataset (n = 1000 samples).

Since the performance of different modeling approaches plateaued at approximately
400 samples, we tested the models calibrated using 400 samples as our “optimum” for
analyzing residuals. To test the statistical significance as the sample size increased from
100 to 400, the metrics values of the three statistical approaches were evaluated with
pairwise comparison (p-value < 0.05) (Table 2). PLS, RF, and SVM models performed
similarly when the sample size was approximately 400 samples for SOC and N. However,
the predictive ability of PLS and SVM algorithms improved significantly, increasing the
number of calibration samples from 100 to 400. With 400 samples, the mean values of RMSE
were 0.35± 0.02, 0.39± 0.04 and 0.39± 0.02 for SOC, as well as 0.042± 0.004, 0.046± 0.007,
0.041 ± 0.001 for N, using PLS, RF, and SVM, respectively. The values of the R-square of the
three algorithms were 0.90, representing a good fit between the predicted and measured
values. Nash–Sutcliffe coefficients exceeded 0.8 for PLS at 400 samples, tending to be less
likely to over-underestimate predicted values of SOC and N.
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Table 2. Mean and standard deviation of performance metric in terms of average root mean square
error (RMSE), coefficient of determination (R-square), mean annual error (MAE) and Nash–Sutcliffe
coefficient as a function of sample size using partial least squares (PLS), random forest (RF) and
support vector machine (SVM) models based on five replicates randomly selected of each sample
size. For each method, five calibrations were built for each sample size. The entire dataset included
1000 samples.

Soil Organic Carbon
(%)

Total Soil Nitrogen
(%)

Sample
Size Model RMSE R-Square MAE Nash–

Sutcliffe RMSE R-Square MAE Nash–
Sutcliffe

100
(n = 5)

PLS 0.40 ± 0 a 0.89 ± 0.01 a 0.31 ± 0.03 a 0.79 ± 0 a 0.044 ± 0.003 a 0.86 ± 0.03 a 0.035 ± 0.007 a 0.74 ± 0.04 a

RF 0.37 ± 0.03 a 0.89 ± 0.02 a 0.27 ± 0.05 a 0.81 ± 0.03 a 0.048 ± 0.018 a 0.83 ± 0.06 a 0.039 ± 0.019 a 0.65 ± 0.25 a

SVM 0.43 ± 0.02 a 0.86 ± 0.03 a 0.32 ± 0.03 a 0.75 ± 0.02 a 0.044 ± 0.003 a 0.84 ± 0.04 a 0.033 ± 0.005 a 0.74 ± 0.04 a

400
(n = 5)

PLS 0.36 ± 0.02 b 0.90 ± 0.01 a 0.30 ± 0.03 a 0.83 ± 0.02 b 0.042 ± 0.004 a 0.90 ± 0.01 b 0.037 ± 0.004 a 0.76 ± 0.04 a

RF 0.39 ± 0.04 a 0.90 ± 0.01 a 0.33 ± 0.04 a 0.79 ± 0.04 a 0.046 ± 0.007 a 0.87 ± 0.03 a 0.039 ± 0.007 a 0.71 ± 0.08 a

SVM 0.39 ± 0.02 b 0.90 ± 0.01 b 0.31 ± 0.03 a 0.80 ± 0.02 b 0.041 ± 0.001 a 0.89 ± 0.00 b 0.035 ± 0.002 a 0.77 ± 0.01 a

1000
(n = 1)

PLS 0.37 0.92 0.32 0.82 0.036 0.92 0.030 0.83
RF 0.47 0.90 0.37 0.70 0.046 0.90 0.038 0.71

SVM 0.39 0.91 0.31 0.79 0.041 0.92 0.034 0.77

Different letters within each column indicate significant differences (p < 0.05) among model performance metric
as a function of sample size in each model.

3.3. Influence of Sampling Depth and Farm Site on Model Accuracy

The plateau of the performance metrics was shown in Figures 3 and 4, where the
calibrations exhibit only slight changes for sample sizes larger than 400. Each residual
obtained by model calibrations using 400 samples was plotted to assess model fit at different
depths (Figure 7). Since the training algorithms retained comparable predictive abilities for
SOC and N, the following results were based only on C values. The models satisfactorily
predicted SOC at 10–50 cm depth. However, high positive residuals were observed in
the upper A horizon (0–10 cm), which had higher and more variable SOC concentrations
(Table 1). This suggests that all models underestimated C content in topsoils with high SOC.
In the upper A horizon, the SVM algorithm outperformed other algorithms. However,
SVM could not improve the accuracy of the predicted values for SOC concentrations
between 0.5–1.0%, especially those at lower (10–50 cm) depths. It is noteworthy that
grazing practices and farm sites exhibited a moderate effect on SOC prediction results
(Supplementary Figure S3).
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Figure 7. Effect of sampling depth on soil organic carbon (SOC) prediction using (A) partial least
squares (PLS), (B) random forest (RF), and (C) support vector machine (SVM) models. The training
dataset contains 400 samples. All standardized residuals (residual = measured − predicted) were
then plotted against their predicted C content. If the calibration model is appropriate, the residuals
should be distributed randomly around the y = 0 line.

Because of the tendency of all models to underestimate SOC content in the upper A
horizon, model residuals for SOC content were analyzed against heavy sand-sized OM
(heavy POM) and free light POM (Figure 8), since POM is typically a SOC fraction that
increases with high SOC values [3]. The results indicate that SOC prediction accuracy
decreases as POM increases, both in heavy and light fractions, despite having somewhat
different dynamics (Figure 8). These relationships were characterized by linear (R2 = 0.35)
and exponential growth (R2 = 0.21) behavior in heavy POM and free light POM, respectively.



Environments 2022, 9, 149 14 of 18

Environments 2022, 9, x FOR PEER REVIEW 14 of 18 
 

 

  

Figure 8. Effect of C concentration stored in particulate organic matter (POM) on under- or overes-

timation of SOC by the models. Plots represent standardized residual (residual = measured − pre-

dicted) relative to heavy sand-sized OM (heavy POM) (A) and free light POM (B). Linear and expo-

nential growth (modified simple exponent, 2 parameters) regressions were used to fit patterns for 

heavy POM and free light POM, respectively. 

3.4. Cost Analysis 

To evaluate the cost and time advantage of using MIR to estimate SOC and N in 

projects with large quantities of samples (e.g., over 400), MIR spectroscopy (PerkinElmer, 

Spectrum 3 FT-IR spectrometer), and dry combustion (Costech ECS CHNSO elemental 

analyzer), techniques were compared in terms of equipment, maintenance, consumables, 

and technician costs. The cost analysis assumes both instruments require the same sample 

preparation (i.e., sieving, oven-dried finely ground). Table 3 shows that adopting MIR 

technology does appear to be cost and time effective. The use of spectroscopy could in-

crease throughput time from 4 to 12 samples per hour, whereas decrease cost by 2.5 times 

per sample. Although both methodologies have a similar instrument cost, the cost per 

sample was lower for MIR. In the dry combustion method, consumables associated with 

carrier gas (helium), purge gas (oxygen), and other supplies increase the cost. The labor 

cost per sample using dry combustion and MIR methods is USD 4.38/sample and USD 

1.46/sample, respectively (labor costs were estimated at the rate of USD 17.5/h of labor). 

For this number of samples (n = 400), the total dry combustion cost is nearly USD 7000, 

while it is only USD 2000 for spectroscopy. Likewise, annual maintenance costs associated 

with using MIR are USD 3000, whereas the costs for the elemental analyzer are USD 1700. 

Using an optimal dataset to perform robust calibration from a large data pool might save 

approximately USD 4200 and 180 h (7.5 days) of technician time.  

Table 3. Cost comparison analysis (USD) for measuring 400 and 1000 samples using FT-IR spec-

trometer and combustion analyzer. 

 One-Time 

Cost (USD) 

Yearly Cost 

(USD) 

Data Acquisition 

Cost (USD) 
  Cost CN Analysis 

(USD) 
   Sample Preparation Technician  n = 400 n = 1000 

Method  Instrument (a) Maintenance Equipment  

 Lab. Sup-

plies (<2 

mm) (d) 

Cost (La-

bor/h) 

(USD) 

Time  

(Sample/h)  
  

FT-IR Spectrometer 50,000 3500 9000 (c) 0.17 17.5 12.0 (e) 768.0 1920.0 

Figure 8. Effect of C concentration stored in particulate organic matter (POM) on under- or over-
estimation of SOC by the models. Plots represent standardized residual (residual = measured −
predicted) relative to heavy sand-sized OM (heavy POM) (A) and free light POM (B). Linear and
exponential growth (modified simple exponent, 2 parameters) regressions were used to fit patterns
for heavy POM and free light POM, respectively.

3.4. Cost Analysis

To evaluate the cost and time advantage of using MIR to estimate SOC and N in
projects with large quantities of samples (e.g., over 400), MIR spectroscopy (PerkinElmer,
Spectrum 3 FT-IR spectrometer), and dry combustion (Costech ECS CHNSO elemental
analyzer), techniques were compared in terms of equipment, maintenance, consumables,
and technician costs. The cost analysis assumes both instruments require the same sample
preparation (i.e., sieving, oven-dried finely ground). Table 3 shows that adopting MIR
technology does appear to be cost and time effective. The use of spectroscopy could
increase throughput time from 4 to 12 samples per hour, whereas decrease cost by 2.5 times
per sample. Although both methodologies have a similar instrument cost, the cost per
sample was lower for MIR. In the dry combustion method, consumables associated with
carrier gas (helium), purge gas (oxygen), and other supplies increase the cost. The labor
cost per sample using dry combustion and MIR methods is USD 4.38/sample and USD
1.46/sample, respectively (labor costs were estimated at the rate of USD 17.5/h of labor).
For this number of samples (n = 400), the total dry combustion cost is nearly USD 7000,
while it is only USD 2000 for spectroscopy. Likewise, annual maintenance costs associated
with using MIR are USD 3000, whereas the costs for the elemental analyzer are USD 1700.
Using an optimal dataset to perform robust calibration from a large data pool might save
approximately USD 4200 and 180 h (7.5 days) of technician time.
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Table 3. Cost comparison analysis (USD) for measuring 400 and 1000 samples using FT-IR spectrom-
eter and combustion analyzer.

One-Time
Cost (USD)

Yearly Cost
(USD)

Data Acquisition
Cost (USD)

Cost CN Analysis
(USD)

Sample Preparation Technician n = 400 n = 1000

Method Instrument (a) Maintenance Equipment
Lab.

Supplies
(<2 mm) (d)

Cost
(Labor/h)

(USD)

Time
(Sam-
ple/h)

FT-IR
Spectrometer 50,000 3500 9000 (c) 0.17 17.5 12.0 (e) 768.0 1920.0

Dry
combustion
analyzer (a)

80,000 1700 (b) N/A 1.70 17.5 4.0 (f) 2780.0 6950.0

(a) PerkinElmer Spectrum™ 3 FT-IR spectrometer + Autodiff II to automate multiple samples analysis; CHNSO
Costech analyzer. (b) Maintenance costs are factored into the $1.70 cost per sample in a total of 1000 samples. (c)

Mixer mill with metal grinding balls. (d) Consumables and other supplies. (e) Time (hours) used to place the sam-
ples in the metal cups + analysis time. (f) Time (hours) used to place the samples in tin foil cups + analysis time.

4. Discussion

We investigated the effect of calibration set size on SOC and soil N predictions in AMP
and CG grazing systems across a latitudinal gradient in the Southeastern U.S. Additionally,
the sample size was evaluated using three different models of increasing complexity (PLS
> SVM > RF). Our study demonstrates that MIR spectroscopy could be used in large-
scale grassland SOC and soil health projects as an alternative for obtaining reliable SOC
and soil N estimates with higher throughput and lower costs than elemental analyses
using dry combustion. We started with a highly variable set of grassland soils in terms of
their MIR spectra, SOC, and N values as well as grazing management in order to include
representative conditions for soil analyses in large-scale regional soil grassland projects.

In general, we observed a moderate effect of sample size on the ability to predict SOC
and N in grassland soils. As sample size increased, calibration only slightly improved the
model’s predictive ability, which plateaued around 400 samples. In fact, our results also
indicated that there would not be any advantage in increasing the calibration sample size
beyond 400 samples. Thus, for example, large-scale grassland projects with over 400 soil
samples could analyze 400 samples for C and N using dry combustion in an elemental ana-
lyzer, scan all the samples using MIR spectroscopy, and estimate the remaining unknown
concentrations with the model predictions. Furthermore, we observed that a larger sample
size often resulted in worse predictions. This occurred when the RF model was trained
using 800–1000 samples. By contrast, when the sample size was too small (<200 samples)
to train the models, the validations were biased toward producing over-estimates.

Our results indicate that all the models underestimated SOC and N content over 2.0%
and 0.20%, respectively. Contrary to our expectations, these trends were not improved by
applying the non-linear RF and SVM models. Because our dataset was strongly skewed
toward low SOC and N concentrations, our suggestion for optimal calibration sample size
values does not apply to other datasets with significantly different distributions. Therefore,
generalizations could be highly inaccurate for other datasets since we must also take into
consideration the distribution of calibration and validation datasets, as well as the range
we want to predict more accurately. Similarly, in previous studies [35,36], accuracy has
been shown to improve with a higher number of training samples. However, few studies
have investigated the impact of calibration sample size on SOC and N.

The PLS model had the smallest median RMSE and a lower underestimation of SOC
content in the entire range of calibration sample sizes when compared with RF and SVM.
Hence, we did not find any advantage of applying non-linear algorithms such as RF and
SVM to our dataset. Therefore, PLS was particularly useful for achieving higher accuracy
with less computational power. These results are consistent with previous studies [35],
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where a smaller sample size is required in order to yield useful predictions using PLS
instead of more complex algorithms. In addition, RF had a notably lower performance,
even though we expected it to substantially improve its predictive ability when the sample
size was increased. It has been suggested that the RF model is able to deal with many
predictors and few samples, resulting in low overfitting [37]. Therefore, the RF training
algorithms in high-dimensional datasets such as ours (800–1000 samples) might need more
trees and a higher degree of tree depth, which could be a serious problem as the observed
variables increase. In contrast, the predictive ability of SVM was distinctly lower when
smaller sample sizes were used (100–300 samples). These observations are similar to those
reported in other studies [17,38], where PLS outperformed SVM.

We have also investigated other factors influencing the tendency to overestimate
measured values when calibrations (n = 400) were used. This tendency is not surprising,
considering that the relatively poorly predicted C content above 2% at the 0–10 cm depth
was influenced mainly by the POM content above this threshold. There was, however, no
such effect on accuracy when farm pair location and grazing practices were evaluated. The
full potential of MIR to predict soil properties is not always satisfactorily achieved if some of
the unknowns’ compositional or analytical profile is substantially different from that of the
samples in the calibration set [39]. The light component of POM—-which mainly consists of
partially decomposed plant material with different chemical characteristics —-might affect
the performance of these models, resulting in less reliable estimates at <10 cm depth [40].
Therefore, the topsoil samples collected play a critical role, while the selection of algorithm
and sample size might be less important. In this case, when analyzing shallow samples
with high POM concentrations the use of elemental analysis by dry combustion may be
more suitable than spectroscopy for C estimates. We also recommend additional work to
train MIR to specifically quantify SOC content in POM [41,42].

A rough cost estimate shows that measuring SOC and N using MIR is significantly
less expensive than dry combustion techniques. As other groups have shown for these
approaches [43,44], MIR spectroscopy offers a cost-effective alternative to conventional
methods for C and N estimates. For the MIR method, the highest SOC and N concentrations
tended to be under-estimated; however, we believe it will not adversely affect the reliable
assessment of these parameters, while it would clearly reduce the costs. In our case, there
is a tolerable margin of error for predictions, which depends on the data and application.
For instance, for the purposes of restoring soil, the error in relatively organic-poor samples
is significantly diminished when compared to the undisturbed ones.

5. Conclusions

We have defined an optimal calibration set size for SOC and soil N predictions for
grazing systems using models of increasing complexity coupled with MIR spectroscopy.
Overall, we demonstrated a high predictive performance of PLS, RF and SVM models
using datasets with about 400 samples. We found that large sample sets did not necessarily
improve the accuracy of the three training algorithms. Moreover, an optimal dataset for one
algorithm is not always optimal for other machine learning models. Consequently, there is
no cut-off criteria for choosing the ideal sample size, since prediction accuracy depends
significantly on each dataset’s sample distribution, training algorithm, and sampling depth.
The spectroscopic method was highly accurate for SOC and N estimates; however all
models overestimated the highest values of SOC and N content. In addition, the non-
linear models were not able to improve upon the classical PLS performance. Our results
also suggest that POM will likely introduce uncertainty into the models. Lastly, MIR
spectroscopy provides a cost-effective alternative to conventional SOC and N combustion
analysis. This study offers insight into MIR methodology as an efficient, scalable, and
cost-effective tool that provides reliable C and N estimates for grazing soils.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/environments9120149/s1, Figure S1: Principal component analysis

https://www.mdpi.com/article/10.3390/environments9120149/s1
https://www.mdpi.com/article/10.3390/environments9120149/s1
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(PCA) score plot showing farm pairs (1 to 5) with high spatial spectral heterogeneity between soils.
Axis 1 accounts 42% of variance in the data set and Axis 2 accounts for 25%; Figure S2: Frequency
histograms for calibration (1000 samples) and validation dataset (612 samples) dataset for A) soil
organic carbon (SOC) and (B) total soil nitrogen (N). The predictions were achieved by keeping the
same frequency distribution between the calibration and validation dataset using a Kennard-stone
sampling algorithm; Figure S3: Effect of sampling grazing practice and farm-pair soil on soil organic
carbon (SOC) prediction using partial least squared (PLS). The training dataset contains 400 samples.
All standardized residuals (residual = measured – predicted) were then plotted against their predicted
C content. If the calibration model is appropriate, the residuals should be distributed randomly
around the y = 0 line.
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