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Abstract: Harmful algal blooms (HABs) in arctic lakes are recent phenomena. In our study, we
performed a long-term analysis (1990–2017) of the eutrophication of Lake Imandra, a large subarctic
lake, and explored the biodiversity of bloom-forming microorganisms of a 2017 summer HAB. We
performed a 16Sr rRNA metabarcoding study of microbial communities, analysed the associations
between N, P, C, and chlorophyll concentrations in the lake water, and developed models for
the prediction of HABs based on total P concentration. We have demonstrated that blooms in
Lake Imandra occur outside of optimal Redfield ratios and have a nonlinear association with P
concentrations. We found that recent summer HABs in a lake occur as simultaneous blooms of a
diatom Aulacoseira sp. and cyanobacteria Dolichospermum sp. We have studied the temporal dynamics
of microbial communities during the bloom and performed an analysis of the publicly available
Dolichospermum genomes to outline potential genetic mechanisms beneath simultaneous blooming.
We found genetic traits requisite for diatom-diazotroph associations, which may lay beneath the
simultaneous blooming of Aulacoseira sp. and Dolichospermum sp. in Lake Imandra. Both groups of
organisms have the ability to store nutrients and form a dormant stage. All of these factors will ensure
the further development of the HABs in Lake Imandra and the dispersal of these bloom-forming
species to neighboring lakes.

Keywords: HABs; 16S rRNA metabarcoding; microbiota analysis; arctic lakes; eutrophication; critical
nutrient loads; diatom–diazotroph associations

1. Introduction

Lake Imandra is the largest freshwater lake located in the southwestern part of the Kola
Peninsula, Russia. The lake has a complex natural shape and is subdivided into three major
parts connected by narrow straits with strong currents (Figure 1). The lake has a surface
area of 876 km2, an average depth of 16 m, and a maximum depth of 67 m and is used for
hydropower generation. The lake catchment area (12,342 km2) is crowded, with various
mining sites dumping their wastewater into the lake and storing tailings nearby. The area
is populated by approximately 80,000 people, and along with industrial effluents, the lake
receives treated municipal wastewater from three settlements [1]. The apatite processing
industry is a major source of phosphorous for Lake Imandra, while the mining industry
(MI) and municipal wastewater (MWs) are sources of nitrogen. The average mineralization
of the lake water has increased 2.3 times from 27.7 mg/L in 1950 to 64.2 mg/L in 2017 due
to the excessive input of various soluble organic compounds as well as soluble inorganic
compounds, including mineral macronutrients. The load distribution is not equivalent
among the major parts of the lake [2]. According to our estimations, the most eutrophic part
of the lake, Bolshaya Imandra (average mineralisation: 73.2 mg/L), receives 1233 tonnes
of anthropogenic nitrogen (N) and 300 tonnes of phosphorous (P) annually. The two
remaining parts of the lake, Jokostrovskaya Imandra (average mineralisation: 68.1 mg/L)
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and the least eutrophic part, Babinskaya Imandra (average mineralisation: 40.9 mg/L),
receive anthropogenic loads as part of the water currents from Bolshaya Imandra and are
not directly connected to any point sources of anthropogenic pollution [2,3]. Historical data
has indicated an 11 m Secchi disk depth (transparency) for Lake Imandra at the beginning
of the 20th century. In 1978, the Secchi disk depth (transparency) was reduced to 1.9 m [4],
and this parameter is no longer used, as the transparency of the water in Lake Imandra is
reduced even more due to the proliferation of microalgae during the ice-free period [2,3].
The lake is ice covered for at least 6 month during the year, and active primary production
primarily takes place in June, July, and August [5].
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Figure 1. Study area and location of the sampling site (67.595249 N; 33.003494 E). Blue arrows indicate directions of the
currents in the Lake Imandra. API—apatite processing industry. Dashed lines indicate approximate borders of the parts of
the lake.

The seasonal dynamics of the planktonic communities vary between different parts of
the lake and correlate in general with the concentrations of macronutrients. For the least
eutrophic areas (southern part of Jokostrovskaya Imandra and Babinskaya Imandra), the
biomass of the phytoplankton reaches the summer maximum in July and is normally domi-
nated by diatoms and/or Chlorophyta spp. [3]. Heavily eutrophic Bolshaya Imandra and the
northern part of Jokostrovskaya Imandra have multiple planktonic biomass peaks formed
by blooming diatoms, dinoflagellates, and Chrysophyta, Chlorophyta, and Cyanobacteria
species. Summer blooms in Bolshaya Imandra and the northern part of Jokostrovskaya
Imandra start with the succession of diatoms and is usually dominated by Aulacoseira
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islandica [1–3]. The proliferation of diatoms may be accompanied by an increase in the
biomass of mixotrophic Dinobryon spp. (Chrysophyta), described as early spring bloom
formers in oligo- and mesotrophic aquatic ecosystems [6–8]. Planktonic biomass during
diatom blooms exceeds 20 g/m3 and gradually decreases during the summer. Based on
the results of manual taxonomic analysis, the earlier described blooms occurring at the end
of July and the beginning of August are formed by dinoflagellates (Ceratium hirundinella,
Peridinium aciculiferum, and Peridinium goslaviense), Chlorophyta (Mucidosphaerium spp.,
Micractinium spp., Paulschulzia spp., Eudorina spp., Hindakia spp., and Pseudopediastrum
spp.), or cyanobacteria species (Dolichospermum spp., Anabaena spp., and Coelosphaerium
spp.) [1–3,9].

Cyanobacteria in Lake Imandra demonstrate typical generalist species characteristics,
as their blooming may suddenly occur in any part of the lake. Various cyanobacterial
species are recorded in planktonic samples from May to October and normally yield be-
tween 0.25 and 4.3 g/m3 planktonic biomass. The most intensive blooming was observed
in Bolshaya Imandra and the northern part of Jokostrovskaya Imandra, with cyanobacte-
rial biomass reaching 25–31 g/m3 at the peak of blooming [3]. According to our earlier
published manual taxonomic identifications, the most intensive blooms are formed by
Dolichospermum lemmermannii, creating thick green films on the surface of the lake, and are
accompanied by high fish mortality (Figure 2). D. lemmermannii blooms may develop as
soon as the water temperature exceeds 16 ◦C and predominantly begin in semi-closed bays
with little or no current [1,3,9]. Blooming over large open areas occurs during wind-free
periods and is relatively rare. September blooms take place at water temperatures of ap-
proximately 7–8 ◦C and may be formed by Anabaena contorta, Anabaena ellipsoides, Anabaena
subcylindrica, Dolichospermum circinale, Dolichospermum planctonicum, and Dolichospermum
spiroides, as identified by manual taxonomic analysis [1,9].
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Figure 2. Dead fish during typical summer HAB formed by the simultaneous bloom of diatom—Dolichospermum sp. in
Lake Imandra. The affected species include Coregonus lavaretus, Coregonus albula, Osmerus eperlanus of all life stages and
juveniles of Perca fluviatilis.

All prior studies of the phytoplankton in Lake Imandra were performed using tra-
ditional manual taxonomic identification techniques and thus provided limited data on
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the entire biodiversity and co-occurrence of the bloom-forming species. In this paper, we
present the results of a long-term analysis of the eutrophication of the lake, associations
of the planktonic biomass with environmental parameters and metabarcoding analysis
of the typical recent summer bloom in Lake Imandra. The sampling station was placed
in the vicinity of Jokostrov Island, which is located at the intersection of the two most
eutrophic parts of the lake (Figure 1). We also report nonlinear regression models allowing
the prediction of the HABs for Lake Imandra based on the P concentrations in surface
water samples. Our study is the first 16S rRNA metabarcoding study of a summer HAB
conducted for a heavily eutrophic subarctic lake in Fennoscandia, and for the first time, we
suggest nonlinear regression models as tools for the prediction of the HABs based in arctic
lakes based on P concentrations in surface water samples.

2. Materials and Methods
2.1. Hydrochemical Analysis

Water samples were collected between 1990 and 2017. The sampling was performed
according to the standardised national and international guidelines for the collection of
water samples for environmental monitoring. Analysis of the hydrochemical parameters
was performed at the ISO17025:2009 compliant laboratory certified by the Russian Federal
Agency on Technical Regulation and Metrology (Certificate РОCC RU.0001.517126). The
methods used in the current study are described in detail in respective ISO standards. The
concentration of total organic carbon [10] was determined as described in ISO 8467:1993
(2019) by heating a sample in a boiling water bath with a known amount of potassium
permanganate and sulfuric acid. The amount of consumed permanganate was determined
by the addition of oxalate solution followed by titration with potassium permanganate.
Concentrations of total phosphorus [11] and PO4

3− ions were measured by the ammonium
molybdate spectrometric method after potassium persulfate decomposition [11] and di-
gestion with sulfuric acid (PO4

3−) as described in ISO 6878:2004(2019). The concentration
of total nitrogen [12] was measured spectrometrically in the presence of Griess reagent
after treatment of the samples with peroxodisulfate and subsequent cadmium reduction
to NO2

− (ISO 11905-1:1997(2019)). The concentration of NO3
− was measured with a

conductivity detector after ion exchange chromatography separation (ISO 10304-1:2007
(2016)). The concentration of NH4

+ was determined as described in ISO 7150-1:1984 (2017).
The concentration of chlorophyll-a (Chl-a) was determined spectrometrically after acetone
extraction (ISO 10260:1992 (2017)).

Calculation of the lake critical phosphorus loading (CLP) level was performed accord-
ing to the method suggested by Vollenweider [13]. The actual annual phosphorous loads
(LP) were calculated according to the method proposed by Kirchner and Dillon [14] by
using the average annual concentration of P in water for the respective year.

2.2. Prediction of Chlorophyll-a Concentrations and Visualization of TC/TN/TP/Chl-a Ratios

LOESS regressions [15] were built based on chlorophyll-a concentrations measured
for sets of lake water samples collected in 2012. Modelling was performed in the R
environment [16], and results were visualized using the ggplot2 package [17]. The LOESS
(LR) models were used to predict Chl-a levels based on total P concentrations observed
in 1990–2011 and 2013–2017. Both the predicted and measured Chl-a concentrations were
used for the visualization of TC/TN/TP/Chl-a ratios in the ternary graphical system
suggested by Smith et al. [18]. Linear regression analysis and PCA as well as visualization
of the TC/TN/TP/Chl were performed in R [16] using integrated functions/ggplot2
visualization [17] and the ggtern package, respectively [19].

2.3. DNA Preparation and Processing

The surface water samples were collected from a boat using sterile one litre bottles
(67.595249 N; 33.003494 E). The bottles were sealed and were transported to the shore, where
in the laboratory, the 1 L water samples were filtered through standard line bottle top filters
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(VWR) with 0.22 µm membranes. Membranes were used for DNA extraction with a DNeasy
PowerWater Kit (QIAGEN). The blooming intensity and the respective time points for
sample collection were determined based on the total chlorophyll-a concentrations. The ex-
tracted DNA was quantified, accessed for purity, and used to generate 16S amplicons with
primers specific to the V1-V3 hypervariable region (27F-AGAGTTTGATCCTGGCTCAG
and 534R-ATTACCGCGGCTGCTGG). The library was prepared using the Nextera XT
DNA Library Prep Kit (Illumina). The amplicons were analysed using an Illumina MiSeq
sequencer in 2 × 300 bp paired-end read sequencing mode and a 600-cycle v3 MiSeq
Reagent Kit. The raw sequencing reads are available from the NCBI through BioProject
accession number PRJNA526000.

2.4. Analysis of Bacterial Communities

Analysis of microbial communities was performed using the Quantitative Insights
into Microbial Ecology pipeline [20]. The raw sequence reads were trimmed and filtered
by quality score to retain sequences with a base call > Q20. The taxonomic analysis
was performed using the Greengenes 13.8 16S rRNA database [21]. The naive Bayes
classifier [22] was trained using the V1-V3 primer pair 27F (AGAGTTTGATCCTGGCTCAG)
and 534R (ATTACCGCGGCTGCTGG), and the same primers were used for the generation
of amplicons. For general differential abundance analysis, an operational taxonomic unit
(OTU) table was created using the DADA2 pipeline [23]. Differential abundance analysis of
the filtered table was performed in QIIME2 using the Gneiss algorithm [10]. The analysis
of correlations between the groups of microorganisms and environmental factors was
performed in R [16], and the results were visualized with ggplot2 [17].

2.5. Analysis of the Publically Available Dolichospermum Genomes

Analysis of the NCBI available Dolichospermum genomes (NZ_AP018316.1 and NZ_
CP043056.1) was performed locally using the BLAST+ algorithm and a key procaryotic
B1 and B12 vitamins biosynthesis enzyme sequence as a query. Statistically significant
matches were curated manually and were verified against the UniProt database to confirm
the predicted biosynthetic functions.

3. Results
3.1. Eutrophication Dynamics

Lake Imandra has a complex snow/groundwater/river water feeding regime. The
contribution of each factor greatly depends on the season. In the winter, the lake is mainly
fed by groundwater and rivers, while in spring, snowmelt has a greater impact on its
hydrological regime. The only outlet from the lake is used for hydropower generation, and
as a result, the lake has a relatively slow water exchange rate (Table 1). It takes 2.38 years to
completely exchange the water in the lake, which, in turn, makes the lake highly sensitive
to the excessive input of macronutrients.

The general decline in industrial activities in 1986–1993 had positive effects on the
eutrophication of the lake. The study site used for metabarcoding analysis was located at the
intersection of the two most eutrophic parts of the lake. Between 1990 and 2017, the annual
critical load of anthropogenic P was not exceeded in 1990–1991. In 1992–2017, the annual
critical phosphorous load exceeded the critical load by 1.1–3.7 times (Figure 3). The annual
average concentrations of the main macronutrients in the lake water in 1990–2017 exceeded
the initial parameters of the lake water recorded in 1930, as it contained 0–35 µg/L NO3

−

and 0–8 µg/L PO4
3− [5]. The main physicochemical parameters of the surface water vary

in different areas of Lake Imandra and correlate with the localisation of the eutrophication
sources, river inlets, and the directions of the currents. The NH4/NO3 balance is typically
shifted towards NH4 ions in Jokostrovskaya Imandra and reflects the decomposition of
the organic matter in the sediment. NO3 ions are dominant in water samples collected
from Bolshaya Imandra, which receives the mining wastewater enriched with both NO3
and P. N and P concentrations both have seasonal and annual variations and depend
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on the intensity of the mining and enrichment activities of API. In the summer months,
the concentrations of the main macronutrients are greatly affected by proliferation of the
photosynthetic microorganisms actively consuming excessive N and P from the lake water.
The average physicochemical parameters of the surface water of different parts of the Lake
(Table 2) remained relatively stable over the years, as no new API processing plants or
mines were opened in the area in 1990–2017.

Table 1. The morphometric characteristics and critical and actual annual phosphorus loadings of Lake Imandra and its parts.
Hmax—the maximum lake depth; Z—the average lake depth; Slake—the lake surface area; V—the lake volume; Scathc—the
catchment area; R—the water drainage rate; t—the time of water discharge; CLP—critical phosphorus loading; Q(P)max—the
maximum permissible phosphorus admission to the lake; M(P)—the maximum permissible drainage module of phosphorus;
L(P)—annual phosphorous load in 2017.

Hmax
(m)

Z
(m)

Slake
(km2)

V
(km3)

Scathc
(km2)

R
(m/s)

t
(Year)

CLP
(mg P/m2;

Year)

Q(P)max
(ton P;
Year)

M(P)
(mg P/m2;

Year)

L(P)
(ton P;
Year)

Entire Lake 67 13.3 813 10.81 12300 145 2.38 333 270 22 1507
Bolshaya I. 67 14.7 312 4.58 4993 145 1.00 368 115 23 999

Jokostrovskaya I 42 10.9 352 3.84 6070 145 0.84 273 96 16 332
Babinskaya I. 43.5 16.3 149 2.42 1238 145 0.53 408 61 49 176
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Table 2. Typical recent average values of the physicochemical characteristics of the surface water in various areas of Lake
Imandra during the summer months. Numerator—median value; denominator—range of values.

pH NH4
(µgN/l)

NO3
(µgN/) NO3: NH3

TN
(µgN/l)

Nopr
(µgN/l)

PO4
(µgP/l)

TP
(µgP/l) TN:TP

Bolshaya I. 7.5
6.8–8.4

7.0
1.0–114

5.0
0–1156

3.4
0–39.0

196
119–1629

188
117–365

3.0
1.0–153

27.0
7.0–251

8.4
2.5–18.9

Jokostrovskaya I. 7.3
7.1–7.4

10.0
1.0–58.0

2.0
0–30.0

1.0
0–12.0

152
111–259

138
84–199

1.0
0–2.0

7.0
5.0–12.0

21.6
14.7–34.0

Babinskaya I. 7.3
7.0–7.5

9.0
2.0–22.0

7.0
0–78.0

2.8
0–21.7

156
66.0–318

126
44–250

1.0
0–3.0

5.0
3.0–22.0

30.6
5.7–63.6

3.2. Nutrient Stoichiometry and Chlorophyll-a

The training datasets for the generation of the LR regression models were based on
total phosphorous concentrations and concentrations of chlorophyll-a (Figure 4) measured
for the same sampling points during July 2012. The LR curves describing the relationships
between the TP and Chl-a concentrations have dual Chl-a concentration peaks that are
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specific to each part of the lake and represent the blooming events that took place in
July 2012 (Figure 5a). The sampling site was placed at the intersection of the two most
eutrophic parts of the lake to cover the entire range of chlorophyll and TP concentrations.
The PCA (Figure 5b) also demonstrated three distinct TP and Chl-a concentration distri-
bution patterns for different parts of the lake, thus supporting the results of the LOESS
regression modelling.
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Figure 4. Typical summer distribution patterns of Chlorophyll—a concentrations over different parts of Lake Imandra.

Regular cyanobacterial blooming in Lake Imandra started in 2000, while irregular
blooming had been observed prior to 2000, since 1993. Plotting TOC, TP, and TN alongside
Chl-a concentrations for the period between 1993 and 2017 demonstrated that the Chl-a
concentrations followed the TP and NT concentrations (Figure 6b). Correlation analysis
of associations between the two hydrochemical parameters and Chl-a concentrations
supported this observation, as TP/Chl-a had a strong positive correlation (r = 0.86, p < 0.05),
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and TN/Chl-a had a medium positive correlation (r = 0.66, p < 0.05). The associations
between TOC and Chl-a were not significant.
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Figure 6. Dynamics of the mean concentration of TOC (µg-C/L), TP (µg-P/L), TN (µg-N/L), and Chl-a (µg/m3) in
1993–2017 (a). Squares and triangles reflect the regularity of HABs (square—irregular; triangle—regular). Concentrations of
TOC, TP, TN, and Chl-a during HABs in Lake Imandra in 1993–2017. The values are expressed as relative percentages of
their Redfield sum. The white circle represents the optimal Redfield ratio (b).

In the ternary diagram, the parameters of all of the studied samples are located away
from the optimal Redfield value, and thus, a balanced C/N/P ratio is not needed for
the development of cyanobacterial blooms in Lake Imandra. All points are clustered
in the same area of the ternary diagram and to a great extent only differ in chlorophyll
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concentrations. The blooming in 1993–2017 occurred under N- and P-limited conditions
for plankton if judged based on the Redfield optimal ratio (Figure 6b).

3.3. Microbial Communities

In the current study, we used primers in the V1-V3 16S rRNA region, allowing for the
amplification of bacterial and chloroplast 16S rRNA sequences. The amplicons obtained
from eukaryotic photosynthetic microorganisms (EPMs) were included in the analysis, and
the relative abundances of the OTUs were calculated considering the relative abundances
of the OTUs derived from both the prokaryotes and chloroplasts of EPMs.

We identified 37 bacterial phyla among the whole set of the studied samples. The
prokaryotic communities were dominated by Proteobacteria, Bacteroidetes, Actinobacteria,
Verrucomicrobia, Planctomycetes, and Cyanobacteria followed by members of other less
abundant taxa. A total of 18 of 37 prokaryotic phyla comprised unclassified microorganisms
having no significant 16S rRNA similarities with the cultured and characterised bacterial
species. An analysis of the alpha and beta diversity performed for both prokaryotes and
EPMs showed statistically significant changes (p < 0.05) in the biodiversity and relative
abundances of the species at the peak, middle, and terminal blooming phases identified
based on the total chlorophyll-a concentrations. Shannon’s H index dropped three times
between the peak and the end of blooming (Figure 7a) through a dramatic decrease in the
relative abundances of the EPM species.
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Amplicons derived from photosynthetic microorganisms on average comprised 34.0%
of the total microbial population during the blooming peak, 18.6% during the middle of the
blooming period, and only 1.69% at the end of the blooming period. The photosynthetic
communities at the peak and middle phases of the blooming period were dominated by
EPMs that made up 24.92% and 16.98% of the total number of amplicons, respectively. At
the end of the blooming period, the EPMs were found in only 3 of 10 studied samples on
average, comprising 0.15% of the total number of amplicons. The death of the EPMs was
accompanied by 18.62%, 0.76%, 0.12%, and 25.56% increases in the mean relative abun-
dances of Proteobacteria, Firmicutes, Fusobacteria, and unclassified prokaryotic organisms,
respectively, leading to significant changes in beta-diversity metrics (Figure 7b). Chlorobi,
Chloroflexi, and Planctomycetes detected in our samples had statistically significant as-
sociations with several cyanobacterial genera and EPMs (Figure 8). Their mean relative
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abundances at the peak of blooming, however, ranged between 0.07% and 0.8% of the total
microbial population.
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Figure 8. Correlation analysis of associations between relative abundances of cyanobacteria and EPMs during summer
HAB in Imandra Lake.

PCA showed that changes in the relative abundances of EPMs and eight Cyanobacte-
rial genera (Dolichospermum, Pseudanabaena, Nostoc, Chloroidium, Paulinella, Synechococcus,
Planktothrix, and Phormidium) made the largest contribution to the distribution of the data
in two-dimensional coordinates (Figure 9). The pool of EPM amplicons comprised OTUs
assigned to Bacillariophyta, Chlorophyta, Euglenozoa, Haptophyceae, Stramenopiles, and
Streptophyta. EPM OTUs at the peak of blooming were dominated (24.1%) by a single
amplicon derived from a diatom Aulacoseira sp. (Bacillariophyta). All of the remaining
OTUs thus comprised 0.82% of all of the amplified sequences and therefore likely had no
major impact on the environmental consequences of the bloom. In the middle of the bloom,
the mean relative abundance of the dominant OTU dropped to 16.34%, and at the end of
the bloom, this amplicon was not detected in any of the studied samples (Figure 10).
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3.4. Putative Genetic Triats Beneath Simultaneous Blooming

At present, the NCBI nucleic acid archive contains two fully sequenced genomes
of Dolichospermum sp., both containing genes essential for the synthesis of B1 and B12
vitamins. The prokaryotic B1 biosynthesis pathway requires at least four enzymes. Searches
of the genomes of Dolichospermum compactum (NZ_AP018316.1) and Dolichospermum sp.
(NZ_CP043056.1) showed that both species contain all four genes required for thiamine
biosynthesis (ThiC > ThiD > ThiN > ThiL). The thiamine phosphate synthase ThiC is
a key enzyme that is responsible for the biosynthesis of the aminopyrimidine ring of
the thiamine molecule, and ThiL is responsible for the final stage of the biosynthetic
process or formation of thiamine diphosphate from thiamine monophosphate. De novo
biosynthesis of vitamin B12 or cobalamin requires approximately 30 biosynthetic genes
and may occur through the aerobic or anaerobic pathway. Several cobalamin biosynthesis
genes are shared by two pathways, but both have enzymes specific to each pathway. Our
analysis has shown the presence of homologs of at least five key cobalamin biosynthesis
enzymes in both available genomes. The CobE protein participates in the conversion of
cobalt-precorrin 5 into cobalt-precorrin 6; CobD is involved in cobalamin biosynthesis
and is likely responsible for conversion of adenosylcobyric acid to adenosylcobinamide or
adenosylcobinamide phosphate; CobW is involved in the storage of cobalt ions prior to
their use in cobalamin biosynthesis; the CobQ protein catalase amidations at positions B,
D, E, and G in adenosylcobyrinic A,C-diamide intermediates; and the CbiM protein is a
part of the transporter complex CbiMNOQ, which is involved in cobalt import.

4. Discussion
4.1. Selection of the Primers

The current version of Illumina dye sequencing technology allows the amplification
of 2 × 300–350 bp DNA fragments; thus, the precision of microbiome analysis greatly
relies on the selected primers. The microbial 16S rRNA gene has approximately 1600 base
pairs and consists of nine hypervariable regions. Amplification of conserved regions the
allows reliable identification of higher taxa, while analysis based on quickly evolving
areas may provide better discriminating power at the genus or even species level. A
number of studies have shown that the selection of the area for amplification influences
the outcome of taxonomic identification [24,25]. At the same time, the selection of primer
pairs did not affect the ecological interpretation of the results for planktonic communities,
as the identified taxa had similar correlation patterns for all primer pairs [26]. A study
by Parulekar et al. comparing the performance of the V1-V3 and V3-V4 primer pairs for
eutrophic lakes in southern Norway showed that the two primer pairs equally identified
Cyanobacteria, Proteobacteria, Actinobacteria, Acidobacteria, and Parcubacteria, while
Bacteroidetes, Verrucomicrobia, Armatimonadetes, Firmicutes, and Planctomycetes were
better represented in the samples amplified with the V3-V4 pairs [27]. Chloroplasts are of
cyanobacterial origin, and thus, prokaryotic primers adequately amplifying cyanobacterial
16S rRNA sequences provide good insight into the biodiversity of eukaryotic species
containing chloroplasts [28]. Due to the variations of the chloroplast copy numbers [11]
the approaches based on 16S rRNA are not suitable for the absolute quantification of the
OTUs; at the same time, the use of relative abundances of the OTUs allow the reliable and
statistically significant comparison of the various phases of the blooming events. Our study
was focused on the blooming dynamics of photosynthetic organisms in general (both pro-
and eukaryotic), and thus, we selected V1-V3 primer pairs for the generation of amplicons.

4.2. Concentrations of Macronutrients and Chlorophyll-a

The results of hydrochemical and chlorophyll-a concentration analysis demonstrate
that these parameters greatly vary among the parts of the lake. In both Bolshaya Imandra
and Babinskaya Imandra, the NH4

+/NO3
− balance was shifted towards NO3

− ions, while
in Jokostrovskaya Imandra, the NO3

− ions were depleted. This can be explained by
ongoing diatom blooms. Comparative studies of the uptake of NH4

+/NO3
− have shown
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that diatoms prefer NO3
− uptake over NH4

+ assimilation and have developed efficient
mechanisms for the storage and reduction of NO3

− ions [29,30]. The reduction of the stored
NO3

− ions to ammonium is used by diatoms to survive dark and anoxic conditions in the
bottom sediment and may occur through two groups of metabolic pathways. The first
group comprises the so-called dissimilatory pathways that reduce nitrate to ammonium,
and the second group consists of several pathways that reduce nitrate to NO2, N2O, or N2.
NO3

− uptake by diatoms occurs strictly in the presence of oxygen and thus takes place in
oxygenated subsurface layers. This correlates with the depleted NO3

- concentrations in the
surface water layers and with the increased concentrations near the bottom. The sinking
of the diatoms may thus contribute to the vertical transport of accumulated NO3

- ions to
bottom sediment [31]. The increase of chlorophyll-a concentrations in the water samples
normally begins in early June and correlates with the proliferation of various Diatom or
Dinobryon species. The contribution of cyanobacteria to a total planktonic biomass is
insignificant at the beginning of the summer, as their biomass rarely exceeds 0.1 g/m3.
The extensive proliferation of the cyanobacteria begins at the end of July and may reach
31 g/m3 during the August or September blooms if the conditions are favourable [2,3]. In
the current study, we demonstrated for the first time that Diatoms and cyanobacteria may
form a combined bloom in an arctic lake.

4.3. HABs in Arctic Waters

The algal blooming in arctic lakes is a recent phenomenon. In temperate climates,
the blooming may be accompanied by the release of the toxins or may be formed by a
non-toxin producing species. The blooms in Lake Imandra are formed by both pro- and
eukaryotic microalgae or their simultaneous proliferation. All blooming events recorded
by our group in Lake Imandra in 1990–2017 coincided with fish death of various intensi-
ties. The magnitude of the mortality was the highest during cyanobacterial blooms, while
blooming of EPMs had a less noticeable impact on the fish population in general. The
majority of cyanobacterial communities in pristine arctic waters exist in the form of algal
mats attached to abiotic substances or moss filaments. Suspended native cyanobacterial
species predominantly belong to Picocyanobacteria, whose surface-to-volume ratio allows
them to form up to 30–60% of the planktonic biomass in oligotrophic arctic waters [32].
Bloom-forming species such as Anabaena, Microcystis, and Aphanizomenon are considered
invasive species in arctic and are only present in eutrophic water basins [32]. The stoi-
chiometric combination 106C:16N:1P, referred to as the Redfield ratio, is considered to
be optimal for algal proliferation [18]. We have demonstrated that blooming in Lake
Imandra occurs outside of the optimal Redfield ratio and takes place under conditions
that are defined as N- and P-depleted for plankton. Imandra Lake undergoes the complex
blooming, as the proliferation of diatom Aulacoseira sp. is accompanied by the intensive
increase of biomass of the diazotrophic cyanobacterium Dolichospermum sp. This correlates
with the findings of other authors also showing that cyanobacterial HABs may occur
under both N- and P-limited conditions. In this case, the blooming species rely on N2-
fixation and P-scavenging pathways [33]. The availability of easily accessible nutrients
has a significant impact on the environmental consequences of the cyanobacterial blooms.
Experiments conducted on microcystin-producing Planktothrix species have shown higher
levels of toxin production in response to the addition of dissolved N and the highest levels
have occurred in response to NH4

+/urea + PO4
− combinations [34]. Increasing levels

of N and P in the water of Lake Imandra will thus further promote HAB development,
and increased fish mortalities should be expected in future. Individual cyanobacterial
genera and strains respond differently to various N/P combinations; thus, the selective
management of these macronutrients [35,36] combined with the management of blooming
communities are required to control cyanobacterial blooms in Lake Imandra and other artic
lakes. Controlling of the N/P concentrations alone will likely have a minor impact on the
blooming, as cyanobacteria have developed nutrient scavenging mechanisms as well as
mechanisms for the accumulation of storage lipids and carbohydrates [37,38]. Peculiarities
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in metabolism in combination with a simple genetic apparatus lead to high mutation rates,
which, in turn, constantly create new genetic forms of these microorganisms [39,40]. In
addition to ordinary binary fission, some species of photosynthetic bacteria are able to form
baeocytes [41,42], which are often motile and are used for dispersion into new niches [41].
Some cyanobacteria form dormant akinetes, allowing them to survive for decades while
experiencing starvation in lake sediment or to travel long distances following airflows
or various carriers [43]. The measures for controlling baeocytes and the germination of
dormant akinetes from lake sediment should also be considered for the efficient restoration
of the ecosystem of the Lake Imandra.

4.4. Putative Genetic Triats and Adaptations Beneath Simultaneous Blooming

Dolichospermum is adapted to growth at low temperatures, has a low demand for
nutrients and is able to accumulate phosphates [44]. Trichomes of Dolichospermum can
migrate within the euphotic zone in search of optimal photosynthesis and nutrient gradi-
ents, and thus, these species will likely develop blooms if present in the environment [45].
Dolichospermum spp. form two types of nonvegetative akinetes [46] surrounded by an
additional cell envelope and contain storage glycogen [47] and cyanophycin granules [48].
The early summer akinetes are formed soon after the extensive bloom and may cause
subsequent blooms within the same season if the conditions are favourable [46].

Repeated summer blooming was observed in Lake Imandra starting in 2000, indi-
cating that the formation mechanisms of summer akinetes are active and are used by
Dolichospermum sp. under arctic conditions. The formation of late-summer akinetes [43,49]
is triggered by light intensity and is used for the long-term survival and formation of
next year blooms in Imandra Lake. The late summer akinetes of Dolichospermum are able
to survive in sediment for decades. Salmaso et al. successfully germinated akinetes of
Dolichospermum from 1989 sediment cores and determined that the establishment of the
species coincided with the beginning of a rapid increase in total phosphorus concentration
in the studied lake [45]. The germination of dormant akinetes does not require external
N and P, as these elements are initially supplied by stored cyanophycin and glycogen.
Studies conducted on the akinetes of two Dolichospermum species blooming in warmer
climates have shown that the optimal temperature for their germination is approximately
20–25 ◦C. Incubation in this temperature interval synchronized the germination of akinetes
and directly resulted in blooming [50]. Temperatures of 20–25 ◦C are rarely observed, even
in the surface water layers of Lake Imandra, and have never been recorded for the bottom
layers. We have not found any studies describing the low-temperature germination of
Dolichospermum sp. to date, but cyanobacteria with low germination temperature optima
indeed exist. Anabaena flos-aquae flourishes at water temperatures from 10 to 29 ◦C, with the
most active akinetes germinating between 8 and 12 ◦C [51]. Light intensity is the second
factor that triggers germination. The abundance of akinetes in the uppermost centimetre
of the sediments of profundal sites is approximately 20 times higher than in the littoral
zone, thus indicating that germination occurs in the shore areas. The akinetes formed
over deep areas or that drift to profundal sediments are excluded from the seed bank [52].
Under normal conditions, the deep sediment layers in Lake Imandra are never exposed to
sufficient light and temperature, but the reduction of the water level due to hydropower
generation returns deposited akinetes into the active pool and promotes blooms in the lake.

Diatoms are surrounded by extracellular silicon dioxide shells [53]. Plastids of au-
totrophic diatoms lack thylakoid subdomains and have a random distribution of photosys-
tems I and II, providing direct energy transfer between the photosynthetic complexes. The
photosynthesis efficiency is thus higher in diatoms than in the chloroplasts of plants [54].
Diatoms quickly absorb nitrogen in NO2, NH4

+, NO3
−, and organic forms though various

transporters but have no N2-fixing apparatus and thus rely on intracellular N recycling
or symbiotic relations under N-limited conditions [30]. The phenomenon of diatom dia-
zotroph associations (DDAs) has been widely described for marine diatoms, as nitrogen
starvation is more prevalent in marine environments [55]. N2-fixing bacteria may occur as
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ectosymbionts, partial symbionts or endosymbionts, and their location is regulated by the
host [56]. The benefits of symbiosis with prokaryotes are not limited to the supply of N-rich
substrates, as diatoms are dependent on external vitamin sources [57,58]. It has been shown
that Daphnia actively grazing on Aulacoseira spp. [59] and thus simultaneous blooming with
toxin producing Dolichospermum species might provide additional advantages protecting
Aulacoseira spp. from potential grazers [12,60]. The lifecycle of Aulacoseira spp. does not
include the formation of dormant spores, but instead, the cells enter the altered resting
state with reduced chloroplasts. The resting state as well as revitalisation into a fully active
state is triggered by the light conditions and may take as little as 8 h in Aulacoseira subarctica.
The turbidity of the water and the thickness of the water level over the sediment containing
the resting cells are thus important for the revitalisation of the Aulacoseira spp. into the
active state [61].

We have studied repeated summer HABs in Lake imandra since their beginning in
2000 using manual taxonomic techniques. While both species were detected in water
samples in different time points, we were not able to depict fine interplay between the
diatom Aulacoseira sp. and cyanobacteria Dolichospermum sp. during the earlier HABs due
to the limitations of the manual methods. Advances in the development of molecular tools
not only allowed the discovery of the interplay between two species, but also allowed us
to examine their genomes. The discovery of the presence of the key vitamin B1 and B12
biosynthetic genes in the genomes of Dolichospermum sp. reported in our study as well
as the availability of experimental evidence on the symbiotic relations between diatoms
and prokaryotes published by other authors allow us to suggest that the simultaneous
succession of Aulacoseira sp. and Dolichospermum sp. during summer HABs in lake Imandra
is not incidental and relies on symbiotic relationships between the two species.

5. Conclusions

In the current study, we performed a long-term analysis of the eutrophication dy-
namics of Lake Imandra, a large subarctic lake, and performed metabarcoding analysis
of a typical summer HAB accompanied by high fish mortality. Our data demonstrate
that the lake is enriched with nutrients and that the annual input of macronutrients from
the API and municipal wastewater exceeds the theoretical permissible nutrient load. We
also found that summer HABs in the lake are formed by the simultaneous blooming of
diatom Aulacoseira sp. and a microcystin-producing Dolichospermum sp. Both blooming
species have mechanisms for the accumulation of nutrients and entry into dormant stages,
allowing long-term survival as well as dispersion into neighbouring bodies of water. Both
organisms are able to form symbiotic relationships, likely laying beneath their coordinated
succession. Simultaneous blooming of various groups of photosynthetic microorganisms
capable of forming dormant stages in an initially oligotrophic arctic lake indicate that its
ecosystem has dramatically transformed, and in the future, we should expect an increase
in HAB magnitude in Lake Imandra.
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