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Abstract: Soil erosion is the displacement of soil’s upper layer(s) triggered by a variation in topog-
raphy, land use and soil types, and anthropogenic activities. This study selected the Marrowbone
Creek-Russel Fork watershed in eastern Kentucky to estimate the mean annual soil loss over eight
years (from 2013 to 2020) utilizing the Universal Soil Loss Equation (USLE). We included monthly
precipitation, soil survey, digital elevation model (DEM), and land cover data to estimate the parame-
ters of the USLE. The mean annual soil loss for the study area ranged from 1.77 to 2.91 Mg ha−1 yr−1

with an eight-year mean of 2.31 Mg ha−1 yr−1. In addition, we observed that developed land cover
classes were less erosion-resistant than undeveloped land cover classes over the observation period.
The results of this case study in our small watershed that has been historically impacted by upstream
coal-mining activities are comparable to the results from similar studies in other geographic regions.
However, we suggest other researchers conduct similar studies using robust data to determine the
applicability of the USLE model and validate the results in developing measures to address soil
loss issues.

Keywords: Appalachia; erosion; Kentucky; NDVI; runoff; surface coal-mining

1. Introduction

Soil erosion occurs when upper soil layer (s) are displaced in response to erosive agents [1].
Multiple factors accelerate this process such as topography, rainfall pattern/intensity, land use
and land cover, and soil type. Globally, soil erosion is the cause for an estimated 75 petagrams
(Pg = 1015 g) of fertile soil loss each year affecting negatively local agriculture, ecology, and
climate [2]. While the negative consquencs of soil erosion is manifested in multiple ways, the
removal of soil organic carbon (SOC) is the most notable. The organic matter existing in all the
soils on the Earth contains approximately 2500 Pg of C (in the first 3 m depth), which is three
times higher than the amount of C contained in the atmosphere and roughly 4.5 times the
amount of C in the biosphere [3]. Since the Industrial Revolution, approximately 78 ± 12 Pg
of C released into the atmosphere has directly resulted in depleting SOC, which is about
27–30% of the total global emission of C since the late 18th century [4]. Thus, research into the
measuring and modeling of soil erosion is crucial to our understanding of the mechanics of
how soil erosion compounds the effects of our changing climate and major implications for
how well the outcomes can be modeled and predicted.

Water erosion (caused by the kinetic energy of raindrops and the resulting surface
runoff from precipitation) contributes to the loss of nutrients in the soil (including organic
matter) through three processes: sheet erosion, rill erosion, and gully erosion. Sheet erosion
occurs when soil erodes in thin, uniform layers caused by the effect of rain and shallow
surface flow [5]. Rill erosion occurs when sediment moves in response to flowing water
from shallow drainage lines, known as “rills,” that are less than 30 cm deep. Gully erosion
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occurs when soil is removed in response to the formation of large drainage lines (30 cm or
greater) from the concentration of smaller streams that cut a channel through the soil.

The Universal Soil Loss Equation (USLE) (Equation (1)) is a commonly used mathe-
matical model to examine the soil erosion process [6]. It is an empirical model based on five
contributing factors, namely rainfall (R), soil erodibility (K), land slope (LS), cover man-
agement, © and conservation support practices (P). The USLE is used to predict long-term
average annual soil loss, and it is an indispensable tool for predicting and estimating soil
loss from sheet and rill erosion.

The soil erosion rate at a given site is determined by the combined contributions of
the physical and management variables present at the site [7]:

A = R × K × L.S. × C × P (1)

where A is the annual soil loss (Mg ha−1 yr−1), R is the rainfall erosivity index (MJ mm
ha−1 h−1 yr−1), K is the soil erodibility factor (Mg ha h MJ−1 mm−1), L.S. is the slope and
slope length factor, C is the cover management factor, and P is the support practice factor.

The rainfall erosivity factor (R) measures the amount of precipitation and the corre-
sponding energy effects of precipitation on soil [8]. Runoff (water from rain, melting snow,
or other sources that flow over land surfaces) is linearly related to rainfall through a ratio
of the retention of water in a watershed during a storm event to the maximum potential
retention of water in the watershed [9]. The following Equation (2) is used to determine the
average annual R factor (MJ mm ha−1 h−1 yr−1) [10]:

R =
1
n

n

∑
j=1

[
n

∑
k=1

(E)k(I30)k

]
j

(2)

where E is the total storm kinetic energy (MJ ha−1), I30 is the maximum 30 min rain rainfall
intensity (mm h−1), j is an index of the number of years used to produce the average, k is
an index of the number of storms in each year, n is the number of years used to obtain the
average R.

R factor estimates are necessary to implement the USLE within regions with limited
precipitation historical records [11]. Early examples of R factor estimates would be the
modified Fournier Index (F), which was developed in Morocco using R-factor values from
178 weather stations [12]. The modified Fournier Index is represented by the equation:

F =
∑12

i=1 p2
i

P
(3)

where pi is the average monthly precipitation, and P is the average annual precipitation.
Later developments led to the development of monthly precipitation-based methods for
calculating the R from 155 weather stations between 1951–1980 [13–16]. From this research,
the following regression equation was developed for determining the R-factor in the
continental United States using the modified Fournier Index [11]:

R = 0.07397F1.847 (4)

In this equation, R is the rainfall erosivity factor (MJ mm ha−1 h−1 yr−1) and F is the
modified Fournier Index.

The soil erodibility factor (K) denotes the vulnerability of soil to erosion and its
potential runoff rate [17]. It is based on several physical soil characteristics: sand content
(in percentage), silt content (in percentage), clay content (in percentage), and soil organic
matter (in percentage) [18]. Soils that are more resistant to erosion have low K factor values,
while soils that are less resistant to erosion have higher K factor values. Soils with more clay
content tend to be more resistant to soil erosion and have low K factor values, as they tend
to be more resistant to detachment. Soils with more silt content tend to be more erosive
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and produce more runoff due to being more susceptible to detachment, and thus produce
high K factor values.

In the U.S., K-factor-related soil data can be obtained through the Soil Survey Ge-
ographic Database (SSURGO) via the ‘USDA’s Natural Resources Conservation Service
(NRCS) [19]. The K factor values from this database are derived from the following
equation [18]:

Au = E.I.30K (5)

where, Au is soil loss measured for individual storms, K is the soil erodibility value for each
soil type, and E.I.30 represents erosivity of the storms for the respective soil loss values
(Equation (5)).

The topographic factor (L.S.) shows the effect of length of slope and slope steepness
on soil erosion rate by water [7]. Slope Length (L) denotes the distance from the origin
of overland flow to the point where either soil deposition starts, or the runoff becomes
intense [20]. Slope Steepness (S) represents the effect of the uniform slope values on erosion.
Consequently, the product (L.S.) represents the estimated ratio of soil loss per unit area
from a field slope to that from a 9 percent slope that is 72.6-ft (approximately 22.13 m)
long [6]. This ratio is calculated through the equation [20]:

L.S. = (A/22.13)̂(m) × (65.41 sin2 θ + 4.65 sin θ + 0.065) (6)

where, A is the upslope factor (calculated from the flow accumulation tool), θ is the slope
angle (calculated from the DEM) in radians, and m is a model parameter that equals 0.2
when the slope is less than 1%, 0.3 when the slope is between 1 and 3%, 0.4 when the
slope is between 3 and 5%, and 0.5 when the slope is above 5%. For the purpose of GIS
implementation, the modified equation for L.S. replaces slope length measurement with
the measurement of the upslope contributing Area, A, which includes the effect of flow
convergence from rill erosion [21].

Soil erosion grows as the slope rises and lengthens [22]. Longer slopes increase the
soil transport and deposition capacities of a watershed by increasing the accumulation of
runoff [7,23]. In a study of erosion hotspots within two central Ohio watersheds, the land
slope was determined to have the most profound effect on erosion estimates within the
watersheds [24].

The cover management factor (C factor) indicates the degree of soil erosion caused by
different forms of land-uses [24]. The C factor shows the ratio of the expected soil loss from
a cropped land under a particular condition to the equivalent loss of a similar field that
was clean-tilled and fallow.

Numerous studies have found a correlation between NDVI (Normalized Difference
Vegetation Index) and the C factor [25–28]. An advantage of NDVI-derived methods for
computing the C factor is that it allows for more pixel-by-pixel variation in C factor values
across the study area than traditional methods of assigning prescribed C factor values
through classified satellite imagery [26]. This allows for the C factor to account for the
spatio-temporal variation in crop management [28]. However, modeling sensitivity to this
remote sensing method can cause an overestimation of C factor values, which yield higher
annual mean soil loss rate values [29].

This study examines the effects of the various erosion factors on the USLE model
output for the Marrowbone Creek-Russell Fork watershed in eastern Kentucky over an
eight-year period (2013–2020) and determine if developed land (“built-up” land containing
man-made structures) in the studied watershed is more erosion-resistant than the unde-
veloped land (forest land, grassland, and barren land) in our watershed [30]. The study
focused on three objectives: (1) estimate the value of factors in the USLE from geospatial
and meteorological data for this watershed; (2) evaluate the applicability of Landsat 8
NDVI to estimating factors in USLE; and (3) estimate the soil erosion rate for the area for
the observation years (2013–2020) based on annual estimates of USLE factors and visual
imagery interpretation.
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2. Materials and Methods
2.1. Study Area

The study site (latitude: 37.31, longitude: −82.42) is the Marrowbone Creek-Russell
Fork watershed (Hydrological 12-digit Unit: 050702020704), located in Pike County, Ken-
tucky [31]. The watershed has an area of 153.16 km2 and elevations ranging from 203
to 863 m, with an average percent slope of 16.38%. Kentucky experiences a humid sub-
tropical climate characterized by hot summers, cold winters, sunny autumns, and mild
but wet springs. In Pike County (the county where our study site resides), the annual
average temperature is approximately 13.11 ◦C. The annual average rainfall was recorded
at approximately 1148 mm [32].

Our study site is in a region of eastern Kentucky, which experienced surface mining
activity in the past in towns such as Regina (within the watershed) and Wolfpit (near the
watershed). The watershed also consists of areas currently under coal-mining activity, such
as the Clintwood Elkhorn Mining Company (approximately 9 km from the study site).
That, along with the study ‘site’s internal land use being mainly undisturbed forestland
with some developed land spaces and pasture, makes the study site ideal for estimating
and analyzing soil erosion rates from mined eastern Kentucky watershed.

2.2. Universal Soil Loss Equation (USLE)

The USLE is fully described in Equation (1). We estimated the soil loss using USLE in
ArcGIS Desktop (a part of the Esri suite of GIS software).

2.3. Data Collection and Processing

For our project, monthly precipitation data, soil survey data, terrain data, satellite
imagery, and land cover classification data were collected for the eight-year period of our
study (2013–2020) from several online data repositories. All data were converted to have
the spatial resolution of 30 m.

To calculate rainfall/runoff erosivity index, we acquired monthly precipitation data
from five weather stations that surround the watershed over a period of eight years
(2013–2020) (Figure 1). Table 1 provides additional information on the five weather stations
from which we acquired the monthly precipitation data.

Table 1. List of weather stations that provided monthly precipitation data for the project.

Organization City (Location) Station ID Latitude Longitude

Kentucky
Mesonet Pikeville 13 S DORT 37.28 −82.52

NCDC (NOAA) Fedscreek 1 SE USC00152812 37.39 −82.26
NCDC (NOAA) Clintwood 1 W USC00441825 37.15 −82.49

NCDC (NOAA) Huntington Tri
State Airport USW00003860 38.37 −82.55

Kentucky
Mesonet Whitesburg 2 NW WTBG 37.13 −82.84

The data for the soil erodibility (K) factor was acquired from the United States Depart-
ment of Agriculture, Natural Resources and Conservation Services (NRCS) online web soil
survey [33]. The NRCS online web soil survey provides comprehensive soil reports for an
area defined by an Esri Shapefile.

Topographic (LS) ‘factor’s data was derived from ‘KyFromAbove’s 2020 5ft (approx-
imately 1.5 m) Digital Elevation Model (DEM). This DEM provides the highest spectral
resolution currently available for our watershed.

We used Landsat 8 satellite imageries from April 2013 to December 2020 to compute
the crop management factor (C) values. The satellite imageries were downloaded from
the ‘USGS’s Earth Explorer hub [34]. The individual satellite scenes were divided by the
date when they were initially captured by the satellite to represent the four seasons: spring
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(March–May), summer (June–August), fall (September–November), and winter (December–
February). For each date, two spectral bands (Band 4 and Band 5) were collected, as they
provide the values for visible (red) light and near-infrared light, respectively.
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Finally, the data for our Support Conservation Practice Factor (P) was from the Crop
Data Layer from the ‘USDA’s National Agricultural Statistics Service [35] between 2013
and 2020. Table 2 provides additional information on the various data sources for the
model parameters.

For the rainfall/runoff erosivity, we generated a table in Excel utilizing monthly
precipitation data collected from five weather stations (see Table 1). We then utilized our
monthly precipitation data to compute the Modified Fournier Index (F) [12], with p being
average monthly precipitation and P being the annual total precipitation (Equation (3)). We
did this for each year from 2013–2020. Afterward, we calculated the rainfall erosivity index
for each year, utilizing the regression equation proposed in Equation (4).

The K factor for the equation was generated after importing the soil survey data in
ArcMap. The polygon data was generated from the NRCS web soil survey, which has soil
data originating from the national Soil Survey Geographic Database (SSURGO). Finally,
the data were converted into a raster, and the K factor values were converted from U.S.
customary units into S.I. units (Mg h−1 MJ−1 mm−1) [36].

We calculated the L.S. (Slope and Length of Slope factor) by importing elevation
KYAPED (LiDAR) DEM data. The L.S. factor was calculated using the slope tool, flow
direction tool, flow accumulation tool, and, finally, the raster calculator, all in ArcMap.
The slope tool was used twice: firstly, to generate a slope (in degrees) map from the 1.5 m
DEM map of the watershed; secondly, to generate a slope percentage map where the slopes
calculated in our watershed were separated into four classes (slopes less than 1%, slopes
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between 1–3%, slopes between 3–5%, and slopes greater than 5%) [20]. The flow direction
and flow accumulation tools were used to simulate the movement of eroded soil throughout
the watershed. Then, the raster calculator computed the L.S. factor with the USLE-Forest
(Equation (6)).

Table 2. List of Parameters for Universal Soil Loss Equation with their data sources.

Parameters Definition Source Original Spatial
Resolution

Date of
Acquisition

R
(MJ mm ha−1

h−1 yr−1)

Rainfall/Runoff
Erosivity Index

5 Stations:
2 Kentucky

Mesonet stations;
3 NOAA stations

N/A 15 March 2021

K
(Mg h MJ−1

mm−1)

Soil Erosivity
Factor

NRCS web soil
survey N/A 11 November 2020

LS Slope and length
of Slope Factor

KyFromAbove
LIDAR DEM 5 ft

(1.524 m)
1.524 m 24 March 2021

C
Cover

Management
Factor

Landsat 8 Data 30 m 19 June 2021

P
Supporting

Conservation
practices

USDA Crop
Data Layer,

USDA RUSLE
Guide

30 m 14 April 2021

We estimated the C factor by utilizing the NDVI values derived from Landsat 8 for
the watershed. NDVI measures the density of green leaf vegetation by computing the
difference in the reflection of near-infrared wavelengths of sunlight and visible wavelengths
of sunlight divided by the sum of both near-infrared and visible reflected light.

NDVI =
near infrared light − visible light
near-infrared light + visible light

(7)

We calculated the NDVI for each season (spring, summer, fall, winter) of every year
during our eight-year period by taking each satellite scene and substituting their spectral
band imagery (Band 5 for near-infrared light and Band 4 for visible light) into Equation (7).
Afterwards, we used the Raster Calculator within ArcMap to average the four seasonal
NDVI maps for every year of our study. Next, we applied the following equation for
generating the C factor using the average yearly NDVI and produced each ‘year’s mean
annual C factor [27]:

C = 0.1(
−NDVI + 1

2
) (8)

To account for our limited knowledge in the conservation support practices within
our watershed (which is mainly comprised of undeveloped forestland that would have a
P factor of 1 to indicate zero support practices being applied), we incorporate a method
proposed by Naqvi et al. [17] that uses the average P factor values calculated for each land
cover class (as shown in Table 3).
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Table 3. Land cover classes and their respective P factor values.

Land Cover Classes P Factor Values

Dense Vegetation 1
Sparse Vegetation 0.8

Built-up (Developed) 1
Water Bodies 1
Scrub Land 1

Agricultural cropland 0.5
Fallow Land 0.9

Bare Soil/Barren Land 1

We calculated the P factor by importing land cover data from the USDA Crop Data
Layer [35]. Then, we reclassified the different land classes to conform the land cover classes
to fit the land cover classes utilized by the USDA in reference to each ‘class’s respective P
factors. Finally, we utilized the USDA Handbook No. 537 [7] to appropriately assign the
average P factor values to each land cover class.

3. Results
Descriptive Statistics

Descriptive statistics of mean, minimum, and maximum values for the yearly mean
R factors, K factor, L.S. factor, the yearly mean C factors and the yearly mean soil loss
estimates (A) for the watershed were calculated using Microsoft Excel 2016. In addition,
the ‘Zonal Statistics as ‘Table’ tool in ArcMap was utilized to determine the mean soil loss
estimates, K factor, L.S. factor, and mean C factor for each land cover class.

We found the yearly precipitation ranged from a minimum of 1203 mm in 2016 to a
maximum of 1638 mm in 2018 (mean equals 1361 mm) (Table 4). The Modified Fournier
Index (MFI) ranged from a minimum of 115 mm in 2014 to a maximum of 150 mm in 2018
(mean equals 136 mm). The annual R factors ranged from a minimum of 472 MJ mm−1

ha−1 h−1 yr−1 in 2014 to a maximum of 775 MJ mm ha−1 h−1 yr−1 in 2018 (mean = 638 MJ
mm ha−1 h−1 yr−1).

Table 4. Estimated annual mean R factor values from 2013–2020.

Year Yearly Precipitation (mm) MFI
(mm)

R Factor
(MJ mm ha−1 h−1

yr−1)

2013 1375.4 137.9 661.9
2014 1209.4 114.7 471.7
2015 1331.3 134.8 635.0
2016 1203.0 127.5 573.0
2017 1317.9 138.1 667.6
2018 1638.0 150.1 775.1
2019 1364.2 137.3 657.7
2020 1452.2 137.3 658.1

The resultant K factor map is (Figure 2) based on the NRCS soil report data that was
imported into ArcMap and converted into a raster format. The estimated K factor values
ranged from 0 to 0.6 (Mg h−1 MJ−1 mm−1), with a mean K factor value equal to 0.031 (Mg
h −1 MJ−1 mm−1). Figures 3 and 4 shows the raster map generated from the estimated L.S.
factor values within our watershed. The raster had minimum estimated values of zero, a
maximum estimated value of 15,815, and a mean estimated value of 3.6.
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Computed yearly C factor for the eight years of our study is presented in Table 5. The
C factors ranged from a minimum of 0.034 in (change to SI units) 2017 to a maximum of
0.039 in (ditto) 2014 (mean = 0.037). The NDVI values ranged from a minimum of 0.215 in
2014 to a maximum of 0.311 in 2017 (mean = 0.256). In Table 6, we presented the 16 land
cover classes found in the watershed, along with their respective P factors, the estimated
average percentage of areas they cover within the watershed, and the estimated percentage
of Area they covered within the watershed each year from 2013–2020.
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Table 5. Estimated annual mean C factor values from 2013–2020.

Year NDVI C Factor

2013 0.244 0.038
2014 0.215 0.039
2015 0.256 0.037
2016 0.225 0.038
2017 0.311 0.034
2018 0.227 0.039
2019 0.299 0.035
2020 0.269 0.037
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Table 6. Land cover classes with P factor and Area percentage of watershed.

% of Watershed

Land Cover
Classes

P
Factor

Average %
of

Watershed

Area of
Watershed

(sq. km)
2013 2014 2015 2016 2017 2018 2019 2020

Corn 0.5 0 0 0 0 0 0 0 0 0 0
Other

Hay/Non
Alfalfa

0.9 0 0 0 0 0 0 0 0 0 0

Open Water 1 0.2 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Developed/Open

Space 1 2.3 3.5 3.0 2.2 2.1 2.1 2.1 2.1 2.4 2.4

Developed/Low
Intensity 1 1.8 2.7 1.4 1.9 1.9 1.9 1.9 2.0 1.5 1.5

Developed/Med
intensity 1 0.7 1.1 0.4 0.7 0.8 0.8 0.9 0.7 0.7 0.7

Developed/High
Intensity 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Barren 1 3.2 4.9 1.2 2.3 4.5 3.1 4.6 3.3 3.6 3.2
Deciduous

Forest 1 78.7 120.6 71.3 70.2 79.5 79.9 79.6 78.7 85.1 85.3

Evergreen
Forest 1 0.1 0.2 0 0 0 0 0 0 0.3 0.5

Mixed Forest 1 0.5 0.8 0.8 0.1 0.2 0.4 0.2 0.7 0.9 0.9
Shrubland 1 0.8 1.2 0 0 0 0.1 0.1 0.1 2.9 2.8

Grassland/Pasture 0.9 11.6 17.8 21.6 22.2 10.7 11.4 10.4 12.1 2.2 2.3
Woody

Wetlands 0.8 0 0 0 0 0 0 0 0 0 0

Soybeans 0.5 0 0 0 0 0 0 0 0 0 0
Herbaceous

Wetlands 0.8 0 0 0 0 0 0 0 0 0 0

Our second objective was to calculate the mean C factor for three types of land use:
(urban, forest, and grassland) (Table 7). The urban land use group included the average
C over eight years based on land cover type, i.e., developed/open space, developed/low
intensity, developed/medium intensity, developed/high intensity. The urban land use
group covered 4.9% of the watershed with a mean C of 0.039.

Table 7. Mean C Factor and area percentage of watershed per land use.

Land Use % of Watershed Mean C Factor

Urban 4.9 0.039
Forest 79.3 0.037

Grassland 11.6 0.037

The Forest land use group comprises the average C over eight years for the land cover
types: deciduous forest, evergreen forest, and mixed forest. The forest land use group
covered 79.3% of the watershed and with a mean C value of 0.038.

The grassland land use group included the average C over eight years for the grass-
land/pasture land cover type. The grassland land use group covered 11.6% of the water-
shed and with a mean C value of 0.037.

Our third objective was to calculate the mean annual estimates of soil loss (in Mg
ha−1 yr−1) for the eight-year period (Table 8) and the annual rate of soil loss based on
the percentage of three soil erosion classes (low, moderate, and high). The lowest annual
mean estimate occurred in 2014, with an estimated mean of 1.8 Mg ha−1 for soil lost
through erosion. The highest annual mean estimate occurred in 2018 when an estimated
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2.9 Mg ha−1 of soil was lost through erosion. The average mean soil loss estimate for the
eight-year period was 2.3 Mg ha−1 yr−1. We used the mean annual soil loss estimates for
each land cover type (Table 9) to estimate the mean annual soil loss of developed land
versus undeveloped land (Table 10).

Table 8. Annual Soil Erosion Estimates from 2013–2020.

Rate of Soil Loss (Mg ha−1 yr−1)

Year
Mean Annual

Soil Loss
Estimate (A)

Low (A < 1.5) Moderate (1.5 < A < 5) High (A > 5)

2013 2.4 63.4% 25.4% 11.2%
2014 1.8 70.2% 23.0% 6.8%
2015 2.3 64.5% 25.2% 10.3%
2016 2.2 65.7% 24.6% 9.7%
2017 2.2 65.5% 25.0% 9.5%
2018 2.9 59.4% 26.2% 14.4%
2019 2.3 64.7% 24.8% 10.5%
2020 2.4 64.1% 25.4% 10.5%

Table 9. Estimates of 8-year mean annual values of USLE parameters for each land cover class.

Land Cover Class A K LS C P

Open Water 3.8 0.019 7.5 0.041 1.0
Developed/Open Space 3.4 0.032 4.4 0.038 1.0

Developed/Low Intensity 3.8 0.037 4.1 0.039 1.0
Developed/Med intensity 2.5 0.041 2.4 0.040 1.0
Developed/High Intensity 1.0 0.045 0.9 0.042 1.0

Barren 2.5 0.056 1.8 0.039 1.0
Deciduous Forest 2.5 0.027 3.8 0.037 1.0
Evergreen Forest 2.2 0.034 2.6 0.039 1.0

Mixed Forest 8.2 0.028 11.8 0.039 1.0
Shrubland 1.4 0.050 1.2 0.037 1.0

Grassland/Pasture 2.2 0.050 2.1 0.037 0.9

Table 10. Area Percentage and estimated area-weighted mean soil loss rate of Developed Land and
Undeveloped Land.

Land Cover Type Mean % of Watershed Area Estimated Mean Soil Loss
Rate (Mg ha−1 yr−1)

Developed Land 4.9 3.4
Undeveloped Land 94.9 2.4

Developed land covered 4.9% of the watershed with a mean annual soil loss of
3.4 Mg ha−1 yr−1. It included developed/open space, developed/low intensity, devel-
oped/med intensity, developed/high intensity.

Undeveloped land covers 94.9% of the watershed and had a mean annual soil loss
estimate of 2.4 Mg ha−1 yr−1. The land included deciduous forest, evergreen forest,
mixed forest, shrubland, grassland/pasture, woody wetlands, herbaceous wetlands, and
barren land.

4. Discussions

Our mean estimated R factor over the eight-year period of 637.5 MJ mm ha−1 h−1 yr−1

matched up fairly well with the estimated R factors of Eisenberg and Muvundja [37] and
Parveen and Kumar [1], i.e., 845.7 MJ mm ha−1 h−1 yr−1 and a range of 508–584 MJ mm
ha−1 h−1 yr−1, respectively. The discrepancy between these values may be the result of
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different annual precipitation rates between each respective study area (our ‘watershed’s
mean annual precipitation was 1361 mm).

Eisenberg and ‘Muvundja’s [37] study area had mean annual precipitation of 1277 mm,
whereas Parveen and Kumar [1] had a mean annual precipitation rate between 880 mm
and 1480 mm.

We derived our K factor using the methods developed in our literature Fernandez
et al. [38] and Chang et al. [24] with K data adapted from the SSURGO, which was calculated
using U.S. soil data for spatially explicit studies [19].

Our L.S. factor (3.6) was consistent with that found by Eisenberg and Muvundja [37]
(3.60). Other studies found that the mean L.S. was less than 3 [1,38,39]. This discrepancy
might be related to our study area, the Ruzizi River valley, which shares a similar topogra-
phy to that found in short and steep slopes (watershed, percent slope from 0 to 191.4%).

The mean annual C for our watershed had mixed results compared to other studies.
Our mean (0.037) was higher than the 0.023 mean C factor value found by Almagro et al. [28]
study, which used an NDVI-derived C factor. This difference may be due to climate because
the Brazilian study site of the Almagro et al. [28] had a tropical climate with an annual
rainfall of 1500 mm and an annual temperature of 23 ◦C. This difference could produce
higher NDVI values.

Our mean C was also lower than found by Karaburun [26], who used a different
NDVI-based C equation with greater than 60% of its watershed with C values between
0.2 and 0.4. This might be the result of the difference between land cover classes when it
comes to mean C factor values, as the agricultural land covers 67% of the Buyukcekmece
watershed in the Karaburun study.

In contrast to the results of Fernandez et al. [38], our C factor values were generally
higher for different land uses (0.037 to 0.001 for mean Forest C factor values; 0.037 to
0.003 for mean Grassland C factor values; and 0.039 to 0.03 for mean Urban C factor
values). Furthermore, while overestimated values can be expected for NDVI-derived C
factor values [29], the scaling of our C factor values does not seem to vary between the
different land use types, as our mean C factor values for each land use are fairly similar.
This is in contrast to the results of Almagro et al. [28], where the NDVI-derived C factor
values were able to better represent the variety of C factor values amongst the different
land uses. Thus, we can see a limitation in our use of Landsat 8 spatial imagery to produce
C factor values through its relationship with NDVI.

Our annual soil loss estimates were consistent with estimates found in the literature
we reviewed. Parveen and Kumar [1] and Prasannakumar et al. [39] found that the majority
of the watershed (64% to 98.95% of their areas, respectively) had a soil erosion rate less than
5 Mg ha−1 yr−1 (slight-moderate). We also found similar results in the overall mean soil
loss rate that covered 89.65% of our watershed (slight-moderate erosion). For the roughly,
10.35% of our watershed with High rate of soil loss (5 Mg ha−1 yr−1 and above), we can see
that these areas comprised mainly of Developed/Open Space, Developed/Low Intensity
and Deciduous Forest land cover classes. These land cover classes have higher than average
LS factors for our study area (4.4, 4.1, 3.8, respectively) and, consequently, higher rates
of soil loss (3.4, 3.8, 2.5 5 Mg ha−1 yr−1, respectively) (Table 9). Our data, however, was
inconsistent with those data reported by Fernandez et al. [38], which found that only 47%
of the watershed had a soil loss rate of less than 5 Mg ha−1 yr−1. This could be the result of
Fernandez et al. [38] using a watershed consisting primarily of cropland, which contributes
nearly 95% of the sediment yield in the watershed at a soil loss rate of 21.5 Mg ha−1 yr−1.

5. Conclusions

We used geospatial and meteorological data to compute the Universal Soil Loss Equa-
tion USLE to estimate the annual soil loss of Marrowbone Creek-Russell Fork watershed in
eastern Kentucky. We calculated the mean annual soil loss rates over an eight-year period
(2013–2020). We found that the average annual soil loss ranged from 1.8–2.9 Mg ha−1 yr−1

with an eight-year mean of 2.3 Mg ha−1 yr−1. In terms of evaluating the applicability
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of Landsat 8 derived NDVIs to derive the C factor, we had mixed results. Our mean C
value was close to what we expected; however, our C values were not consistent with the
expected variation values between the different land cover classes. This suggested that
we needed to use a region-specific calibration to maximize the use of NDVI we used to
calculate C. We observed that developed land cover classes in the watershed were less
resistant to soil loss than undeveloped land cover classes over the eight-year period. This
observation matches the results of both Parveen and Kumar [1] and Mahleb et al. [40] with
reported areas of higher human intervention having higher rates of soil erosion.

Our study had several limitations. First, the USLE did not account for gully erosion.
Sheet and rill erosion constitute most of the erosion within a watershed; however, any
estimate of soil loss from the USLE should not be considered an estimate of total erosion in
the study area. The Watershed Erosion Prediction Project (WEPP) model used in conjunction
with the USLE could give a better estimate of gully erosion within a watershed.

The empirical nature of the USLE is dependent on localized field data. The USLE is best
suited to computations that are calibrated for specific regions where it can provide accurate
estimations for land use planning and conservation efforts [41] However, this can cause
issues if the region lacks the localized data necessary to validate the model, specifically
when developing methodologies that affect the calculation of the C and P factors. We
found that our temporal inconsistencies in data affected our method of calculating the C
factor. We had to rely on seasonal measurements of NDVI throughout the eight-year period
because we were unable to access monthly Landsat 8 scenes of our watershed using the
method used by Almagro et al. [28]. Additionally, we had to substitute satellite images
slightly outside the defined seasonal classes to compute the C factor for those years (for the
2013 winter date, we used a scene from 7 January 2014, and for the 2014 summer date, we
used a scene from 4 September 2014). We found that spatiotemporal variation among the
land cover classes provided evidence that spatial and temporal scales affect the sensitivity
of NDVI calculations [29].

Our study also lacked the necessary data for validation. While our model produced
results that were comparable to those from similar studies; however, we lacked the vali-
dation limits needed to determine the robustness and applicability of our research. For
example, Tedela et al. [9] used statistical analysis to validate their runoff estimates across
10 forest watersheds compared to observed runoff data. Our method limits its potential
applicability in the southeastern United States region. Future research is needed to perform
multiple studies in the mountainous regions similar to Kentucky’s Appalachia to validate
the results using observed soil erosion measurements.
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