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Abstract: Surfactants based on polyfluoroalkyl ethers are commonly used in fire-fighting foams on
airport platforms, including for training sessions. Because of their persistence into the environment,
their toxicity and their bioaccumulation, abnormal amounts can be found in ground and surface water
following the operations of airport platforms. As with many other anthropogenic, organic compounds,
some concerns are raised about their biodegradation. That is why the Organization for Economic
Co-operation and Development (OECD) 301 F protocol was implemented to monitor the oxygen
consumption during the biodegradation of a commercial fire-fighting foam. However, a Raman
spectroscopic monitoring of the process was also attached to this experimental procedure to evaluate
to what extent a polyfluoroalkyl ether disappeared from the environmental matrix. Our approach
relies on the use of chemometrics, such as Principal Component Analysis (PCA) and Partial Least
Squares (PLS), in order to monitor the kinetics of the biodegradation reaction of one fire-fighting
foam, Tridol S3B, containing a polyfluoroalkyl ether. This study provided a better appreciation of
the partial biodegradation of some polyfluoroalkyl ethers by coupling Raman spectroscopy and
chemometrics. This will ultimately facilitate the design of future purification and remediation devices
for airport platforms.

Keywords: environmental fate; Raman spectroscopy; chemometrics; principal component analysis;
biodegradation; kinetics; post-processing; Whittaker filter; partial least squares

1. Introduction

Water and/or soils pollution are extensively discussed in the literature, as well as the biodegradation
of anthropogenic pollutants and their effects on the environment. In the specific case of fluorinated
aliphatic molecules present as surfactants in many industrial contexts [1], the bibliography is limited for
surfactants used as fire-fighting foams [2–9]. These chemical compounds are considered as toxic [10,11].
This raised concerns about their particular environmental impact [12]. Indeed, these chemicals are
known to be persistent in the environment, to present a toxicity to living organisms, and to be
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bioaccumulated. On airport platforms, fire-fighting fluids are added to water to generate solutions in
the form of foams to ease the water spreadability in order to smother the fire, and its extinguishment,
especially for fuel fires, using the low surface tension characteristics of the foam due to the presence of
fluorinated molecules. These fire-fighting foams must comply with the specifications related to the
equipment to fight fire on/in aircrafts, and their conformity for their use on French airports is certified
by the French Civil Aviation Department [13]. Therefore, fire-fighting foams are subject to specific
rules [14]. Because of these environmental rising concerns, the French Civil Aviation Department
initiated an investigation on methods of the detection and quantification of such chemicals in aqueous
solutions, included at low concentration, their fate in soils and vegetation, and their impact on the
environment through the determination of their biodegradation and toxicity.

The objective of this article is to focus on the spectroscopic monitoring of the biodegradation
process of a polyfluoroalkyl ether present in Tridol S3B, a commercial fire-fighting foam. The product
is characterized using a conventional OECD 301 F protocol. In parallel, it is characterized by
Raman spectroscopy to establish its limit of detection in an aqueous solution. A spectroscopic
monitoring of the biodegradation process is then implemented, with a chemometric approach
developed for the investigation of the kinetics reactions associated with the biodegradation process
for this polyfluoroalkyl ether. Indeed, environmental matrices are complex to analyze in Raman
spectroscopy. This technique relies on the presence of strongly polarized chemical bonds from specific
spectral signatures, e.g., 2H-polyfluorocarboxylates for our surfactants [6]. Nevertheless, undesirable
‘effects’ could appear on the Raman signal due to the complexity of the analyzed environmental
matrices (e.g., spectral overlap). That is why the proposed solution is to use chemometric methods
to extract the most relevant information from the Raman spectra. Chemometrics has already shown
that it is possible to overcome these drawbacks, but also to push back the resolution limits of any
conventional instrument [15]. Although infrared spectroscopy constitutes a good approach to monitor
a biodegradation process [16,17], it is nevertheless not appropriate for field operation without sample
preparation, as to be aimed at in a future evaluation. We demonstrate a robust approach to monitor the
biodegradation of a surfactant by Raman spectroscopy with a chemometrics approach.

2. Materials and Methods

2.1. Presentation of the Polyfluoroalkyl Ether

Fire-fighting chemicals are aqueous solutions allowing the generation of foam to extinguish fire,
in particular fuel ones. Commercial products used on airport platforms are industrially synthetized,
and are employed at a volume percentage ranging from 3% to 6%. One polyfluoroalkyl ether was tested
in this study, and was compliant with specifications given by the French Civil Aviation Department,
concerning the compliance with the International Civil Aviation Organization (ICAO) requirements.
Tested product is an aqueous film forming foam (AFFF), containing fluorinated surfactants, and its
general characteristics are summarized in Table 1, according to its safety data sheets. Based on provided
information, the presence of polyfluoroalkyl ethers was not obvious. But the biodegradation rate
presented is extremely compliant with environmental requirements.

Table 1. General characteristics of a commercially-available fire-fighting foam according to its safety
data sheet.

Product Name Manufacturer Volume Mass
(kg/L)

Global
Composition

Presence of
Fluorine

Biodegradation
Percentage

Tridol S3B Eau et Feu S.A. 1.01 Ethylene glycol 2-(2-
butoxyethoxy)ethanol

Presence indicated
without any detail

97% (number of
days not specified)

To both confirm the presence of fluorine and to obtain a more accurate insight on the composition of
these fluids, its Raman signature is established as our reference. Raman spectroscopy is a non-destructive
and cost-effective technique to analyze materials and aqueous solutions [18,19]. The reference spectrum
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was obtained using an RXN-2 Raman spectrometer from Kaiser Optics, operating with a 785 nm laser
source (red) with a 400 mW output, and a spectral resolution of 1 cm−1. Such a wavelength was chosen
to avoid the spectral signature of water, as it would be the case with a laser at 532 nm. The Raman
spectrum (Figure 1) was measured with a sample of 5 mL of the fluid placed into a quartz cell, with an
integration time of 30 s. The spectral ranges of interest are between 600 and 1400 cm−1 for the chemical
bonds involving fluorine, and in the 1000–1500 cm−1 and the 2800–3000 cm−1 for the ones involving
ether covalent bonds [20] (Table 2).
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Figure 1. The reference Raman spectrum of the fire-fighting foam Tridol S3B obtained with a Kaiser
Optics Raman spectrometer operating with a 785 nm laser (400 mW, 30 s integration time).

Table 2. Raman shift of chemical bonds of a polyfluoroalkyl ether present in fire-fighting fluid.

Raman Shift (cm−1) Chemical Bond of Interest with the Corresponding Vibration Type

530 C–F deformation

765 C–F deformation vibration in aliphatic monofluorinated compounds, C–F scissor

830
symmetric stretch C–O–C

C–F deformation

990–800 CH2 rocking

1110–990 C–F stretch in CH2F

1110–1000
aliphatic monofluorinated compound

CH2F with C–F stretch and CH2 rocking

1040–1060 C–F stretch on aliphatic difluorinated compound

1250–1050 aliphatic difluorinated compounds C–F stretch

1130 asymmetric stretch C–O–C

1300
C–F stretch

CF3 attached to an alkyl group
CF3 attached to an aromatic group

1450 CH2 vibration of deformation

2.2. Appreciation of the Biodegradation Based on OECD 301 F Protocol

The monitoring of the biodegradability consists in characterizing the way micro-organisms
degrade a given substance, in an aerobic or in an anaerobic environmental matrix. This monitoring is
used to evaluate the persistence of an anthropogenic substance into the environment, in parallel to the
collection of chemical and ecotoxicological data.
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The determination of the biodegradability can be established through several methods given by
an OECD guide [21], and providing six methods to characterize a chemical product as a function of
its biodegradability.

The method selected in this study is related to the standard referenced as NF EN ISO 9888, which
evaluates the ultimate aerobic biodegradability of organic compounds in aqueous medium and in
static conditions (the Zahn–Wellens method) [22]. It is similar to the measurement of dissolved organic
carbon in a static aerobic environment with constant air flow, temperature, stirring and light, through
the appreciation of the chemical oxygen demand instead of the one of dissolved organic molecules.
This process describes the degradation of the whole organic carbon present in an environmental matrix.

Therefore, to evaluate the environmental fate of a polyfluoroalkyl ether contained within a
fire-fighting foam, a given amount of this foam, the only source of dissolved organic carbon besides
the inoculum, is introduced into a 1 L-reactor containing a static aerobic media with some nutriments
(Figure 2). This inoculum is a sample of micro-organisms collected in an aeration basin for only
domestic waste waters.
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Figure 2. Organization for Economic Co-operation and Development (OECD) test for the biodegradation
of a fire-fighting foam containing a polyfluoroalkyl ether.

Dissolved organic carbon is measured with a chemical method during the experiment on
homogeneous samples. In parallel to the test with a polyfluoroalkyl ether, a second test was conducted
as a blank with only the inoculum and the nutriments. The ratio of biodegradation at a date t of the
polyfluoroalkyl ether is calculated as follows:

biodegradation =

(
DCOt1 −DCOblank_t1

)
− (DCOt −DCOblank_t)(

DCOt1 −DCOblank_t1

) , (1)

DCOtl and DCOt respectively are the oxygen chemical demand 3 h ± 1/2 h after the beginning of the
biodegradation test, and at a given time t. The tested product is considered to be easily degradable if,
after achieving a biodegradation ratio of 10%, the ratio changes to a 70% ratio within the following ten
days. The test is considered as finished when the degradation rate remains constant as a function of
time. The DCO thus obtained is called the refractory one. The maximum duration of the test is 28 days.
It is advised to start with a DCO of 100 mgO2/L, with a maximum of 1000 mgO2/L.

2.3. Spectroscopic Monitoring and Chemometrics to Identify the Biodegradation Process

As discussed above, the evaluation of the environmental fate of a polyfluoroalkyl ether contained
in a fire-fighting foam relied on the fact that this foam was the only source of dissolved organic
carbon besides the inoculum. Table 1 with the composition of the fire-fighting foam considered in this
research article did show that the fluid obviously contained other dissolved organic carbon besides
the ones related to polyfluoroalkyl ether. Therefore, the sole OECD protocol is not appropriate to
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identify to what extent the degradation of the polyfluoroalkyl ether is taking place along with other
organic chemicals.

It has been demonstrated how Raman spectroscopy was able to specifically identify the presence
of C–F chemical bonds despite the fact the amount of polyfluoroalkyl ether present in a fire-fighting
foam is low (Table 1). Considering both the volume of the reactor and this amount, the question of
the spectroscopic detection limit was raised. Several diluted solutions of the selected commercial
fire-fighting foam were then prepared with a volume ratio ranging from 4.10−3% to 80%. Each solution
was analyzed by Raman spectroscopy during 8 min, with a 30 s integration time, and a 45 s-time interval
between each spectrum. Ten spectra for each dilution were then obtained, and a database of over eighty
spectra was then generated when including the spectral signature of pure commercial fluid. As a
consequence, two chemometric methodologies were applied in order to determine the spectroscopic
detection limit of polyfluoroalkyl. The first one is based on the Principal Components Analysis (PCA),
and the second one on Partial Least-Square regression (PLS) [23,24]. These analytical methods are
widely used on spectroscopic measurements for data “mining”, dimension reduction and/or principal
components analysis for characterizing several sets of measured physicochemical variables.

Once the limit of detection is established, a similar experimental setup to the one for the
determination of the biodegradation based on the OECD 301 F protocol was developed. A spectroscopic
monitoring was then implemented to specifically determine the environmental fate of one fire-fighting
foam containing a polyfluoroalkyl ether. Two 1 L-reactors containing a static aerobic media with
some nutriments and an inoculum were then prepared. One was used as a reference, while 10 mL
of pure Triodol S3B were added into the second one. A Raman immersion probe was placed
into each reactor (Figure 3a), and was connected to the Kaiser RXN-2 Raman spectrometer to a
continuous monitoring over 28 consecutive days. Each probe made a measurement for 30 s, with a
15 min-interval between each Raman spectrum. Some foam is naturally generated while stirring the
mixture (nutritive fluid and inoculum) containing a fire-fighting foam, and some paper cloth was
placed around the reactors to prevent any eventual overflow. To reduce the risk of foam occurrence,
five specific trimethylsiloxy-terminated polydimethylsiloxanes were added, with molar mass ranging
from 770 g/mol to 139,000 g/mol, these chemicals making the foam unstable and are widely used
in food industry. Normalized Raman spectra of the fluids present in the environmental matrix are
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Figure 3. Experimental setup with Raman immersion probes into two identical environmental matrices
(one reactor without polyfluoroalkyl ether on the left, and with polyfluoroalkyl ether on the right of the
picture) (a), and Raman spectra of each fluid constituting the environmental matrix before addition of
the inoculum (b).

As observed, two peaks of the nutritive fluid (after baseline correction), below 800 cm−1, are located
near some of the ones observed in Tridol S3B, while siloxane spectral signatures are not interfering
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with the ones of fire-fighting foams, especially in the 400–1800 cm−1 range. Considering the volume of
both fire-fighting foam and of static aerobic media involved, the concentration in fire-fighting foam is
of 1% v/v.

On complex samples, such as environmental matrices, the use of chemometric tools could
overcome several drawbacks from a classical approach in Raman spectroscopy. First, it is necessary to
know a priori all pure components in the sample. If this hypothesis is not true, it could be possible to
select a non-selective spectral wavelength and thus, overestimate the concentrations of a component.
Moreover, when there is a strong spectral overlap (e.g., wide bandwidth, fluorescence effect and/or
sample complexity), it is impossible to identify a truly selective wavelength. That is why the use
of chemometric tools could overcome all these drawbacks in order to give a better estimate of the
true concentration.

2.4. Principal Components Analysis (PCA) and Partial Least-Squares Regression (PLS)

Among data analysis techniques, PCA is the most commonly used methodology in order to
understand datasets [25,26]. Indeed, PCA explains the structure of descriptive variables based on
data matrix using a small number of variables defined as linear combinations of the original variables
(i.e., raw data). This approach decomposes a data matrix D (m × n) into a product of two variables,
a matrix of scores denoted T (m × k) and a matrix of loadings denoted P (k × n), which is added to a
residual matrix EPCA (m × n):

D = T.PT + EPCA, (2)

The dimension of the new space defined by k is determined with the rank of the raw data matrix D.
The number of original variables n from m observations are too complex for direct interpretation from D,
which explains why it is necessary to “reduce” the space dimension using k Principal Components
(PCs) that explain the maximum amount of information. The scores represent the coordinates of the
observations (or samples) on the axes of the selected PCs. The loadings denote the contributions of the
original variables on the same selected PCs. In other words, since the scores are representations of
observations in the space formed by the new axes defined by the PCs, loadings are a representation of
the variables on this axis. Geometrically, this change of variables by linear combinations results is a set
of new variables called PCs. The direction of each newly created axis describes a part of the global
information from the original variables contained in the matrix D. The variance explained by each PCs
is sorted in decreasing order.

The proportion of variance explained by the first PC, which represents the main part of information,
is higher than the second PC, which represents a smaller amount of information, and so on. The same
information cannot be shared between two PCs, because PCA requires that the PCs are orthogonal to
each other.

In our case, the PCA is used directly on the Raman spectra in order to find out when the degradation
of the polyfluoroalkyl ethers occurs, but especially if there is degradation. One of the drawbacks of this
approach is the direct interpretation of the chemical information of the loadings. Indeed, when you
analyze spectra, loadings can be negative, while it is not chemically possible to obtain a negative
spectrum. As a consequence, some other chemometric methodologies e.g., the Multivariate Curve
Resolution using a constrained Alternating Least Squares algorithm (MCR-ALS) [27,28] or PARAFAC
(Parallel Factor Analysis) [29] will be needed to reach a more realistic chemical information.

PLS is a supervised statistical method to predict quantitative information or a given state of a
system with both spectra and measurements. It consisted in generating a calibration on the basis of a
training set of Raman spectra and of corresponding concentrations. It contributes to the elaboration of
a statistical forecast model of the concentration with the Raman spectra. Since all data used do contain
noise, this calibration generates a calibration matrix P and a minimized error matrix EPLS. It allows us
here to simultaneously generate models on the variability of concentration in the polyfluoroalkyl ether
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of aqueous solutions and the matrix of their Raman spectra, and so maximize the correlation between
latent variables.

Concentration = P.(Raman spectra) + EPLS, (3)

Basis vectors are searched for concentrations and another one for Raman spectra, and the understanding
of the way these sets are related is mandatory. The eigenvectors for each space are calculated to
reach the best congruence between each variable factor and its corresponding Raman spectrum in
the least-squares sense. Noise being present in both variables and measurements, eigenvectors for
both spaces are shifted by different amounts in different directions, due to the independence of noises
in corresponding spaces, conducting to an imperfect congruence between variables and data points.
PLS will try to restore this optimum congruence, defined as a linear relationship between the scores of
the variables and Raman data.

3. Results

3.1. Discrimination of Fire-Fighting Foams and Detection Threshold

PCA and PLS results for Raman spectra of the fire-fighting foam are respectively presented in
Figure 4a,b. Results were obtained with Unscrambler X 10.1, using the NIPALS (Non-linear Iterative
Partial Least Squares) algorithm, after a baseline and offset correction on Raman spectra, followed by a
normalization with respect to the spectra area over the 400–2800 cm−1 spectral range. PCA is able to
discriminate fire-fighting foam-diluted solutions from each other, as illustrated by the spreading of
data points on the scores plot (Figure 4a) of the first two principal components. The discrimination
and hence the detection limit can be obtained with volume amounts as low as 0.08% of commercial
fire-fighting foam in water, corresponding to nearly 10 ppm, based on information provided by the
manufacturers (Table 1). A PLS model was also elaborated (Figure 4b) and provided the percentage of
fire-fighting foam in an aqueous solution on the sole basis of its Raman spectral response. RMSEC
(root mean square errors of calibration) of the PLS model was of at least 0.023%. A linear regression in
a log–log scale indicated an R2 of 0.998, for a slope of 0.9993 and an offset of 0.022% for the prediction
of a fire-fighting foam in an aqueous solution. The application of the model to unknown solutions
indicated the ability to reach a detection threshold of 140 ppm. This value was obtained considering
data from the safety data sheet indicated in Table 1, the molecular mass of the solvents and assuming a
percentage of polyfluoroalkyl ether of 1% in the commercial solution, with an approximate chemical
structure deduced from Raman peaks indexation (Table 2).
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3.2. Conventional Monitoring of the Biodegradation Process

Biodegradability results are presented in Table 3. According to these test results, the product is
easily degradable. Evolutions as a function of time of the degradation of this fire-fighting foam is in
Figure 5. No significant difference was observed between it and two other tested fire-fighting foams.
They all presented a pause between the 48th and 72nd h depending on the product after the beginning of
the degradation process. Nevertheless, and as indicated before, this process describes the degradation
of the whole organic carbon present in the environmental matrix. In the case of Tridol S3B, it includes
at least ethylene glycol, 2-(2-butoxyethoxy)ethanol, alkyl sulfate, ethanol and polyethylene glycol 400,
besides polyfluoroalkyl ethers. Therefore, this test did not indicate to what extent fluorinated organic
molecules, considered as persistent into the environment, were really degraded, or not.

Table 3. Results of aerobic biodegradation tests on the three fire-fighting foams.

Fire-Fighting
Foam

Theoretical Rate (%) of
Degradation (According

to Products SDS)

Biodegradability Rate
(%) after 5 Days

Time (h) Necessary to Reach
a Biodegradation Rate of 90%

Tridol S3B 97 89 121.5
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3.3. Chemometrics-Assisted Spectroscopic Monitoring of the Tridol S3B Biodegradation

Raman spectroscopy was implemented on one additional test specifically conducted on Tridol
S3B. This choice was necessitated by the absence of any significant difference between the fire-fighting
foams when submitted to the conventional OECD protocol as described in the previous paragraph.

Raman spectra from both reactors are illustrated in Figure 6a,b for the case of Tridol S3B, at the
beginning of the test (dark solid line) and after 288 h (12 days) of biodegradation (gray, solid line).
The first element to notice is the strong fluorescence due to the light diffusion already present in the
nutritive fluid and enhanced by the solid particles in suspension and causing the turbidity of the
studied media. The second one is the presence of peaks at 580 cm−1 and 750 cm−1 in the Raman
spectra of the fluid containing the fire-fighting foam. These peaks can be attributed to CFx bonds
(x = 1, 2 or 3) [20]. The peak near 580 cm−1 was barely visible in the case of pristine fire-fighting foam.
Thus, the presence of such a peak could be the evidence that the fluorinated molecules are still present
while the degradation process is supposed to be almost over, as indicated in Figure 5 when evaluating
it conventionally. Since these peaks are also present in the nutritive fluid, additional investigations
are needed.
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Figure 6. Raman spectra in their pristine form obtained at the beginning of the test and after 12 days
from immersion probes in reactors without fire-fighting foam (a) and with 10 mL of fire-fighting foam
Tridol S3B (b), and the same respective Raman spectra after Singular Normal Variate (SNV) and baseline
corrections (Whittaker filter) (c,d).

4. Discussion

Raman spectra collected with a probe immersed in each reactor were then first analyzed by means
of a PCA using Chemflow, a chemometrics online software [30]. The objective was then to focus on
the specific evolution of polyfluoroalkyl ethers. To ease the analysis, some pre-treatments processing
was conducted.

Indeed, collected Raman spectra have intense and irregularity-shaped changing baselines
(Figure 6a,b). This intense background associated with fluorescence contributions is a common
problem in Raman spectroscopy. The raw spectra were then corrected to extract unbiased and effective
chemical information. For this purpose, Weighted Least-Square (WLS), also called Asymmetric
Weighted Least-Square (AsLS), removes the fluorescent contributions [31]. Originally, this pre-process
algorithm was used to subtract baseline shifts in chromatography [32]. This approach is based
on a recursive local fitting of the entire spectrum with a baseline obtaining by using a Whittaker
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smoother [32], which uses two basic setting parameters λ and P, respectively equal to 100 and 0.01.
The first one controls the amount of curvature for the baseline. The second one governs the extent of
asymmetry required for the fit and must be in the range 0 to 1, limits excluded. A WLS correction
acts as a filter for the fluorescence, which has an intensity much greater than the Raman signal of a
peak itself. Therefore, once the correction is completed, the relevant signal is very close to the noise.
In addition to the baseline correction, the Singular Normal Variate (SNV) was applied for normalization.
The SNV calculates the standard deviation of all variables for the given sample [33] which is then
normalized with respect to this value. Thus, the sample has a unit standard deviation. Results of these
pre-processes are illustrated in Figure 6c,d.

PCA was first conducted on the data set constituted of spectra from both reactors, with a calculation
based on 15 principal components on the 400–1200 cm−1 spectral range. The first principal component
explained nearly 49% of the variance, and the second close to 9%, the total explained variance by the
15 principal components being over 99% (Figure 7a). The scores plot generated by these first two
principal components is illustrated in Figure 7b. One can observe that the data points from each reactor
are separated by the first principal component. Data from reactor 1 only containing the environmental
matrix was gathered, indicating a system almost unchanged along the selected duration of the test.
Data points from reactor 2 (in green in Figure 7b and containing the fire-fighting foam) are globally
spread along this first principal component, and converge towards the ones of reactor 1 without
reaching it. The first loadings (Figure 7c) were plotted along with the Raman spectra of Tridol S3B,
siloxanes and nutritive fluid. Peaks related to nutritive fluid at 580 cm−1 and 750 cm−1 were clearly
identified. This component has a loading profile similar to the reference spectrum of the nutritive fluid,
which is common to the two reactors (cf. Table 2). In the scores plot, the two data sets are nevertheless
separated by this principal component. Therefore, data analysis indicated a difference which occurred
in the nutritive fluid. A selectivity issue is then raised, and these peaks could both be attributed to
nutritive fluid and Tridol S3B.
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To overcome this selectivity issue, a new PCA was then conducted on the data set constituted of
spectra from both reactors and the ones of a pure fire-fighting foam, with the same data pre-processing
and the same spectral range as before for consistency’s sake. A new scores plot was then generated
with the first two principal components (Figure 8) respectively explaining 48% and 8.5% of the variance.
Here again the whole data set is organized into two groups, with data points from reactor 1 still
separately grouped, while points relating to pure Tridol S3B are mixed with the points of reactor 2.
The ones of reactor 2 are still dispersed and converging towards the ones of reactor 1. Therefore, peaks
at 580 cm−1 and 750 cm−1 in the first principal component are related to Tridol S3B, and not exclusively
to the nutritive fluid. This indicates that the biodegradation of this fire-fighting foam is incomplete.
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5. Conclusions

Fire-fighting foams are used on airport platforms to prevent the spread of airplane fires when
they unfortunately occur. Some of these foams do contain surfactants based on polyfluoroalky ethers,
and are therefore considered as anthropogenic pollutants. As so, some abnormal amounts were
measured both in ground and surface water, raising concerns on their persistence into the environment,
their toxicity, their bioaccumulation and hence about their environmental fate.

To evaluate their biodegradation, a fire-fighting foam was selected and submitted to an OECD
method from a guide dedicated to biodegradability, and related to protocol dedicated to the estimation
of its biodegradability in compliance with NF EN ISO 9888 for the ultimate aerobic biodegradability of
organic compounds in aqueous medium and in static conditions. In parallel, a Raman spectroscopy
monitoring of the biodegradation process was implemented, coupled with a data analysis based on
principal components analysis (PCA) to first identify a structure in the data, if any, along with the
identification of chemical species related to polyfluoroalkyl ethers chemical bonds, easily detected
because of the high polarizability of C–F bonds.

Results from OECD 301 F protocol indicated that over 97% of the organic charge in the
environmental matrix was consumed roughly after 12 days, justifying to put an end to the test.
This process describes the degradation of the whole organic carbon present in the environmental
matrix, without any distinction between anthropogenic chemicals compounds such as ethylene
glycol, 2-(2-butoxyethoxy)ethanol, alkyl sulfate, ethanol and polyethylene glycol 400 also present
besides polyfluoroalkyl ethers. The analysis of Raman spectra obtained from the spectroscopic
monitoring did indicate a different environmental fate, in particular in the case of fluorinated molecules.
The environmental matrix containing fluorinated molecules did have a significant different behavior
than the one without them, and although it evolved towards an uncontaminated system, it never
reached it, including after the 12 days of the OECD tests which indicated an almost total degradation.
Investigations on eigenvectors issued from PCA calculations did reveal the presence of specific peaks
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(530 cm−1, 765 cm−1, 890 cm−1, 980 cm−1) consistent with chemical bonds in fluorinated molecules,
which indicated their persistence in the environmental matrix. The OECD protocol can be considered
as adapted to globally identify the biodegradation of an organic compound, but as not properly
adapted to precisely identify to what extent some chemicals are persistent in the environment. Raman
spectroscopy could then be considered as a relevant complement to the specific implemented protocol.

As a perspective, some additional biodegradation tests will be implemented, including a
spectroscopic monitoring. The tests will include fire-fighting foams and other chemicals used
on airports. Besides the identification of any other partial biodegradation with respect to results
obtained with a conventional OECD 301 F protocol, the objective will be to describe the kinetics of
the biodegradation process along with the spectroscopic signatures and the concentration profiles of
the chemicals present during the process. Such an analysis will also rely on chemometrics methods,
including principal components analysis (PCA) and multivariate curve resolution (MCR), where each
spectrum can be described as a linear combination of the signal of the chemical compound or a part of
a sample (i.e., mixture) with a proper spectral signature.
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