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Abstract: Polyvinyl alcohol (PVA) is an emerging pollutant commonly found in industrial wastewa-
ter, owing to its extensive usage as an additive in the manufacturing industry. PVA’s popularity has
made wastewater treatment technologies for PVA degradation a popular research topic in industrial
wastewater treatment. Although many PVA degradation technologies are studied in bench-scale
processes, recent advancements in process optimization and control of wastewater treatment tech-
nologies such as advanced oxidation processes (AOPs) show the feasibility of these processes by
monitoring and controlling processes to meet desired regulatory standards. These wastewater treat-
ment technologies exhibit complex reaction mechanisms leading to nonlinear and nonstationary
behavior related to variability in operational conditions. Thus, black-box dynamic modeling is
a promising tool for designing control schemes since dynamic modeling is more complicated in
terms of first principles and reaction mechanisms. This study seeks to provide a survey of process
control methods via a comprehensive review focusing on PVA degradation methods, including
biological and advanced oxidation processes, along with their reaction mechanisms, control-oriented
dynamic modeling (i.e., state-space, transfer function, and artificial neural network modeling), and
control strategies (i.e., proportional-integral-derivative control and predictive control) associated
with wastewater treatment technologies utilized for PVA degradation.

Keywords: process control; process identification; dynamic modeling; polyvinyl alcohol; advanced
oxidation processes (AOPs)

1. Introduction

Over the last few decades, water-soluble polymeric materials have been a popular
additive in many industries. Polymers, including polyacrylic acid (PAA), polyethylene
glycol (PEG), polyethylene oxide (PEO), and polyvinyl alcohol (PVA) as well as hydrogels,
can dissolve and swell in an aqueous medium [1,2]. Water-soluble polymers are utilized as
additives in many applications because of their physical properties, such as binders, coagu-
lants, dispersants, emulsifiers, flocculants, thickeners, stabilizers, film-formers, humectants,
or lubricants in aqueous media [3]. Nevertheless, these polymers are toxic and possess
limited biodegradability characteristics, which easily enter the environment through direct
disposal or wastewater treatment trains [3–5].

Polyvinyl alcohol (PVA) is one of the most commonly utilized water-soluble polymers.
It is used to produce adhesives, detergent-based industrial materials, emulsion paint,
paper coating, pharmaceuticals, polyvinyl butyral, and textiles [6,7]. It is known for
its high thermal stability, high water solubility, excellent chemical resistance, excellent
film-forming properties, low cost, and inexpensive processing, which prioritizes it in the
material choosing processes [4,5,7]. Thus, manufacturing plants that utilize PVA as an
additive tend to generate PVA-containing wastewater, which could be discharged into
the environment through direct disposal of industrial wastewater or effluent discharge
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from wastewater treatment facilities. Typical industrial wastewater containing PVA, with
a chemical oxygen demand (COD) of around 1700 mg O2/L and an average molecular
weight of 30,000 to 36,300 g/mol, was found in wastewater treatment facilities that are
inadequate in tolerating the adverse effects of PVA in a wastewater system. These adverse
effects include low biodegradability (BOD5/COD ≤ 0.11), excessive sludge production,
and the ability to mobilize heavy metals from sludges [5,8,9]. Hence, the presence of PVA
in wastewater facilities would lead to difficulties in the operation of physical, chemical,
and biological treatments such as adsorption, biological treatment, chemical coagulation,
ultrasonic degradation, membrane filtration, catalytic oxidation, and Fenton treatment,
further leading to its accumulation in the environment [6,8,10,11].

Although the conventional biological treatment for PVA degradation has received
considerable attention in the past, wastewater treatment technologies for PVA degradation
have expanded from conventional biological treatment to AOPs in recent years as the
limitations associated with low biodegradability in conventional treatment methods could
be reduced using its pretreatment by AOPs. These limitations include long retention time,
long incubation period, and the lack of PVA-acclimated microbial culture [10]. On the other
hand, AOPs presented promising degradation efficiency and non-selective degradation of
organic matters in water and wastewater. Many AOPs have only been studied and applied
in bench-scale settings. They are challenging to implement in industrial settings due to
their complexity, high demand for technical knowledge, and high associated costs. Also,
PVA degradation efficiencies are subject to change quickly, along with different wastewater
characteristics and various operating conditions in a real-life application [10]. Thus, it
is worthwhile to implement control systems to improve the performance, productivity,
reliability, and process stability of wastewater treatment processes. The process control
implementation is also sought to assure the quality of treated effluent based on regulated
specifications to reduce the need for skilled operating personnel and operational costs to
make plant start-up and operation much more straightforward.

The design of a control strategy is usually achieved through offline tuning methods,
such as Ziegler’s method commonly applied by industry professionals. However, this
method is prone to errors due to its limitation to continuous linear control systems. In prac-
tice, data are sampled at given measurement intervals; hence, measurements are discrete.
Besides, chemical processes consist of complex and nonlinear dynamic behavior that is hard
to approximate by a linear model. Thus, other control strategies play a significant role in
expanding the control aspect of PVA degradation. The required knowledge associated with
implementing process control onto biological and chemical processes in PVA degradation
includes understanding process kinetics, optimization, equipment, process dynamics, and
control strategies. The modeling of process dynamics plays a vital role in designing control
strategies utilized to help maintain process efficiencies and safety, along with minimize
process disturbances. Meanwhile, industrial wastewater treatment processes are increas-
ingly confronted with monitoring and standardizing requirements in effluent quality and
reducing cost [12,13]. Despite current efficiency measures of degradation processes, AOPs
require monitoring and controlling parameters that can be determined more rapidly to act
fast to the changing influent conditions.

In summary, there is no “best” approach to the process control problem. Thus, this
study seeks to provide suggestions in process control via a comprehensive review of
process mechanisms, control-oriented modeling, and control strategies associated with
wastewater treatments applied to PVA degradation. Therefore, this study seeks to provide
a general way to achieve process control in complex wastewater treatment systems by
collecting information on PVA degradation mechanisms, dynamic modeling methods, and
process control strategies applied in various wastewater treatment technologies.

2. Design Overview of Process Control Systems

Over the years, process control techniques have been implemented to improve process
performance and process safety, which replaces the need for skilled operating personnel
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and reduces operational costs. However, the automation of wastewater treatment plants is
still considered minimal. The current use of process automation in wastewater treatment fa-
cilities is limited to some elementary sensing elements and control loops for flow metering
and control [14]. There are minimal studies in the process control for advanced wastew-
ater treatment processes. The control scheme design requires knowledge of elements in
the control system, such as the type of variables, dynamic process models, and type of
controllers. These process input, disturbance, and output variables would vary from one
treatment process to another depending on their applicability. Therefore, the first step in
designing a controller is to understand the process mechanism. Then, treatment processes
can be modeled based on prior knowledge or monitoring and experimental datasets. Lastly,
controllers are designed based on the chosen control scheme and identified process model.

A controller’s role is to monitor a process variable with a reference known as a setpoint
(SP) for a continuous process operation. The error between the actual and the desired
value, known as the error signal, is applied as feedback to generate a control action to bring
the controlled process variable to the same level as the reference value. This scenario is
referred to as disturbance rejection in controller design. Similarly, when a setpoint change
is introduced to the controller, the controller will compare actual measurements with the
new desired value to apply a feedback signal for generating the corrective control action.
This second scenario is known as reference tracking. In some systems, an open-loop control,
termed feedforward control, improves reference tracking performance by estimating the
effect of disturbances in the input variable onto the controlled process variable. The design
and simulation of controllers can be illustrated by the structure of regular feedback and
feedforward control system as presented in Figure 1, where a control system is made up of
a set of elements:

1. Feedback controller: a controller that does not act until the disturbances disrupt the
process output and cause an offset from the setpoint

2. Feedforward controller: a controller that acts on measured disturbances; usually
associated with feedback control to perform a cascade control that provides a more
responsive, stable, and reliable control system

3. Plant/process: the process or plant model that relates the process output to the process
variable and disturbance variable by a mathematical relationship

4. Sensors/transmitters: the model of equipment that generates measurements of the
process output

5. Setpoint (SP): objectives of the process, typically a certain level of an output variable
that is desired to maintain

6. Manipulated variable (MV): a variable that the controller can manipulate to maintain
the process output as close to the setpoint as possible

7. Disturbance: variables that are meant to be constant but fluctuates or cannot be
controlled; these variables can also affect the effluent quality or process efficiency

8. Output/Process variable (PV): the variable that needs to be controlled to meet envi-
ronmental regulations or safety requirements

Figure 1. Structure of a typical control loop.
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3. Dynamic Problems and Goals in PVA Degradation

The first step in designing process control schemes for wastewater treatment tech-
nologies is to understand the mechanisms of these processes and define their dynamic
problems and goals. The knowledge of valid operational parameters can be applied to
dynamic process modeling. In this section, the PVA degradation using the conventional
biological treatment and AOPs are presented.

3.1. Biological Treatment of Wastewater Containing PVA

Mass production and utilization of PVA have generated a high demand for ineffective
waste treatment processes that can handle large loads in a short amount of time. Biological
treatment is the most conventional treatment method among all treatment methods with its
major limitation in treatment times and effectiveness, dependent on microbial cultures and
treatment conditions. The biodegradation of PVA can be dated back to 1936, when Fusarium
line B was observed to be the first PVA-degrader, followed by Pseudomonas O-3 in 1973 [15].
Pseudomonas and Sphingomonas genus were the most well-studied microorganisms in PVA
degradation [16]. In general, the biodegradation of PVA is taken care of by intracellular and
extracellular degradation. Intracellular degradation initiates when PVA is engulfed into the
cell’s periplasm, a space between the inner cytoplasmic membrane and the outer membrane
occupied by a gel-like matrix. The PVA macromolecule is oxidized by pyrroloquinoline
quinone (PQQ), a dependent PVA dehydrogenase (PVADH), with cytochrome c acting as
the electron acceptor in the first step [17]. Then, the oxidized PVA (oxiPVA) is hydrolyzed by
oxidized PVA hydrolase (OPH) or β-diketone hydrolase (BDH). Extracellular degradation
initiates when PVA is oxidized by secreted secondary alcohol oxidase (SAO) with O2 acting
as the electron acceptor. Then, the oxiPVA is hydrolyzed by secreted BDH [15,18]. However,
the application of PVA-biodegradation is limited by the availability of microbial species
that can generate the cofactors to PVA biodegradation: intracellular or extracellular PQQ,
OPH, SAO, and BDH. Hence, most previous studies focused on the PVA-degraders isolated
from activated sludge by acclimating sewage sludge with PVA being the sole substrate.

The earliest study presented by Chiellini et al. [19] conferred the relationship be-
tween PVA-degradation efficiency and microorganisms found in environments where
PVA degradation took place. Low PVA film degradation (8–9%) under long treatment
time (72 days) was presented by burial tests in soil not contaminated with PVA. At the
same time, 13% PVA film degradation was observed after 21 days of incubation in aerobic
liquid cultures inoculated with municipal sewage sludge that was not acclimated with
PVA solution [19]. On the other hand, liquid cultures inoculated with paper mill sewage
sludge that was previously treating paper mill wastewater containing PVA presented a
much higher PVA-degradation efficiency (33.3% in 21 days and 100% in 70 days), indicating
that the PVA-degradation ability of activated sludge is strictly related to the presence of
PVA-degrading microorganisms that are found exclusively in environments contaminated
by PVA [19].

Later studies showed the efficacy of other microorganisms in treating PVA-containing
wastewater through aerobic and anaerobic treatments with acclimated microbial communi-
ties, as listed in Table 1.

Microbial phylum favored by aerobic conditions includes actinobacteria, ascomycota,
bacteroidetes, chloroflexi, firmicutes, planctomycetes, proteobacteria, and other unclassi-
fied microorganisms. Chung et al. [10] achieved 98% PVA removal with a batch aerobic
biodegradation by Microbacterium barkeri KCCM 10507 (phyla Actinobacteria) and Paeni-
bacillus amylolyticus KCCM 10508 (phyla firmicutes) isolated from activated sludge from
the wastewater treatment facilities in textile and dyeing factories in five days. Wei et al. [18]
achieved 46.2% PVA removal with batch aerobic biodegradation by Stenotrophomonas rhi-
zophila QL-P4 (phyla proteobacteria) isolated from fallen leaves from a virgin forest in the
Qinling Mountains in five days. Magdum et al. [20] achieved 85.02% Chemical Oxygen
Demand (COD) removal and 90.3% PVA removal with an optimized continuous aerobic
treatment of industrial desizing effluent (0.531% PVA) using a combination of Candida Sp.
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(phyla Ascomycota) and Pseudomonas Sp. (phyla Proteobacteria) with two days of hydraulic
retention time (HRT). Huang et al. [21] achieved 83.6% COD removal with a batch aerobic
biodegradation by a mixture of phyla of PVA-degrading microorganisms in four days.
Furthermore, microbial phylum favored by anaerobic conditions includes bacteroidetes,
chlamydiae, firmicutes, proteobacteria, and other unclassified microorganisms. Yamatsu
et al. [22] achieved 90% PVA removal with a batch anaerobic treatment using Sphingopy-
xis Sp. PVA3 (phyla Proteobacteria) is isolated from activated sludge in six days. Huang
et al. [21] achieved 87.6% COD removal with a batch anaerobic biodegradation by a mixture
of phyla of PVA-degrading microorganisms in 45 days.

Besides the importance of PVA-degrading microorganisms in the treatment system,
treatment conditions and biological symbiosis also played essential roles in enhancing the
PVA-degradation efficacy of a treatment system. The efficiency of PVA-biodegradation
ranged differently in aerobic and anaerobic biodegradation. Aerobic biodegradation, the
most commonly studied treatment process, presented efficiencies ranging from 80 to 98%
PVA removal with 4 to 16 days by different inoculum. On the other hand, Anaerobic
biodegradation presented a relatively high efficiency (87.6% COD removal) in a much
more extended period of 45 days compared to 83.6% COD removal in four days under
aerobic biodegradation while using the same sewage sludge acclimated under different
conditions [21]. The microbial community in the anaerobic sludge and aerobic sludge
showed apparent differences in biodiversity at the phylum levels, with Proteobacteria dom-
inating the microbial community in both conditions. The lower pH level favors chlamydiae
in anaerobic conditions. A lower abundance of some phylum and a higher abundance
of chlamydiae and bacteroidetes were presented under anaerobic conditions rather than
aerobic conditions [21]. Aerobic and anaerobic conditions also showed a significant dif-
ference in class level of proteobacteria phyla, with alphaproteobacteria dominating in
aerobic conditions and betaproteobacteria dominating in anaerobic conditions. Overall,
aerobic treatment was more efficient than anaerobic treatment due to a higher abundance of
alphaproteobacteria as the dominant enzymatic PVA-mineralizing bacteria [21,23]. Hence,
the difference in the efficacy of the processes was due to the difference in the abundance of
microbial classes and phylum changes according to their growth conditions.

Likewise, differences in operating conditions under the same operation scheme (anaer-
obic or aerobic) would lead to differences in biodegradation efficiencies. Magdum et al. [20]
achieved 85.02% COD removal and 90.3% PVA removal with an optimized continuous
aerobic treatment of industrial desizing effluent (0.531% PVA) using a combination of
Candida Sp. (phyla ascomycota) and Pseudomonas Sp. (phyla proteobacteria) with two days
of HRT while controlling air flowrate to prevent foaming of the solution. Candida Sp. and
Pseudomonas Sp. inoculation was carried out in five days with a 2% PVA solution as the sole
source of the nutrient. Treatment conditions such as aeration rate and stirring rate played
an important role in biodegradation efficacy where higher aeration presented foaming,
and lower aeration presented slower biodegradation rate. Concurrently, the lower stirring
rate presented a slower biodegradation rate, while the higher and optimized stirring rate
presented similar efficacy. The optimized aeration rate and stirring rate were found at
16 L/min and 150 rpm, respectively.

Moreover, Vaclavkova et al. [24] studied the symbiosis factor of Sphingomonas Sp. OT3,
previously proven to be an efficient PVA-degrader, experiments in cultures amended with
PQQ and active or inactive catalase [17]. With the essential cofactor in PQQ put aside,
S. OT3 presented low PVA degradation (28% in 30 days) without the presence of inactive
catalase (82% in 30 days with S. OT3 + inactive catalase) and Rhodococcus erythropolis OT3
(88% in 30 days with S. OT3 + R. erythropolis OT3) when no enzyme activities were detected
in the culture media, indicating the absence of extracellular enzyme secretion [24]. It was
most likely that the PVA macromolecule could not cross the outer membrane of S. OT3 due
to its chemical structure. On the other hand, P. erythropolis OT3 helped to cleave PVA by
PVA oxidase and a possible hydrolase or lyase on the outer membrane to smaller fragments
capable of crossing the outer membrane of S. OT3 [17]. The PVA degradation process
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was followed by further PVA oxidation by PQQ in the periplasm of S. OT3. Similarly, the
results from a study conducted by Bian et al. [6] also indicated a substantial limitation of
PVA-degradation efficiency related to the ability of the PVA macromolecule to migrate
through the cell membrane. This migration occurred as the PVA-degradation efficiency
increased from 10 to 68.5% in batch experiments using Bacillus niacini screened from sludge
samples and cross-linked enzyme aggregates (CLEAs) of PVA degrading enzymes (PVAase)
from Bacillus niacin, respectively.

Overall, PVA-biodegradation using different microbial communities was valid under
circumstances that the PVA-degraders and cofactors are present and well-controlled. How-
ever, PVA-degrading microorganisms are not commonly found in the current ecosystem,
and bacteria isolated from a previously contaminated setting by PVA are not commonly
present in the uncontaminated environment. PVA biodegradation presented high reliance
on the capability of PVA macromolecules to cross the outer membrane of microbial cells.
Hence, PVA-biodegradation generates a high demand for specific acclimated microbial
populations to achieve significant biodegradation. PVA-biodegradation is also accompa-
nied by excessive sludge production [5,20]. Withal, even in a setting where PVA-degrading
bacteria are present, the biological treatment process is slow and intractable compared to
physicochemical processes and AOPs due to possible excessive sludge generation.

Table 1. Biological treatments of PVA-containing wastewater.

Treatment Systems and
Microbial Cultures Target Pollutants Treatment Times Optimal Experimental

Conditions Results Ref.

Soil and liquid cultures
inoculated with

municipal sewage
sludge

PVA-based blown films

74 d Degradation in soil 8–9% PVA removal

Chiellini et al. [19]

21 d

Degradation in liquid
cultures inoculated with

municipal sewage
sludge

13% PVA removal

70 d

Degradation in liquid
cultures inoculated with

paper mill sewage
sludge

100% PVA removal

Batch treatment using
Sphingopyxis Sp. PVA3

Aqueous PVA+
pyrroloquinoline
quinone (PQQ)

6 d [PVA]i = 1 g/L, 30 ◦C,
stirring rate = 120 rpm 90% PVA removal Yamatsu et al. [22]

Batch treatment using
Sphingomonas Sp. OT3

and Phodococcus
erythropolis OT3

Aqueous PVA + PQQ 30 d -
88% PVA degradation

by S. OT3 and P.
erythropolis OT3

Vaclavkova et al. [24]

Continuous treatment
using Candida Sp. and

Pseudomonas Sp.

Industrial desizing
effluent containing PVA 2 d

[PVA]i = 5.19 g/L,
[COD]i = 14,861 mg/L,

O2 flowrate = 16 L/min,
stirring rate = 150 rpm

85.02% COD and 90.3%
PVA removals Magdum et al. [20]

Batch treatment using
Microbacterium barkeri

KCCM 10507 and
Paenibacillus amylolyticus

KCCM 10508

Aqueous PVA 5 d

[PVA]I = 950 mg/L,
[COD]I = 2250 mg/L,

suspended solids = 1400
mg/L, pH 7, 30 ◦C

98% PVA removal Chung et al. [10]

Anaerobic-aerobic
bioreactor with
PVA-degrading
microorganisms

Aqueous PVA 45 d in anaerobic and 4
d in aerobic

[PVA]i = 3 g/L, 40 ◦C
(anaerobic), 25 ◦C

(aerobic), DO = 2 mg/L

87.6 and 83.6% COD
removals in anaerobic

and aerobic stages
Huang et al. [21]

Batch treatment using
two PVA-degrading
Sphingomonas strains

Aqueous PVA 16 d

[PVA]i = 0.5 g/L,
suspended solids =

300,000 cells/100 mL, 25
◦C

80% PVA removal Měrková et al. [25]

Batch treatment using
Stenotrophomonas
rhizophila QL-P4

Aqueous PVA 5 d [PVA]i = 1.0 g/L 46.2% PVA removal Wei et al. [18]

Batch treatment using
cross-linked enzyme

aggregates (CLEAs) of
PVA degrading

enzymes (PVAase) from
Bacillus niacini

Aqueous PVA 3 h

[PVA]i = 1 g/L,
[(NH4)2SO4]i = 70%,
[C5H8O2]i = 1.50%,

crosslinking time = 1 h,
pH 7, 40 ◦C

68.5% PVA removal Bian et al. [6]
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3.2. Treatment of Aqueous PVA by AOPs

Unlike biological treatment methods, AOPs are a series of robust wastewater treat-
ment processes dependent on highly reactive free radicals, particularly hydroxyl and
hydroperoxyl radicals (HO• and HO2

•), and radical intermediates accompanied with high
efficiencies in a relatively short treatment time [5,26]. AOPs can degrade carbonaceous
compounds to intermediates, such as carboxylic acids, and fully oxidized forms (CO2 and
H2O) in a much shorter period than biological degradation processes [3]. Many inter-
mediates formed during AOPs are more readily biodegradable if not fully degraded as
compared to parent compounds. Although AOPs present high efficacy in the degradation
of carbonaceous compounds, they are expensive for industrial applications and are coupled
with high technicalities requirements. Previous applications of AOPs in the treatment of
PVA-containing wastewater are summarized in this section, including electrochemical
and photoelectrochemical oxidation, Fenton and photo-Fenton oxidation, ionizing radia-
tion (IR), ozonation, persulfate oxidation, photocatalytic oxidation, ultrasound cavitation,
UV-hydrogen peroxide oxidation (UV/H2O2), and wet air oxidation. These processes are
classified into chemical-based AOPs, energy-based AOPs, and hybrid AOPs, as listed in
Tables 2–4.

Table 2. Chemical-based and photochemical-based AOPs.

Treatment System Target Pollutant Treatment Time Optimal Experimental
Conditions Results Ref.

Fenton oxidation (Fe2+/H2O2)

FeSO4/H2O2 in a batch
reactor

Aqueous PVA + BlueB
Aqueous PVA + Black G 1 h

1090 and 1070 mg
COD/L, 200 mg BlueB

or Black G/L,
H2O2/FeSO4 =

1000/400, pH 3, 25 ◦C

80.6 and 86% COD
removal Lin and Lo [27]

Full-scale Fenton
treatment process

Dye wastewater
pretreated with

screening,
sedimentation, and

activated sludge (AS)
process

30 min in Fenton
oxidation process

1150 mg COD/L, 1100
mg SCOD/L, color =
1180 ADMI units, 4.2

mM Fe2+, 4.0 mM H2O2,
pH 3.5, 30 ◦C

53% SCOD removal and
13% color removal in AS
66% SCOD removal and

73% color removal in
Fenton

Bae et al. [28]

Nanoscale zero-valent
iron (nZVI)/H2O2 in a

batch reactor
Aqueous PVA 20 min

20 mg PVA/L, 0.015 g
nZVI/L, 0.0001 mol

H2O2/L, pH 3, 25 ◦C
94% PVA removal Lin and Hsu [29]

Photo-Fenton (UV/Fe2+/H2O2)

UV/Fe2+/H2O2 in a
batch reactor Aqueous PVA 30 min

[PVA]i = 200 mg C/L,
Fe2+/PVA

sub-units/H2O2 =
1:20:100, pH 4, 40 ◦C

90% DOC removal Lei et al. [30]

UV/Fe2+/H2O2 in a
batch reactor Aqueous PVA + R94H 1 h

300 mg COD/L, 2000
mg NaCl/L, 0.740 mg

BuCl/L,
20 mg H2O2/L, 100 mg
Fe2+/L, pH 4, 16 UVC (8

W) lamps

85% color removal and
36% COD removal Kang et al. [31]

UV/Fe2+/H2O2 in a
batch reactor Aqueous PVA 30 min

200 mg PVA/L,
Fe2+/PVA sub-units =

1:20, PVA
sub-units/H2O2 = 0.5,

pH 4, 40 ◦C

90% DOC removal Bossmann et al. [32]

UV/Fe2+/H2O2
Aqueous PVA 120 min

[PVA]i = 200 mg C/L,
Fe2+/PVA

sub-units/H2O2 =
1:20:80, pH 4.0, 40 ◦C, 1
medium pressure Hg

lamp

5.75 × 10−5 M Fe2+
(aq)/s

were formed Bossmann et al. [33]

Homogeneous Catalyst: Fe2+ 93% DOC reduction

Heterogeneous
Catalyst:

Fe3+-exchanged zeolite
Y

35% DOC reduction

UV/Fe2+/H2O2 in a
recirculating batch

photoreactor
Aqueous PVA 30 min 100 mg PVA/L, Fe/PVA

= 0.05 90% COD removal Giroto et al. [8]
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Table 2. Cont.

Treatment System Target Pollutant Treatment Time Optimal Experimental
Conditions Results Ref.

Ozonation (O3)

O3 in a batch reactor Aqueous PVA 20 min 150 mg PVA/L, 10 mg
O3/min, pH 12 100% TOC removal Shin et al. [34]

O3 in a batch reactor Aqueous PVA 12 h 90 mg O3/L

Formation of the
O3/PVA

hydrogen-bond
complex with a selective

accommodation of O3
molecule followed by

slow degradation
involving chain scission

of PVA molecule
FT-IR showed the

development of ketone
groups in O3 treated

PVA

Cataldo and Angelini
[35]

Free radical generation
from collapsing O3

microbubbles in a batch
reactor

Aqueous PVA 2 h 350 mg TOC/L 30% TOC removal Takahashi et al. [36]

Peroxide oxidation (UV/H2O2)
UV/H2O2 in a batch

reactor Aqueous PVA 30 min 20 mg PVA/L, 0.25 mM
H2O2, pH 3 98% PVA removal Lin and Lee [37]

UV/H2O2 in a batch
recirculation reactor Aqueous PVA 120 min 50 mg PVA/L,

H2O2/PVA = 10

87% TOC removal and
91.6% PVA removal
under the stepwise

introduction of H2O2

Hamad et al. [38]

UV/H2O2 in a reactor
with batch

circulation/fed-batch
circulation/continuous

modes of operation

Aqueous PVA
120 min (batch and

fed-batch)
30.6 min (continuous)

500 mg PVA/L,
H2O2/PVA = 1

(batch)/10 (fed-batch)/1
(continuous)

PVA number average
molecular weight
reduced from 130

kg/mol to 24.9, 20.3,
and 2.2 kg/mol with
TOC removal of 41.5,

66.4, and 94.4% by
batch, fed-batch, and
continuous treatment

Hamad et al. [39]

UV/H2O2 in a batch
circulation reactor Aqueous PVA 30.6 min 500 mg PVA/L,

H2O2/PVA = 1

The proposed kinetic
model was an adequate

representation
The model can

determine optimum
[H2O2] to maximize

PVA removal through
pH measurements

Hamad et al. [3]

Persulfate oxidation (UV/S2O8
2−)

UV/S2O8
2− in a batch

reactor Aqueous PVA 30 min
50 mg PVA/L, 250 mg

S2O8
2−/L, Fe2+/S2O8

2−

= 1:1, 80 ◦C
95% PVA removal Oh et al. [40]

UV/S2O8
2− in a batch

reactor Aqueous PVA 30 min 20 mg PVA/L, 0.25 g
S2O8

2−/L, pH 3, 25 ◦C 100% PVA removal Lin et al. [41]

UV/S2O8
2− in a batch

reactor Aqueous PVA 30 min 20 mg PVA/L, 0.25 mM
S2O8

2− , pH 3 100% PVA removal Lin and Lee [37]

Heterogeneous system
based on Na2S2O8

activated by Fe complex
functionalized waste

PAN (Fe-AO-PAN) fiber
under visible LED

irradiation

Aqueous PVA 20 h

50 mg PVA/L, 0.50 g
Fe-AO-PAN/L, 2.0

mmol SPS/L, pH 4, 25
◦C, visible white LED

lamps

81.5% TOC removal Dong et al. [7]

Photocatalytic oxidation
Heterogeneous system
based on TiO2 under
UVA irradiation in a

batch reactor

Aqueous PVA 120 min

30 mg PVA/L, 5 mmol
H2O2/L, 2.0 g TiO2/L,

pH 10, 2 UVA (6W)
lamps

100% PVA removal and
3% TOC removal Chen et al. [42]

Wet air oxidation (WAO)

Batch WAO reactor Textile wastewater
containing PVA 120 min 10,260 mg COD/L, pH

6, 270 ◦C, 1.92 Mpa 90% COD removal Chen et al. [43]

Batch WAO reactor
Bleaching and dyeing
wastewater containing

PVA
2 h 12,600 mg COD/L, pH

6.6, 270 ◦C, 1.92 MPa 90% PVA removal Lei and Wang [44]

Batch WAO reactor with
possible excess oxygen Aqueous PVA 90 min 5000 mg PVA/L, 200 ◦C,

0.7 Mpa O2
90% COD removal Won et al. [45]
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Table 2. Cont.

Treatment System Target Pollutant Treatment Time Optimal Experimental
Conditions Results Ref.

Electrochemical oxidation
Electrochemical
oxidation using

Ruthenium dioxide
coated titanium

electrodes (RuO2/Ti) in
a batch reactor

Aqueous PVA 300 min
410 mg PVA/L, 17.1

mM Cl− , current
density = 1.34 mA/cm2

70% PVA removal and
28% COD removal Kim et al. [46]

Photoelectrochemical oxidation

Electrochemical
oxidation using

activated carbon fiber
(ACF) in a batch

photoreactor

Aqueous PVA 120 min

1000 mg PVA/L,
activated carbon fiber

anode, current density =
10 mA/cm2, 900 cm3

O2/min, pH 3, 0.6 W
UV/cm2

91% PVA removal Huang et al. [4]

Electrochemical
oxidation using in a

divided electrochemical
cell

Aqueous PVA 120 min

50 mg PVA/L, 0.01 M
Ce (III), 0.3 M HNO3,

0.05 M Na2SO4,
platinum anode,

activated carbon fiber
cathode, current

density: 3 mA/cm2, 500
cm3 O2/min, 323 K, 1.2

mW UV-C/cm2

38.5% PVA removal Huang et al. [47]

Ionizing radiation

Electron beam radiation
in a batch reactor

PVA + Reactive yellow
15 + starch + alkali +

Pigment red 139
-

radiation dose rate = 1
kGy, energy = 5.0 MeV,
beam current = 1mA

BOD/COD ratio
improved from 0.19 to

0.87
Deogaonkar et al. [48]

γ-ray irradiation in
batch reactor Aqueous PVA 30 min

100 mg PVA/L,
radiation dose rate =
55.7 Gy/min, 10 mol

H2O2/L, pH 9

94% PVA degradation Zhang and Yu [49]

γ-ray irradiation in
batch reactor Aqueous PVA 30 min

250 mg PVA/L,
radiation dose rate = 70

Gy/min, 5 mmol
H2O2/L, pH 0–2/12–14

100% PVA degradation Zhang et al. [50]

γ-ray irradiation in a
batch reactor

Textile wastewater
containing PVA -

1614 mg COD/L,
radiation dose rate = 1

kGy

BOD5/COD ratio
increased from 0.05 to

0.09
Jo et al. [51]

γ-ray irradiation in a
batch reactor Aqueous PVA -

3341.6 mg PVA/L,
radiation dose rate = 6

kGy

22% PVA removal
Biodegradability of PVA

enhanced after
ionization radiation

pre-treatment

Sun et al. [52]

3.2.1. Fenton-Based Processes: Fenton/Photo-Fenton/Electro-Fenton

Fenton-based processes are commonly applied in industrial wastewater treatment to
aid the treatment of organic recalcitrant that the conventional biological treatment processes
cannot treat. Although Fenton-based oxidation pre-treatment processes, with a relatively
short HRT before an activated sludge process, help meet the required effluent qualities,
the fluctuation in Fenton-based processes’ effluent quality related to the influent properties
remains the primary concern. The Fenton process consists of a set of well-known reactions
between hydrogen peroxide (H2O2) and iron metal (Fe2+) to degrade a polymeric pollutant
(Pr) are as follows:

H2O2 + Fe2+ → Fe3+ + HO− + HO•

H2O2 + Fe3+ → Fe−OOH2+ + H+

Fe−OOH2+ → Fe2+ + HO•2
HO•2 + H2O2 → O2 + H2O + HO•

Pr + HO• → HO− + P•r
P•r + Fe3+ → P+

r + Fe2+

P+
r + H2O→ PrOH + H+
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The degradation of PVA pollutant (Pr) by hydroxyl radicals formed in the Fenton
reactions would generate intermediates with lower molecular weights, such as alcohols,
aldehydes, ketones, and acids [28,30],

Pr + HO• hv→ intermediates→ CO2 + H2O.

Besides, ferric coagulation plays a significant role in removing PVA in the Fenton
process [28,31]. According to previous studies, the decolorization of wastewater was
mainly contributed by Fenton oxidation under acidic conditions (pH 2–5), and the removal
of COD was mainly contributed by iron coagulation under neutral to basic conditions
(pH 6–10) [27,28]. Additionally, there is an optimum H2O2 dosage along with Fe2+ dosage
for Fenton-based processes; this optimum dosage can differ from one treatment system to
another based on the concentration of the pollutant in the system [27,29,32]. The efficiency
of Fenton-based processes could also be affected by purging gas [29,32], PVA molecular
weight [32,33], temperature [27,32], and scavenging effect of other organic pollutants
present in the treatment system [27,28].

The photochemically enhanced Fenton processes (UV/Fe2+/H2O2) studied by Boss-
mann et al. [32,33], Giroto et al. [8], Kang et al. [31], and Lei et al. [30] present higher
COD/Dissolved Oxygen Demand (DOC) reduction than Fenton, which is most likely
due to the enhanced reduction efficiency of iron (III) to iron (II) and the formation of hy-
droxyl radicals through photolysis of hydrogen peroxide under irradiation by the following
reactions,

Fe3+ + H2O hv→ Fe2+ + H+ + HO•

H2O2
hv→ HO•

Similar to Fenton oxidation, the hydroxyl radicals should participate in the oxidation
of organic molecules into their intermediates. However, there was no evidence for forming
hydroxyl radicals as reactive intermediates and generating low molecular weight PVA
intermediates (oxalic acid, acetic acid, acetaldehyde, ethanol, or PVA-oligomers) in the
photo-Fenton process [32]. In contrast, results from gel permeation chromatography present
experimental evidence for the formation of a super macromolecule of iron (III)-oxidized
PVA complexes exhibiting a molecular weight (100,000 g/mol) much higher than that
of PVA (15,000, 49,000, and 100,000 g/mol), which could proceed Fenton-type oxidation,
accompanied by ferryl-ion (Fe4+

(aq)) formed within the complex, directly releasing CO2
from the complex [33]. Meanwhile, a heterogeneous photo-Fenton process using the iron
(III)-exchanged zeolite Y catalyst, instead of iron (II), presented lower DOC reduction.
Nevertheless, Bossmann et al. [33] found evidence in the formation of low molecular
weight intermediates (step-by-step degradation of PVA molecules) and the absence of super
macromolecule confirming that iron (III) remains bounded within the zeolite Y framework.

3.2.2. Ozonation

With the development of industrial-scale ozone generators and the implementation of
ozonation water/wastewater treatment systems, ozone (O3) has drawn increasing attention
in treating wastewater containing refractory organic pollutants in various concentrations.
Ozonation is efficient in degrading organic compounds and fully oxidizing its interme-
diates owing to its powerful oxidizing capability. It is also friendly to most organisms
as it would not introduce other substances into the treated wastewater. The ozonation
process undergoes different pathways under acidic and basic conditions. Under acidic
conditions (pH < 4), the ozone molecule is stable, and it would directly react with pollutants
with specific functional groups through dipolar addition reactions, nucleophilic reactions,
or electrophilic reactions. Since the affinity of an oxygen atom is very high, the oxidative
potential of ozone under acidic conditions is also high. Under basic conditions (pH > 9),
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the ozone molecule is less stable, and it could interact with other reactants in the following
reactions to form oxidative hydroxyl radicals:

O3 + OH− → HO•2 + O•−2
O•−2 + O3 → O•−3 + O2

O•−3 + H+ → HO•3
HO•3 → HO• + O2

where O3 and HO• both play essential roles in oxidizing the organic pollutant (PVA) to
intermediates with lower molecular weights, as shown in the following reaction:

Pr + O3 → intermediates→ CO2 + H2O

The degradation of PVA to formic acid and other carboxylic acids during ozonation
was experimentally proven by the pH shift of the medium towards acidic conditions [35].
In contrast to Fenton oxidation, the foaming ability of PVA could trap ozone into the PVA
molecules competing with the oxidation of PVA molecules and intermediates with lower
molecular weights, such as alcohols, aldehydes, ketones, and acids [35]. Previous studies
presented that ozone is more efficient under alkaline conditions [34]. However, higher
efficiency can be obtained using microbubble technology to enhance the yield of hydroxyl
radicals [36].

3.2.3. UV/Hydrogen Peroxide Oxidation (UV/H2O2)

The hydrogen peroxide oxidation mechanism is constructed by two reactions: pho-
tolytic reactions of hydrogen peroxide and PVA degradation. The photolytic reactions of
hydrogen peroxide produce oxidative radicals (HO• and HO•2) that are critical players in
PVA degradation as shown below [39,53–59]:

Initiation: H2O2
hv→ 2HO•

Propagation: HO• + H2O2 → HO•2 + H2O
H2O2 + HO•2 → HO• + H2O + O2

HO• + HO−2 → HO•2 + OH−

O•2
− + H+ → HO•2

HO•2 → O•2
− + H+

Termination: HO• + HO• → H2O2
HO•2 + HO• → H2O + O2
HO•2 + HO•2 → H2O2 + O2

HO•2 + O•2
− → O2 + HO−2

HO• + O•2
− → O2 + OH−

Electron transfer: HO−2 + H+ → H2O2
H2O2 → HO−2 + H+

The degradation kinetics of UV/H2O2 in the treatment of PVA-containing wastewater
was first modeled by Hamad et al. (2018), where an overview of the degradation process is
as follows:

Pr + H2O2
hv→ intermediates→ CO2 + H2O.

The polymer degrades from r number of chains to PVA with r-s number of chains,
carboxylic acids, dimers, and monomers. These degradation and mineralization reactions
take place simultaneously in the reactors as follows [3]:
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Initiation: H2O2
hv→ 2HO•

Pn
hv→ P•n(n ≥ 2)

Propagation: Pn + HO• → P•n + H2O
Pn + HO•2 → P•n + H2O2
P•n + HO• → P•n−a + Pa
P•n + HO• → P•n−1 + P1

P1 + 2HO• + 5
2 O•−2 → 2HCOOH + 2HO•2

P1 + HO•2 → CH3COOH + HO•

HO• + CH3COO− → •CH2COO− + H2
Termination: P1 + HO•2 + O•−2 → 2HCOOH + OH−

CH3COOH + 2HO•2 → 2HCOOH + H2O2
HCOOH + 2HO• ↔ CO2 + 2H2O

Electron transfer: CH3COOH↔ CHO3COOH− + H+

HCOOH↔ CH3COO− + H+

HCOO− + H2O2 → CO2 + H2O + OH−

The formation of intermediates was proven by gel permeation chromatography analy-
ses, which presented a decrease in average molecular weight of pollutants existing in the
aqueous system and a decrease in pH, representing the formation of acidic intermediates
throughout the batch reaction [3,60]. The PVA degradation efficiency was found to be
favored by acidic conditions (pH 3) when compared with neutral and alkaline conditions
(pH 7 and 11) [37]. More importantly, there is an interaction effect on pollutant removal,
molecular weight reduction, and H2O2 residual, between H2O2 dosage and influent PVA
concentration, which presented an optimal H2O2-to-PVA mass ratio of 1.0 at the influent
stream [61,62].

3.2.4. Persulfate Oxidation

Persulfate (S2O8
2−) is another molecule with high oxidative potential when excited

under UV irradiation, the addition of transition metal ions (Mn+ such as Ag+, Co2+, Fe2+),
or heat to generate sulfate radicals (SO−•4 ) as explained by the following reactions:

S2O2−
8

heat/hv→ 2SO−•4

S2O2−
8 + Mn+ → SO−•4 + Mn+1 + SO2−

4

where the generation of SO−•4 is favored by acidic conditions [37,41]. Then, the sulfate
radicals could form highly oxidative hydroxyl radicals via the following reactions,

SO−•4 + H2O→ HO• + H+ + SO2−
4 under all pH

SO−•4 + OH− → HO• + SO2−
4 under alkaline pH.

Hydroxyl radicals and sulfate radicals would participate in the oxidation of pollutants
(PVA) to form intermediates with lower molecular weights. Previous studies found that
hydroxyl radicals (HO•) react very poorly with PVA in persulfate oxidation under alkaline
conditions, where the efficiency of PVA degradation was reduced when the sulfate radicals
(SO−•4 ) are scavenged by hydroxide ions (OH−) to form hydroxyl radicals (HO•), making
hydroxyl radicals the dominant oxidative species [37,41]. Hence, persulfate oxidation
performs better under acidic conditions. For the polymer, the degradation reaction is
as follows:

Pr + SO−•4 → intermediates + SO−•4 → CO2 + H2O + SO2−
4 .

The formation of intermediates was experimentally proven by mass spectroscopy
of PVA solution oxidized by persulfate oxidation [40]. However, during excitation with
a transition metal, an excessive amount of transition metal, such as iron (Fe2+), might
scavenge sulfate radicals [7,40] as shown below:

S2O2−
8 + Fe2+ → SO−•4 + Fe3+ + SO2−

4

Fe2+ + SO−•4 → Fe3+ + SO2−
4
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The scavenging reaction competes with the formation of hydroxyl radicals. Also,
excessive sulfate radicals might scavenge persulfate molecules under saturated sulfate
radical concentrations [41],

SO−•4 + S2O2−
8 → SO2−

4 + S2O−8

Most importantly, persulfate oxidation efficiency increased with increasing persulfate
dosage in the UV excited system but is optimum when it is excited using a transition
metal (Fe2+).

3.2.5. Photocatalytic Oxidation

In wastewater treatment, photocatalytic oxidation by titanium dioxide (TiO2) has been
commonly studied because it is low in cost, highly efficient, biologically and chemically
inert, resistant to photo corrosion, and non-toxic [63,64]. It has evolved from ultraviolet
(UV) photooxidation to visible light photooxidation by modifying the properties of the
photocatalyst. Traditionally, titanium dioxide is activated by UV to generate hydroxyl
radicals by the following reaction mechanisms,

TiO2
hv→ h+

vb + e−cb

where photogenerated electrons participate in,

(O2)ads + e−cb →
(•O−2 )ads(•O−2 )ads + H+ → HO•2

2HO•2 → O2 + H2O2

H2O2 +
(•O−2 )ads → HO• + OH− + O2

and photogenerated holes participate in,(
HO−

)
ads + h+

vb → HO•

(
H2O−

)
ads + h+

vb → HO• + H+.

The generated by-products react together to form more hydrogen peroxide that partic-
ipates in the previous reaction mechanisms,

2O−2 + 2H2O→ O2 + H2O2 + 2OH−.

The degradation mechanism is affected by UV dosage, TiO2 dosage, pH, temperature,
and initial PVA concentration [42,63–65]. Also, PVA degradation is more efficient under
higher UV dosage, and higher temperatures as both conditions enhance the reaction rate by
providing more energy to the system. Also, PVA degradation is more efficient under acidic
or alkaline pH as both conditions promote HO• generation from photogenerated electrons
and holes, respectively. The TiO2 dosage was optimal at 2 g/L [42]. Lower TiO2 dosage
leads to lower hydroxyl radical generation, and a higher TiO2 dosage leads to turbidity,
which reduces UV transmission.

Some studies suggest that its efficiency could be enhanced by adding hydrogen perox-
ide to increase the generation of hydroxyl radicals, as shown in the following reactions:

H2O2
hv→ 2HO•

(H2O2)ads + e−cb → HO• + HO−

(H2O)ads + h+
vb → HO• + H+

•O−2 + H2O2 → OH− + HO• + O2.
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However, excess H2O2 will scavenge HO• and lead to lower PVA degradation. The
degradation of PVA follows a similar degradation mechanism as shown in the peroxide
oxidation of PVA,

Pr + HO• → intermediates→ CO2 + H2O

Although photocatalytic oxidation processes are efficient and reliable, the separation
of the photocatalyst in suspension form is problematic. The efficiency of the immobilized
photocatalyst is much lower than the suspended form owing to the reduction in available
reaction surface.

3.2.6. Wet Air Oxidation

Wet air oxidation (WAO) is an AOP performed in the aqueous phase under elevated
temperature and high pressure, with the presence of oxygen or air, where the pollutant
(PVA) is broken down by oxygen to form oxidative species, as demonstrated in the follow-
ing reaction:

Pr + O2 → P•r + H•2
2Pr + O2 → P•r + H2O2

H2O2 → HO•

The reaction kinetic is significantly affected by the temperature, where higher tem-
peratures presented higher degradation efficiency [43–45]. When hydrogen peroxide is
added to the WAO process, it promotes wet air oxidation (PWAO). If oxygen is replaced by
hydrogen peroxide, the process becomes wet peroxide oxidation (WPO). Then, the polymer
radical is degraded in the same fashion as shown in the peroxide oxidation method to
smaller polymer segments, organic acids, other intermediates, and finally to fully oxidized
forms (CO2 and H2O). This degradation pathway is supported by forming formic acid
and acetic acid throughout the treatment process and increasing biodegradability of PVA-
wastewater through the expansion of reaction time such that the intermediates formed
are much more biodegradable than PVA itself [43,45]. Between WAO and PWAO, PWAO
presented higher degradation efficiency in a shorter time [44]. However, excess hydrogen
peroxide, especially in the WPO process, can result in a scavenging effect leading to lower
PVA degradation efficiency [44]. Moreover, excess in oxygen (200% excess oxygen ratio) at
a constant oxygen partial pressure and acidic conditions (pH 2.5) favors the degradation of
PVA [44,45].

3.2.7. Electrochemical-Based Oxidation

The electrochemical oxidation process utilizes an electrical current to generate oxida-
tive and reductive species in the system. Electrochemical oxidation of recalcitrant can occur
directly at the anodes or indirectly. Direct electrochemical-based oxidation is initiated by
anodic reactions to produce surface adsorbed hydroxyl radicals and chemisorbed active
oxygen at the surface metal oxide lattice (M) [5,66], as shown below:

M + H2O→ M(HO•)ads + H+ + e−

M(HO• )ads → MO + H+ + e−

M(HO•)ads → M + 1/2 O2 + H+ + e−

MO→ 1/2 O2 + M

The direct oxidation of pollutant (PVA) happens at the surface of the anode [66], as
shown in the following:

Pr + M(HO• )ads → mCO2 + nH2O + H+ + e−

Pr + MO→ RO + M
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As the duration of the electrolysis increases, indirect oxidation of PVA begins as the
reaction between the by-products (e−, H+, and O2) from the anodic reaction at the cathode
proceeds to generate hydrogen peroxide (H2O2) [4], as follows:

O2 + 2H+ + 2e− → H2O2

However, higher current density induces the decomposition of hydrogen peroxide:

H2O2 + 2e− → 2OH−

H2O2 → HO•2 + H+ + 2−

HO•2 → O2 + H+ + e−.

On top of that, the electrochemical-based treatment is favored by acidic conditions
(pH = 3) owing to the generation of the oxonium ion (H3O2

2+) that enhances the stability
of hydrogen peroxide molecules [4]:

H2O2 + H+ → H3O+
3 .

At the same time, the reduction of hydrogen peroxide and hydrogen gas production
takes place at the cathode,

H2O2 + 2H+ + 2e− → 2H2O

2H+ + 2e− → H2.

Hence, the efficiency of electrochemical oxidation can be drastically improved using
photo-energy (UV irradiation), known as photoelectrochemical oxidation, as it activates
the electrogenerated H2O2 to form hydroxyl radicals, which can oxidize organic pollutants
(PVA) by hydrogen peroxide oxidation reactions [4]. Moreover, photoelectrochemical
oxidation can be enhanced by adding transitional metals Men+ as both the photogenerated
hydroxyl radicals and an excited transition metal, Men+1, participate in the degradation of
PVA molecules at the anode and cathode, respectively. The transition metal is excited at
the cathode [47],

Ce3+ → Ce4+ + e−

Pr + Ce4+ → intermediates→ CO2 + H2O.

3.2.8. Ionizing Radiation (IR) (Electron Beam Radiation and γ Radiation)

Ionizing radiation is a unique AOP that includes two types of radiations, electron
beam radiation, and gamma-ray (γ) radiation, to generate oxidative species, H2O2 and
HO•, and reducing species, H• and eaq

− [49,50,52], as shown in the following reaction
under pH 7:

H2O radiation−−−−−→[2.8]HO• + [2.7]e−aq + [0.6]H• + [0.7]H2O2 + [0.45]H2 + [3.2]H+
aq + [0.5]OH−aq

This reaction was found to be sensitive to pH [49,50], dissolved gases [49], presence of
radical scavengers [49,50,52], added hydrogen peroxide dosage [49,50], and radiation dose
rate [48,49,51,52] along with the interaction between different pairs of factors.

The pH of the system mainly controls the recombination of reductive species. Under
acidic conditions, the reductive specie eaq

− formed will react with free H+ to form the other
reductive specie H•, as shown below:

e−aq + H+ → H•

In contrast, under basic conditions, the reaction is between H• and free OH− to form
eaq
− as follows:

H• + HO− → e−aq
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Under excess of dissolved oxygen, the reductive species formed will recombine to
oxidative peroxyl radicals, HO2

•, and O2
•−, as shown in the following:

H• + O2 → HO•2
e−aq + O2 → O•−2

At the same time, other solvents, such as isopropyl alcohol (CH3CHOHCH3) and
tert-butyl alcohol ((CH3)3COH), scavenge hydrogen radical and hydroxyl radical to form
intermediates [50,52], based on the following reactions:

CH3CHOHCH3 + HO• → CH2
•COHCH3 + H2O

CH3CHOHCH3 + H• → CH2
•COHCH3 + H2

(CH3)3COH + HO• → •CH2C(CH3)2OH + H2O

(CH3)3COH + H• → •CH2C(CH3)2OH + H2

The pollutant (PVA) degradation is similar to that of peroxide oxidation mechanisms,
as shown previously. Under pH 6.8, oxygen gas saturated systems performed better
with the addition of isopropyl alcohol, which contributed to 3.07% PVA degradation, and
nitrogen gas saturated systems performed better with tert-butyl alcohol, contributing to
7.65% PVA degradation [49]. However, both systems presented the highest efficiency under
the absence of scavenger species under the same pH, indicating a robust scavenging effect
from the added solvents.

Meanwhile, hydrogen peroxide is generated in the system and can be added to
the system. It undergoes a different reaction mechanism to generate oxidative species,
as shown in the following reactions:

H2O2 + e−aq → HO• + OH−

H2O2 + H• → H2O + HO•

H2O2 + HO• → H2O + HO•2

The addition of hydrogen peroxide can increase the number of oxidative hydroxyl rad-
icals generated in the system, further increasing the chance of degraded PVA by hydroxyl
radicals. However, excess hydrogen peroxide would lead to the scavenging effect on the
hydroxyl radicals. The scavenging reaction is undesirable as the excess hydrogen peroxide
would compete with PVA molecules and inhibit its degradation. Overall, ionizing radiation
technologies presented sound PVA degradation and improvement in Biological Oxygen
Demand (BOD) to the COD ratio of the wastewater. On top of that, strong interactions
between radiation dose rate and initial PVA concentration, hydrogen peroxide, and pH
could have different effects on PVA degradation depending on the pair of factors [50].

4. Process Identification: Process, Disturbance, and Control Variables

Generally, PVA-wastewater treatment technologies are associated with different ma-
nipulated, disturbance, and process variables depending on their applicability. These
variables cannot accept any value; they are constrained by technical limitations and en-
vironmental and safety standards. The automation of wastewater treatment faced many
problems, mainly in the lack of information regarding the processes to be controlled.
Prior knowledge is the basic building block of process models. Table 3 presents a list of
manipulated variables, disturbances, and process variables that apply to PVA-wastewater-
treatment technologies. This review article does not cover all types of modeling and
controller design techniques because the scope of this review article is to summarize
models and controllers feasible, applicable to PVA degradation in wastewater treatment.
Therefore, this section covers control-oriented process models and process control strategies
applied to wastewater treatment technologies discussed in previous sections. A summary
of previous studies is presented in Table 4. Other modeling methods and process control
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strategies not covered in this article, like fuzzy neural network modeling, adaptive control,
and neural network control, display themselves as research gaps in the study of process
control in wastewater treatment processes.

Table 3. List of Manipulated variables, disturbances, and process variables in the PVA degradation
process.

Type Examples

Manipulated variable

Operational conditions:
aeration rate/intensity
dilution rate
recycle ratio in biological treatments
dosages of reactants, such as Fe2+, O3, H2O2, S2O8

2−, O2, which can
be controlled by dosing method or flowrate in AOPs
energy input such as electric current density, radiation dosage, and
irradiation dosage in AOPs
Process output variables:
oxidation-reduction potential (ORP)
oxygen transfer coefficient,
pH, to estimate process outputs that cannot be measured on-line

Disturbance

Influent quality:

• influent PVA concentration
• TOC
• COD
• BOD
• TN
• TP
• pH

Operational conditions:

• temperature
• pressure
• other equipment specifications
• flowrate, which also controls the reaction time
• dosage of reactants that are kept constant

Process variable

Effluent quality:

• PVA concentration
• TOC
• COD
• BOD
• TN
• TP
• TSS
• ammonia
• nitrate nitrogen
• pH
• residual H2O2

Process efficiencies:

• color removal
• COD removal
• effluent absorbance

Operating conditions:

• DO for biological processes
• concentrations of excess reactants for AOPs

Recent studies on control-oriented process identification methods have become in-
creasingly popular due to the effectiveness of model-based control strategies in achieving
superior system performance in setpoint tracking and load disturbance rejection for various
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industrial processes. In set-point tracking, the controller acts on the input of a set-point by
selecting its actions on the control element to manipulate the process variable to reach the
desired set-point value. In disturbance rejection, the controller acts on a deviation caused
by a disturbance by forcing the process variable back to the desired setpoint.

4.1. Mechanistic vs. Data-Driven System Identification

Mechanistic models are usually utilized to obtain dynamic models and parameters of a
thoroughly known process with known parameters and their effect on the process, such as
biological processes in wastewater treatment [67]. Mechanistic models could be developed
from fundamental principles of chemical, physical, and biochemical processes. However,
mechanical modeling of wastewater treatment processes is associated with first-principles
modeling accompanied by complex reaction mechanisms and intense computation; it
is usually used to design wastewater treatment plant (WWTP) processes and is rarely
employed in dynamic models. In dynamic modeling, system identification (SI) is usually
utilized to build dynamic black-box models based on input/output data using linear
regression methods and parameters of imprecisely known processes. The variables in a
black box model are determined from previous knowledge of measurable factors exploited
by the state or parameters of the system. Among all methods, a step test in an open-loop
structure of the linear parameter varying (LPV) process is usually practiced given its
economical and straightforward implementation with applications toward a wastewater
treatment process. This method can accomplish multivariate parameter estimation under
appropriate constraints using the maximum likelihood approach. LPV modeling implies
performing a parameter estimation by minimizing the sum of squares of error between the
observed output and model-predicted output during step tests initiated at the zero-initial
or other states of a process moving towards the desired operating region [68,69].

4.2. Static vs. Dynamic Modeling of Pollutant Removal

Chemical processes can be modeled by two types of states: static and dynamic. Each
modeling method is accompanied by its advantages and trade-offs. Static modeling, also
known as steady-state modeling, seeks to optimize operational conditions during steady-
state operation [70]. These types of system outputs depend only on the present values of the
inputs. Hence, it is a lofty design and a set of operating conditions that are not consistently
maintained due to chemical processes’ dynamic behavior. In a dynamic process, steady-
state models can express the effect of different factors onto process efficiencies using
algebraic equations and, most importantly, the static objectives of a process known as the
setpoints [12,70]. Contradictory, dynamic modeling seeks to study the dynamic, transient
behavior of chemical processes. It considers transient influent qualities and operational
conditions on process efficiencies through mechanistic and black box modeling methods.
These models are usually described by differential or difference equations, and their outputs
are dependent on present and past values of inputs. Thus, dynamic modeling is more
suitable for designing process control models. Black-box modeling is preferred between
the two dynamic modeling methods when mechanistic modeling is sophisticated, hard to
solve, and when its solution requires extensive computation [68].

5. Dynamic Behavior of Wastewater Treatment Processes

The first step to designing a process control system is to establish a process model.
Dynamic process models can be built on prior knowledge of general laws and principles
(mechanistic models) and experimental input and output data (black box models). Dy-
namic process models can also be built to study dynamics in batch or continuous processes.
As mechanisms describing wastewater treatment processes are complex, the system identi-
fication method is commonly applied to build models relating a process output to input via
black-box modeling. During modeling, a system is linear when a change in all parameters
is always the sum of their individual effects. A system is nonlinear when an input signal
is correlated to another input signal. Thus, wastewater treatment processes are nonlinear.
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When the process is slightly nonlinear, it may be sufficient to approximate it with a linear
transfer function and implement linear control. If the nonlinearity is strong, it is more
appropriate to consider the system nonlinearity in the process model and the controller
design. Since most wastewater treatment processes are associated with nonlinearity and
process dead time, incorporating nonlinearity estimators is necessary to describe the system
adequately. These dynamic models can be developed using mechanistic, system identi-
fication, and artificial intelligence models (artificial neural networks and support vector
regression). This section focuses on dynamic models that have been applied to wastewater
treatment technologies discussed in previous sections.

5.1. State-Space Model

State-space models are mechanistic models that use state variables or parameters to
describe a system using first-order differential or difference equations. This class of models
is a great starting choice for a quick estimation of the dynamic relationship between the
input/output dataset. It only requires one specification, the model order. The model order
is the dimension of the state variable related to the number of delayed inputs and outputs
used in the state-space model. The measurable factors of a process are exploited by states
or parameter estimators through a state-space model in continuous time as follows:

dx
dt

= Ax + Bu (1)

with process output given by:
y = Cx + Du (2)

where A, B, C, and D are matrices containing the characteristic parameters of the system,
u is a vector of system inputs, and x is the state vector of the system. In discrete-time
modeling, the state-space is written in a different form as follows:

x(ktk + tk) = Ax(ktk) + Bu(ktk) (3)

y(ktk) = Cx(ktk) + Du(ktk). (4)

where the sample number k is taken at sampling interval tk since wastewater treatment
processes are nonlinear, a more general model for wastewater treatment processes is as
follows:

dx
dt

= f
(

x, u,
t

ktk
, θ

)
(5)

y = g
(

x,
t

ktk
, θ

)
(6)

The relationship between process input and output, state variables, and model param-
eters (θ) is described by nonlinear functions f and g.

The state variables can be obtained by mechanistic modeling [67], system identification
parameter estimation [71–76], or just system identification parameter estimation [77–80].
Pure mechanistic state-space modeling is applicable only in cases where the mechanism
of the system is thoroughly known, such as an activated sludge process [67]. However,
parameter estimation using the mechanistic state-space model requires more substantial
computation than using system identification. Simultaneously, mechanistic state-space
modeling, accompanied by system identification parameter estimation, can better represent
the existing treatment system. It estimates state variables using actual input/output data
despite theoretical estimation in mechanistic modeling for well-known processes prone to
disturbances in operational conditions, such as biological treatment processes [72–76] and
photo-Fenton processes [71]. On the other hand, state-space modeling of complex systems
with unknown model orders is usually accomplished through the system identification
method. State-space models with different model orders can be identified and compared to
determine the best model order. Therefore, there is no “best solution” to the process model
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for processes that are not thoroughly understood; the state-space modeling technique
would depend on the availability of knowledge on the treatment processes.

5.2. Transfer Function Model

A transfer function model is the ratio of polynomials used to describe the relationship
between inputs and outputs of a system. Similar to the state-space models, transfer
function models can also be in continuous-time or discrete-time forms. Dynamic models
based on Laplace transfer functions are used to describe continuous systems, whereas
dynamic models describe discrete systems based on z-transformed transfer functions. In
the past, both system identification models had been the “go-to” model during black-box
modeling owing to their simplicity and applicability to PI/PID controller design [81–83].
The continuous transfer function Gp(s) relating the output signal y(s) to the input signal
u(s) is as follows [81,84]:

Gp(s) =
y(s)
u(s)

= K
bmsm + bm−1sm−1 + · · ·+ b1s + 1
ansn + an−1sn−1 + · · ·+ a1s + a0

e−ds (7)

where y(s) and u(s) are the Laplace transform of the signals y(t) and u(t), K is the process
gain, an and bm are coefficients, d is the time-delay (process dead time), m is the number of
zeros, and n is the number of poles (order) of the transfer function with n ≥ m for realizable
systems. The unknown coefficients, a and b, are estimated by the least-squares method.
Dynamic process modeling commonly uses first-order and second-order transfer functions
plus time-delay (FOPTD and SOPTD).

Alternatively, for a sampled-data system, discrete transfer functions require the trans-
formation of the output variable y(t) and input variable u(t) by z-transform as follows:

y(t) = y(ktk) (8)

u(t) = u(ktk) (9)

where k is the sample number, and tk is the sampling interval. The discrete process model
that describes the dependency of system output y(nk) on past and present system inputs
(u(nk)) at nkth sample obtained at a constant sampling interval of tk in a single-input single-
output (SISO) system is known as AutoRegressive model with eXogenous input (ARX) [85]
written as follows:

A
(

z−1
)

y(k) = z−dB
(

z−1
)

u(k− 1) + e(k) (10)

where z−1 is the backward shift operator, d is the delay in the system, and e(nk) is the
stochastic disturbance. The polynomials of A

(
z−1) and B

(
z−1) are of nth and mth order

given in forms of:
A
(

z−1
)
= 1 + a1z−1 + a2z−2 + · · ·+ anz−n (11)

B
(

z−1
)
= b0 + b1z−1 + b2z−2 + · · ·+ bmz−m (12)

where model parameters are a1, a2, . . . , an and b0, b1, . . . , and bn. The estimation of the
process model utilizes the linear-time-varying-regression as follows:

ŷ
(
k, θ̂
)
= ΦT(k)θ̂(k) (13)

where θ̂(k) is the unknown parameter vector as shown below:

θ̂(k) =
[

a1 a2 · · · an b0 b1 · · · bm
]

(14)

while Φ(k) is the regression vector containing past values of u(k) and y(k), as shown below:

ΦT =
[
−y(k− 1) −y(k− 2) · · · −y(k− n) u(k− d− 1) u(k− d− 2) · · · u(k− d−m− 1)

]
(15)
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Similarly, the unknown parameters are estimated by the least-squares method.
The unknown parameter coefficients (θ̂(k)) are estimated by the maximum likeli-

hood method, where the error between the predicted output and the measured output
is minimized. Continuous process models had been applied to the model ozonation
process [81], photo-Fenton process [82], photocatalytic oxidation process [83], as well as
full-scale wastewater treatment plants [84]. On the other hand, discrete process models
had been applied to model activated sludge processes [85]. These process models can
precisely model and predict process dynamics of continuous-flow systems with a more
straightforward model form, a lower model order, and a smaller dataset. However, since
process output signals are usually sampled at time intervals, it is more suitable to model
treatment processes with a discrete model. These discrete signals can later be transformed
into a continuous signal using an Analog-to-Digital converter, which adds a zero-order
hold to compute continuous process signals if the sampling time is within the Nyquist
frequency. Overall, both models presented excellent system stability, high fitness to the
actual output values, and applicability to feedback controller design.

5.3. Artificial Neural Networks

Artificial neural networks (ANNs) are supervised artificial intelligence machine learn-
ing models broadly employed for prediction, classification, and optimization purposes in
data-driven process modeling due to their ability to capture nonlinear behavior between
inputs and outputs [86–91]. Generally, an ANN is a network of simple nonlinear process
units known as neurons. These neurons are arranged and interconnected in a network
structure with a specific number of layers consisting of an input layer, specified numbers of
hidden layers (minimum of one), and an output layer. Each connection between ith neuron
in the previous layer and the jth neuron in the current layer is assigned with a specific
weight (wij). Each neuron has an independent bias (bj) input. The neuron output (yj) is de-
termined from an activation function (f ) built on the sum of its inputs (xi) and independent
bias using a back-propagation (BP) algorithm, also known as the back-propagation neural
network (BPNN), as written in the following equation:

yj = f

(
bi +

n

∑
i=1

xiwij

)
. (16)

The maximum of i and j, known as K and Q, are the number of neurons in the
preceding and the number of outputs in the current hidden layer. The resulting value is
then sent to the next layer and processed by another transfer function (f ) in the network,
where this procedure is repeated until the output layer. The standard BP algorithm is
based on the gradient search, which moves network weight and threshold backward along
the performance function gradient while minimizing errors between actual and predicted
output values [13].

A radial basis function neural network (RBFNN) is another type of NN based on
radial basis functions (RBF) as activation functions in the neurons [92–95]. It identifies
as a superior ANN model because it can map principles with a higher tolerance of input
noises and online learning on a larger dataset [95]. RBFNN consists of an input layer, a
Gaussian RBF layer, and a linear output layer. The Gaussian RBF layer is made of neurons
with Gaussian transfer functions with outputs θk(x(t)) as written in the following equation:

θk(x(t)) = exp

(
−‖x(t)− µk(t)‖

σ2
k

)
(17)
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where µk is the center vector of the kth hidden neuron, σk
2 is the radius or width of the kth

hidden neuron, and the denominator is the Euclidean distance between the input of the
network x and µk at time t. Thus, the linear output layer obtains process output y by:

y(t) =
M

∑
k=1

wkθk(x(t)) (18)

where wk is the weight between the kth hidden neuron and the output neuron.
Both types of ANN have been applied for soft-sensor to their flexible structure of

nonlinear neurons, universal approximation, and efficient generalization performance [87].
Supervised NN using BPNN has been used to predict: treatment efficacy of Fenton [90],
photo-Fenton [87], and Electro-Fenton processes [89]; treatment efficacy of UV/H2O2 pro-
cess [88]; and effluent quality of WAO [96]. Supervised NN using RBF has been used to
predict dissolved oxygen (DO) concentration in a biological treatment process [92]. Al-
though the ANN is usually employed to compute more massive datasets, it demonstrated
promising prediction accuracy even when small input–output datasets are available [87].
Additionally, the ANN presented the ability to approximate off-line measurements dynam-
ically, resulting in savings in off-line sampling and analyses.

6. Controller Algorithms

In general, the goal of a control system is to maintain a process output close to the
desired value by managing the inputs using control elements. These control elements can
be electric, pneumatic, or electromechanical actuators. Process control can be categorized
into linear control and linearizing control. Linear control deals with systems modeled in
continuous or discrete forms, which are the most common methods in automatic control.
Most wastewater treatment systems are controlled by conventional linear controllers [12].
Linearizing control deals with non-linearity in the process models through different strate-
gies and control algorithms depending on the application. Linearization control is usually
accomplished by linearizing the nonlinear process model during controller design. This
section discusses the applicability and advantages of different controllers in wastewater
treatment technologies.

6.1. PID Control

Proportional integral derivative (PID) controller and its variants, proportional (P)
and proportional-integral (PI) controllers, are the conventional linear controller commonly
employed in wastewater treatment processes [12]. These controllers apply corrections to
the manipulated variable by comparing the real-time measured and desired signals. A PID
controller is suitable when the control system is well-defined with a stable characteristic
and is modeled in a continuous-time signal as follows:

Gc(s) = Kc

(
1 +

KI
s

+
KDs
Tf

)
(19)

and in a discrete-time signal in the following form:

Gc(s) = Kc

(
1 + KI IF(z) +

KD
Tf + DF(z)

)
(20)

where Kc, KI, and KD are the controller, integral, and derivative gains, respectively. The
controller, integral, and derivative gains are the tuning parameters of PID controllers. The
term Tf refers to the first-order derivative filter time constant, and IF(z) and DF(z) are the
discrete integrator formulas for the integrator and derivative filters as shown below:

IF(z) = DF(z) =
Ts

z− 1
(21)
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where Ts is the sampling time.
PI and PID controllers are designed for single-variant linear transfer function models

and tuned with an identified dynamic process model. PI and PID controllers have been ap-
plied to control effluent quality in ozonation processes [97], photo-Fenton processes [82,98],
and photocatalysis oxidation [83]. Although wastewater treatment processes are nonlinear,
it is possible to maintain proper set-point tracking and disturbance rejection using PI and
PID controllers in lightly nonlinear processes by approximating the process with a linear
process model [82]. However, the performance of P, PI, and PID controllers degrades
when significant process nonlinearities are associated with disturbances in a control system
and when there is a lack of state variables that can be measured during operation [12,13].
Therefore, an adaptive controller is required to estimate the various parameters of the
process during each control interval using an algorithm that can predict process efficiencies
based on state variables measured during operation.

6.2. Model Predictive Control

In contrast to linear PID control, model predictive control (MPC) is an advanced con-
trol strategy that addresses nonlinearities via linearization to achieve optimal control and
adaptive control. Traditionally, MPC uses mechanistic dynamic process models to predict a
process over time intervals, prediction horizons, and variables while accounting for process
variables’ physical constraints. Two types of predictive control, MPC and nonlinear MPC
(NMPD), have been used to model wastewater treatment systems dynamically. The NMPC
is an MPC that is solved using a nonlinear process model. The MPC determines the present
and future controller action (∆uk, ∆uk+1, . . . , ∆uk+Nu−1) by minimizing the cost function J
written as follows:

J(N1, N2, Nu) =
N2

∑
j=N1

Γ
[
ŷt+j|t − yre f+j|t

]2
+

Nu

∑
j=1

Λ
[
∆ut+j−1

]2 (22)

where ŷt+j|t, yre f+j|t, and ∆ut+j−1 are the predicted outputs along the prediction horizon,
the reference signal, and the control effort over the control horizon of Nu, respectively.
The predicted output is computed using linear/nonlinear process models such as ARX,
state-space, NARX, and NN. The tuning parameters in the cost function are the prediction
horizons (N1 and N2), control horizon Nu, and input-output coefficient weights (Λ and Γ).
The difference between the minimum prediction horizon and maximum prediction horizon,
which are represented by N1 and N2, is the time range where the future output must follow
the reference signal. The selection of these tuning parameters is determined through
process settling time and computational limitations. The minimum prediction horizon
is usually more significant than the process dead time (d), and the weight matrix Γ is an
identity matrix for a SISO process. In most cases, the weight matrix Λ (ny × nu) is set to
Λ = λI, where λ is the scalar weighting coefficient, I = Ψ, and Ψ is a square diagonal
scaling matrix (ny × nu).

MPC is uncommon in WWTPs as most individual processes, such as biological pro-
cesses and AOPs, are too complex to develop sufficiently accurate mechanistic models
based on first principles due to disturbances that cause processes to deviate from ideal
operational conditions. However, many have investigated the applicability of system
identification models to MPC design. The cost function of MPC can be solved analytically
by approximating a linear process model for a system that is only lightly nonlinear with
no constraints on inputs or outputs; this linear process model can range from linear state-
space models [75,80] to linear system identification models [99]. The generalized predictive
control (GPC) is another type of linear feedback MPC. Sadeghassadi et al. [85] proposed
a constrained GPC and a PI control that uses the oxygen transfer coefficient to control
DO concentration in the last tank. The constrained GPC has an inequality constraint on a
controlled variable based on the physical limits of the equipment. The GPC showed better
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and smoother set-point tracking and disturbance rejection for constrained GPC than PI
control, lower mean squared error (MSE), and lower squared input-step-change (||∆u||2).

Moreover, Stare et al. [75], Santín et al. [80], and Liu and Yoo [99] were able to achieve
good set-point (DO, effluent ammonium, and effluent nitrate) tracking and disturbance
(variations in flowrate) rejection when approximating WWTPs with discrete linear transfer
function models. However, MPC based on nonlinear process models performed better than
MPC based on linear process models because most wastewater treatment processes are
nonlinear [75]. The cost function of MPC for nonlinear process models, known as NMPC,
can only be solved using linearization of nonlinear process models [72,100] or iterative
optimization algorithms [78,92] for MPC to achieve excellent setpoint tracking of nonlinear
processes. The solution of the NMPC scheme is mathematically and computationally
intense, making it not easy to implement WWTP processes. Even though several studies
tried to implement MPC onto WWTP processes, more research is required to develop
system-specific models before MPC can be implemented in full-scale WWTPs. Moreover,
the MPC is unsuitable for WWTP processes because MPC real-time control is restricted by
possible inaccuracy in identified dynamic models.

Table 4. Dynamic process model and process control strategies of wastewater treatment technologies.

Target Pollutant Process and
Controller Models

Process Inputs:
Manipulated Variables

and Disturbances

Process Output:
Process Variable Results Ref.

Activated sludge processes

Primary sewage
effluent

Time-series process
models

Influent volatile organic
compound (VOC)

concentrations

Effluent VOC
concentrations

No apparent effect of
solid retention time or

hydraulic retention time
on VOC removal

Melcer et al.
[101]

Actual wastewater Mechanistic state
model

Aeration rate
Dilution rate

Recycled ratio
DO

Showed successful
simulated state model

based on the state
variable sensibilities

Caraman
et al. [67]

Actual wastewater

MPC design based on
nonlinear

reduced-order and
linear, mechanistic

state model

DO in first and second
aerobic reactors

Influent ammonia
Temperature

Influent flowrate

Effluent ammonia

Showed relatively large
MRSE errors in model

prediction
MPC showed the ability

to correct deviations
resulted from deficiencies

in the process model
MPC with nonlinear state
model performed better

than MPC with the linear
state model

Stare et al.
[75]

Actual wastewater

Integrated design for
MPC on the

mechanistic state
model

Internal recycle flowrate Nitrate level in the
anoxic tank

MPC showed optimal
control

Francisco
et al. [72]

Actual wastewater

NMPC-PI control
based on the

nonlinear
mechanistic state

model

Airflow rate

Total suspended
solids (TSS)

Wastewater flowrate
Effluent ammonia

Set-point tracking
achieved

NMPC-PI controller
showed better

performance than
centralized NMPC

Francisco
et al. [78]

Actual wastewater
GPC and PI design

based on ARX
process model

Oxygen transfer
coefficient

Influent flow rate
Influent concentration

DO

GPC showed high
robustness to
disturbances

GPC performed better
than conventional PI

control

Sadeghassadi
et al. [85]

Actual wastewater
MPC based on the
mechanistic state

model

External carbon flow rate
Internal recirculation flow

rate

Nitrate nitrogen in
tank 5

Nitrate nitrogen in
influent

MPC simulation showed
improvement in process

efficiency

Santín et al.
[80]
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Table 4. Cont.

Target Pollutant Process and
Controller Models

Process Inputs:
Manipulated Variables

and Disturbances

Process Output:
Process Variable Results Ref.

Actual wastewater

NMPC based on
self-organizing (SR)

RBF NN process
model

Internal recycle flow rate
Oxygen transfer

coefficients in the fifth
aerated reactor

Dissolved oxygen
(DO)

SR-RBF NN model
showed high fitness to

measured data
SR-RBF-NMPC showed
good control ability and
reduced tracking errors
of DO even under high

disturbances

Han et al.
[92]

Actual wastewater
MPC design based on
the mechanistic state

model

Flow rate
Influent substrate

concentration
Dilution rate

DO
MPC simulation showed
good setpoint control and

disturbance rejection

Harja et al.
[74]

Actual wastewater

Cascade control with
two PI single-variant

controllers and a
multi-variant MPC

based on a fifth-order
MIMO model

External carbon flowrate

Effluent nitrate
concentration

Effluent ammonium
concentration

Nitrate concentration
in the second reactor1

DO in the last
reactor1

Process model showed
high fitness (>88.9%) to

measured data
Successful control of
effluent nitrate level

Liu and Yoo
[99]

Sequencing batch reactor

Actual wastewater
SISO non-linear

mechanistic state
model

Valve opening

DO
Respiration rate
Oxygen transfer

coefficient

Simulation showed
promising estimation of

process outputs

Hvala et al.
[79]

Wastewater treatment plant (WWTP)

Industrial coke
wastewater

Closed-loop feedback
controller based on

SOPTD process
model

Airflow rate DO

Reduced SOPTD model
showed a good

representation of the real
plant and robust ability to
measurement noise and

step disturbances

Yoo and Kim
[84]

Actual wastewater MPC based on a
state-space model

Flowrate
Recycle flowrate

Aeration intensity

Buffer tank holdup
Effluent ammonium

Fluent nitrate

MPC presented good
controllability of the
process even under

unpredicted disturbances

Elixmann
et al. [77]

Actual wastewater
Nonlinear

mechanistic
state-space model

Flowrate Effluent ammonium Successful estimation of
model parameters

Gašperin
et al. [73]

Actual wastewater
MPC based on a

steady-state process
model

Flow rate
Influent ammonia

Influent pH

Effluent COD
Effluent phosphorous

(TP)

Steady-state models
showed high fitness
(81.6% and 77.2%)

MPC showed good
controllability

Wang et al.
[76]

Fenton

Pigment wastewater
Feedback process
control based on

multiple regression

H2O2 dosage
Oxidation-reduction

potential (ORP)
Influent COD

Effluent COD

Models showed higher
fitness to measured data

Control system was
effective in maintaining
stable effluent quality

Kim et al.
[86]

Textile wastewater
Single variable

ANN-BPNN process
model

ORP
pH

Fe2+ dosage

Color removal
COD removal

No direct or linear
correlation between
color/COD removal

efficiencies and ORP and
pH in the oxidation tank

Color/COD removal
BPN model showed high

fitness to experimental
results

Yu et al. [90]
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Table 4. Cont.

Target Pollutant Process and
Controller Models

Process Inputs:
Manipulated Variables

and Disturbances

Process Output:
Process Variable Results Ref.

Photo-Fenton

Wastewater

PI control with an
anti-windup

mechanism based on
SOPTD grey-box

process model

Percentage of H2O2
pump frequency output [H2O2]

PI controller showed
good set-point tracking
with high robustness in

small-scale and
pilot-scale tests

Alvarez et al.
[82]

Paracetamol

PI control with an
anti-windup

mechanism based on
FOPTD process

model

H2O2 dosage
Pollutant concentration

UV radiation
DO

FOPTD showed high
fitness to the measured

output
PI controller showed

good set-point tracking
and disturbance rejection

with high robustness

Ortega-
Gómez et al.

[98]

Paracetamol Mathematical state
model

Illuminated volume to
total volume ratio (Ri)

DO
[TOC]
[H2O2]

Model showed high
fitness to experimental

results
Effect of Ri was

significant and possible
to use for scale-up

Cabrera
Reina et al.

[71]

Paracetamol Data-driven ANN
process model

H2O2 dosage
Initial TOC Effluent TOC

Model presented high
approximation ability of

final TOC (RMSE =
0.73–2.81)

Shokry et al.
[87]

Electro-Fenton

Textile wastewater
(not dynamic

modeling)
ANN-BPNN model

ORP
Reaction time for ORP to

reach the ORP valley
Reaction time for DO

rising point
Desired COD removal

Fe2+ dosage

Fe2+ requirement
Actual COD removal

ORP and DO profiles
showed the ability to

indicate the variations in
[H2O2], [Fe2+], and [Fe3+]

ANN model
demonstrated more

precise predictions results
than regression models

Yu et al. [89]

Peroxide oxidation (UV/H2O2)

Azo dye
(not dynamic

modeling)

ANN-BPNN model
with ten neurons in

the hidden layer

Nozzle angle (θN)
Nozzle diameter (dN)

Flow rate (Q)
Initial concentration of

H2O2
pH

Reaction time (t)-

Process efficiency
measured by UV

absorbance

BPNN model showed
high fitness with the

order of importance for
variation of variables as
[H2O2]0 > t > pH > Q >

θN > dN

Soleymani
et al. [88]

Ozonation

Paranitrophenol
aqueous solution

Continuous-time
transfer function
model with delay

O3 generator power

Effluent absorbance
Ozone gas

concentration at the
top of the reactor

Model showed high
fitness in identification

data (90.3%) and
validation data (86.2%)

Abouzlam
et al. [81]

Secondary effluent
from municipal

WWTP

PID controller based
on the time-series

process model
O3 dosage

Change in UV
absorbance at 254 nm

(∆UV254) between
effluent and influent

measurement

Closed-loop process
controller presented good

set-point tracking
Linear regression fitted

well between ∆UV254 and
TOC removal (%)

Stapf et al.
[97]

Electrochemical oxidation

Phenolic compounds
Ten steps ahead

prediction based on
stacked NN models

Current density
Pollutant concentration

pH
Temperature

Phenolic compound type
Chlorine compound type

Effluent COD

Stacked NN model with
two hidden layers

presented the highest fit,
the average relative error
of 1.75%, and R2 of 0.9998

against the training
dataset

Stacked NN model also
presented good accuracy

with prediction errors
(4–6%) against the
validation dataset

Piuleac et al.
[102]
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Table 4. Cont.

Target Pollutant Process and
Controller Models

Process Inputs:
Manipulated Variables

and Disturbances

Process Output:
Process Variable Results Ref.

Photocatalytic oxidation

Toluene

PI feedback and
feedforward

controllers based on
FOPTD process

model

Illumination intensity of
the LED light source

Inlet toluene
concentration

Relative humidity

Toluene conversion
(%)

Feedback controller
presented proper

set-point tracking and the
ability to mitigate catalyst

deactivation
Feedforward controller
based on the empirical

steady-state model
presented excellent

disturbance rejection

Khodadadian
et al. [83]

Wet air oxidation

Phenolic compounds ANN-BPNN model
with three layers

Weighted hourly space
velocity (WHSV)

pH
Temperature

Pressure
Time

Phenol conversion
(%)

NN model presented
high fitness and low error

Gheni et al.
[96]

7. Conclusions and Recommendations

In this study, different wastewater treatment processes available for PVA degrada-
tion were explained in detail. Although it is possible to acclimate biological treatments
to achieve PVA degradation in existing WWTPs, the degradation process in biological
treatment processes is very slow. On the other hand, the degradation process in AOPs
is non-selective and faster than biological processes, but they still require more research
to develop fundamental mechanisms. Among all, UV/H2O2 remains a popular process
for degrading and mineralizing PVA in the wastewater system through photoreaction
owing to its non-selective degradation kinetics, low cost, and ease of operation. Meanwhile,
the industrial application of AOPs requires future control strategies to maintain process
efficiencies, effluent qualities, and process reliability under variable operational conditions
while preventing system failure. Despite numerous counts in WWTP process control litera-
ture, there is no “best” approach on the road for process control. Control-oriented process
models for an existing treatment can be built on mechanistic and system identification
models using historical monitoring data. The latter approach is much simpler than the
earlier approach as mechanistic models of wastewater treatment processes are complex
and computationally intense.

Control-oriented models can be used to design PI/PID controllers and predictive
controllers, depending on system requirements. PI/PID controllers are more common
and thoroughly understood between the two, so their implementation would be much
more straightforward than predictive controllers. Plus, the weakness of PI/PID controllers
in linearization control can be easily overcome using adaptive control. In contrast, more
research is required to develop a system-specific solution before MPC can be implemented
in full-scale processes. Moreover, MPC cannot be applied to all WWTP processes simply
because its real-time control is limited by the number of online measurable inputs and
outputs and inaccuracy in model predictions.

In summary, wastewater treatment technologies looking to integrate controllers
should:

1. Define the scope and the desired goals of the treatment processes.
2. Identify process variables that can be used as manipulated variables (variables that

can be changed to move the process towards the desired set-point), control variables
(variables that need to be constrained), and disturbances (variables that cannot be
controlled but have effects on process efficiency or effluent quality).
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3. For automation of existing processes, use plotting tools to visualize the effect of each
process variable via plotting monitoring data. For automation of new processes,
design and perform step testing experiments to obtain process data and visualize the
effect of each process variable via plotting monitoring data.

4. Identify a suitable control strategy based on the observed data or experimental data
trends and desired goals.

5. Fit and validate process models that are suitable for the identifies control strategy.
The choice for a dynamic model would depend on the size of the dataset, the number
of variables to be studied, and the nonlinearity of the processes.

6. Design and validate the control strategy based on the identified dynamic process
model.

7. Implement and validate control design.
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