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Abstract: Currently, monitoring of persistent organic pollutant (POP) content in various biological 
and environmental matrixes in the Arctic is an urgent task. The present study focused on the 
determination of POPs such as: PCB#28, PCB#52, PCB#101, PCB#105, PCB#118, PCB#123, PCB#153, 
PCB#128, p,p’-DDE, o,p’-DDE, p,p’-DDD, o,p’-DDD, hexachlorobenzene (HCB), cis-nonachlor, 
trans-nonachlor, cis-chlordane, trans-chlordane, mirex, 1,2,3,5-tetrachlorobenzene and 1,2,4,5-
tetrachlorobenzene in fish consumed by the indigenous people of the Nenets Autonomous Okrug 
(NAO) of the Russian Arctic. Fish samples were analyzed by gas chromatography triple 
quadrupole mass spectrometry (GC-MS/MS) using the multiple reaction monitoring (MRM) 
technique. The obtained results show that the major POPs in fish were 
dichlorodiphenyltrichloroethane (DDT) breakdown products and polychlorinated biphenyls 
(PCB) congeners. The ∑PCB8 in pink salmon, Arctic char, navaga, humpback whitefish and 
northern pike were 1.54, 1.58, 1.24, 0.72 and 0.32 ng/g (ww), respectively. The main PCB congeners 
maximum average medium concentrations were 0.68 ng/g (ww) and 0.51 ng/g (ww) of PCB#153 in 
navaga and PCB#128 in pink salmon, respectively. The main DDT breakdown product was p,p’-
DDE. In Arctic char, pink salmon, navaga, humpback whitefish and northern pike, the 
concentration of p,p’-DDE was 0.58, 1.61, 0.49, 0.63 and 0.08 ng/g (ww), respectively. A moderate 
positive relationship between ∑PCB8 and lipid content and a high positive relationship between 
∑DDT and lipid content were observed. In fish samples with fat content <0.5% (northern pike, 
humpback whitefish), the amount of analyzed POPs was 2 or more times lower than that in fish 
species with fat content >1% (pink salmon, Arctic char). Despite the large number of fish in the 
diet of indigenous peoples from NAO, no significant risks were identified. Most legacy POP and 
organochlorine pesticides (OCPs) tend to decrease, which can be explained by past national and 
regional bans and restriction on their use and emission. 

Keywords: persistent organic pollutants (POPs); PCB congeners; DDT; GC-MS/MS; fish; Russian 
Arctic; biomonitoring 

 

1. Introduction 
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The Arctic region is considered to be one of the few unspoiled ecosystems; however, it is also 
subjected to the negative impact of persistent organic and inorganic pollutants (POPs and PIPs) 
through transboundary transfers, and to a lesser extent, via ocean currents and rivers [1,2]. Due to 
physicochemical properties, POPs and mercury (Hg) typically bioaccumulate and biomagnify in 
organisms, especially in fat tissues in aqueous food webs in the Arctic.  

These environmental chemical pollutants have been shown to cause negative effects on human 
health [3–5], such as diseases of liver and cardiovascular systems, damage to organs and tissues and 
endocrine disorders with consequences for the reproductive system [6]. They cause teratogenic 
effects (birth defects), neurodevelopmental disorders and subclinical brain dysfunction. During 
early fetal development, exposure to Hg, PCBs and pesticides can cause brain damage at doses 
much lower than those affecting adult brain function [7,8].  

To date, there is lack of knowledge about POPs and PIPs related risks in Russia and in the 
Russian Arctic in particular, which is highlighted in many international reports prepared as part of 
the Global Monitoring Plan and AMAP initiative [9]. 

Indigenous populations in the Russian Arctic are at greater risk of potentially adverse health 
outcomes [10,11]. Approximately 30–35 % of the indigenous diet is fish such as pink salmon, Arctic 
char, navaga, humpback whitefish and northern pike. Fish can accumulate high amounts of POPs 
and Hg, and this is one of the sources of their entry in human organism [12,13]. These data differ 
from the average for Russia, where it is 26% [14]. POPs stay longer in the Arctic environment due to 
the low annual temperatures. It increases the possibility of getting them into local hydrobionts used 
in food [15–17]. The exposure to persistent toxic substances through traditional food is one of the 
main risk factors for human health in the Arctic [8]. The concentrations of some key Legacy POPs 
listed in the Stockholm Convention have declined in marine biota in other Arctic regions during the 
past two decades. Conversely, the concentrations of polychlorinated biphenyls (PCBs) and 
chlordanes have remained relatively constant and at high amounts in wildlife [18].  

The quality of locally collected freshwater and marine seafood in the indigenous peoples’ diet 
is not controlled by the Russian state, as these products do not enter the market. Migratory fish 
species consumed are also not subject to the state environmental monitoring [9]. The Stockholm 
Convention has pledged member states to encourage and implement at both national and 
international levels for appropriate research, monitoring and cooperation [19]. The Russian state 
monitoring system has not yet been able to adapt rapidly to international obligations. As a result, 
there is a concern for the health of fish, wildlife and humans who consume local food [10,20]. 
Recently, a long-term study was initiated to monitor changes in the amounts of POPs and PIPs in 
the diet of pan-Russian Arctic indigenous populations by establishing an Arctic biomonitoring 
laboratory in the Northern (Arctic) Federal University since 2017 [21]. This part of the study 
presents the concentrations of priority POPs in five fish species: pink salmon, Arctic char, navaga, 
northern pike and humpback whitefish, which are among the most commonly consumed species by 
indigenous peoples of coastal villages of Nenets Autonomous Okrug (NAO). 

2. Materials and Methods 

2.1. Sampling Strategy 

Indiga is one of the largest settlements of the Nenets Autonomous Okrug, Russia, located on 
the Barents Sea coast [22]. The fish species were selected on the basis of a nutritional survey among 
the population of the village. According to the questionnaire, which was published earlier [23], the 
fish consumed by indigenous peoples in the area mainly belong to the families Salmonidae (62%) 
and Gadidae (15%). Salmon fish (pink salmon, Arctic char and humpback whitefish) and a 
representative cod (navaga) were bought from local fishermen in 2017–2018. Northern pike from 
the Pechora River (Barents Sea basin) was chosen as a freshwater predator species. The number of 
fish collected ranged from 8 to 12 samples depending on the fish species. Transportation, storage, 
age determination and preparation of samples for analysis was performed in our previous work 
[22]. 
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2.2. Reagents and Materials 

The choice of congeners is justified by their presence in the Stockholm Convention on 
Persistent Organic Pollutants. High purity single analytical standards of the following 
polychlorinated biphenyl (PCB) congeners: #28, 52, 101, 105, 118, 123, 128, 153, 180, 183, p,p’-DDE, 
o,p’-DDE, p,p’-DDD, o,p’-DDD, hexachlorobenzene, cis-nonachlor, trans-nonachlor, cis-chlordane, 
trans-chlordane, mirex, 1,2,3,5-tetrachlorobenzene, 1,2,4,5-tetrachlorobenzene, β-
heptachloroepoxide, aldrin and heptachlor were chosen.  

HPLC-grade acetone, hexane, Florisil (60–100 mesh) and all high-purity analyte standards 
were obtained from Sigma-Aldrich (Steinheim, Germany). Labeled 13C12 PCB#101 used was from 
Cambridge Isotope Laboratories (USA). Sulfuric acid (98% purity) was purchased from Supelco 
(Bellefonte, PA, USA). Helium (99.9999% purity) and nitrogen (99.9999% purity) were from NIIKM 
(Moscow, Russia).  

2.3. Determination of POP 

Determination of POPs was performed using an Agilent 7890A gas chromatography (GC) 
system equipped with an Agilent 7000 series MS/MS triple quadrupole system (USA). 

Data acquisition and processing were done using the Agilent MassHunter QQQ Quantitative 
Analysis B.05.00 software. An Agilent ultra inert GC column (HP-5MS UI, 30 m × 0.25 mm × 0.25 μm) 
connected to a Restek Guard column (Rtx-5M) was used throughout for analytes separation. 

The portions of the extracts (1 μL) were injected using a multimode injector inlet in splitless 
mode through an ultra inlet liner with a glass wool frit (Agilent 5190-2293). The injector 
temperature was 250 °C. Helium was used as the carrier and quenching gas, and nitrogen was used 
as the collision gas. The oven temperature program was as follows: 70 °C for 3 min, up to 150 °C at 
a rate of 50 °C min−1, up to 200 °C at a rate of 3 °C min−1 maintained for 1 min, up to 280 °C at a rate 
of 20 °C min−1 maintained for 5 min and finally, up to 310 °C at a rate of 40 °C min−1 maintained for 
4 min. 

The total run time was 38 min with 4 additional minutes for backflushing at 280 °C; the 
pressure was maintained at 70 psi. Constant pressure (18 psi) mode was used. The purge flow to 
the split vent was 30 mL min−1 at 0.75 min. The system was operating in electron-ionization (EI) 
mode (70 eV). The transfer line temperature was kept at 270 °C. The ion source and quadrupole 
analyzer temperatures were fixed at 230 °C and 150 °C, respectively. The collision gas flow was 1.5 
mL min−1 and the quenching gas flow was 2.35 mL min−1. 

2.4. Optimization of Gas Chromatography and Mass Spectrometry Parameters 

For optimization of the MS parameters, all analytes were monitored in full scan mode in the 
50–800 m/z range to select the precursor and product ions. The collision energy (CE) was optimized 
for each transition in a multiple reaction monitoring (MRM) experiment. The most intense 
transitions were was selected as the quantifier transitions, and the second most intense transitions 
were selected as the qualifier transitions. A 14 time segment method was created to obtain an 
adequate sensitivity and signal to noise (S/N) ratio. The solvent delay was 9 min.  

2.5. Sample Preparation and Clean Up 

A 1-gram portion of freeze-dried fish muscle was extracted using 20 mL of a hexane-acetone 
mixture (1:1 v/v) in a 250 mL conical flask. The flasks were then shaken for 8 h in an IKA KS 260 
basic automatic laboratory shaker (IKA-Werke GmbH & Co. KG., Staufen, Germany). 

After extraction, the flasks content were transferred to 50 mL polypropylene tubes (PP) 
(Sarstedt AG & Co. KG, Nümbrecht, Germany) and centrifuged at room temperature for 5 min at 
4000 rpm. The resulting supernatants were quantitatively transferred to 200 mL evaporation cups. 
The tubes were rinsed with a 20 mL portion of hexane and centrifuged again at room temperature 
for 5 min at 4000 rpm. This procedure was repeated twice. 
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The contents of the cups were evaporated at 36 °C to a volume of 0.5–1.0 mL in a stream of 
nitrogen. The residues after evaporation were transferred to 15 mL polypropylene centrifuge tubes. 
The evaporation cups were rinsed twice with 7 mL of hexane, and the hexane portions were 
combined with the residues followed by addition of 1 mL of concentrated sulfuric acid. The tubes 
were shaken and centrifuged at room temperature for 3 min at 4000 rpm. 

After centrifugation, the supernatants were purified on glass columns (10 mm Ø). These 
columns were filled with Florisil and silica gel. The filled columns were rinsed by gravity with 20 mL 
of hexane. The wash fraction was discarded.  

The persistent organic pollutant residues were washed off, passing through a column of 20 mL 
of a 6% solution of diethyl ether in hexane. The resulting eluate was evaporated at a temperature of 
36 °C in a stream of nitrogen until dry. The dry residue was dissolved in 100 μL of acetone and 
transferred with a pipette dispenser to a 200 μL micro vial for GC analysis (Agilent, Santa Clara, 
CA, USA). A measure of 1 μL of internal standard (1 mg/L) was then added.  

2.6. Quality Control and Validation 

Daily preparation of blank samples and calibration were used. Calibration curves consist of 6 
points at 0, 5, 10, 20, 50 and 100 ng/g. Linear regression coefficient values (R2) ≥ 0.99. The lowest 
calibration levels for the majority of analytes were 2–6 ng/g. The validation procedure involved 
analysis of the fish samples in which one portion was a matrix blank and the other was 20 ppb 
spiked, yielding 5 replicates; the relative standard deviation (RSD) ≤ 20% and the coefficient of 
variability (CV) ≤ 33%. The spiking procedure for recovery studies was used; to determine the 
quality of the methodology, a recovery study was performed using standard addition methods. A 
prior analysis of the samples was performed to detect the target compound. The limits of 
quantification (LOQs) were calculated by the three methods described elsewhere [24]. The highest 
value was selected as the LOQ. Certificated reference material (CRM) and 20 ppb spike samples 
were used for quality assurance and control procedures. The average recovery was: PCB#28 (107%), 
52 (108%), 101 (108%), 105 (122%), 118 + 123 (115%), 128 (124%), 138 (116%), 153 (117%), 180 (127%), 
183 (109%), HCB (79%), p,p’-DDE (144%), o,p-DDD (130%), p,p’-DDD (101%), o,p-DDE (140%), 
heptachlor (98%), cis-nonachlor (100%), trans-nonachlor (101%), cis-chlordane (122%), trans-
chlordane (125%), mirex (60%), ∑tetrachlorobenzene (75%), β-heptachloroepoxide (105%) and 
aldrin (115%). Labeled 13C12 PCB#101 was used as internal standard. 

2.7. Lipid Determination 

The fat content in the fish muscle was determined by measuring the initial and final mass of 
the extract. The recommended weight of the sample was ground and extracted into 40 mL of 
hexane for 40 min in a conical flask. The extract obtained was filtered through a folding filter into a 
pear-shaped flask, which was previously dried and weighed on an analytical balance. After that, 
this operation was repeated. The second liquid portion obtained was filtered through the same filter 
and added to the first portion in the pear-shaped flask. The combined filtrate was evaporated at 67–
68 °C, and then the flask was dried in an oven to a constant weight, cooled and weighed on an 
analytical balance. The weight of the fat sample was defined as the weight of the empty flask minus 
the weight of the flask with the resulting fat [25]. 

2.8. Statistical Analysis 

For calculations, the software package IBM SPSS Statistics, version 23.0 (IBM Corp., Armunk, 
New York, NY, USA) was used. The distribution of variables was evaluated visually, and 
asymmetry was also calculated. The use of parametric analysis (normal data distribution) was not 
performed, and attempts to normalize the data were futile. To determine the relationships between 
substances, a correlation analysis was performed using the Spearman criterion (R) (a nonparametric 
analog of the correlation analysis). 
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A two-sided p-value < 0.05 was considered statistically significant. Correlation analysis was 
used to assess differences between several groups at the same time in order to assess which groups 
were different from each other and how. 

3. Results and Discussion 

The lipid content of the fish muscle is highest in the marine species pink salmon and Аrctic 
char with arithmetic mean values of 2.93 and 1.35 wet weight %, respectively. 

The weight, age and lipid content of five fish species are presented in Table 1.  

Table 1. Arithmetic mean (AM) of weight, age and lipid in fish species. 

Fish Species n 
Weight (kg) Age (Year) Lipid (%) 

AM Min–Max AM Min–Max AM Min–Max 
Arctic char 

(Salvelinus alpinus) 10 0.73 0.47–1.05 4.5 3.0–6.5 1.37 0.16–3.30 

Pink salmon 
(Oncorhynchus gorbuscha) 12 1.07 0.80–1.64 1+ * 1–2 2.93 2.15–4.73 

Navaga 
(Eleginus nawaga) 10 0.22 0.13–0.38 4.5 3.0–6.5 0.51 0.27–1.03 

Humpback whitefish 
(Coregonus pidschian) 

11 0.44 0.38–0.57 7.0 5.0–10.0 0.17 0.02–0.46 

Northern pike 
(Esox lucius) 

8 3.45 1.07–6.53 5.0 1.5–8.5 0.10 0.02–0.54 

*Age of all fish. 

The following POPs were detected in fish: PCB#28, PCB#52, PCB#101, PCB#105, PCB#118, 
PCB#123, PCB#153, PCB#128, p,p’-DDE, o,p’-DDE, p,p’-DDD, o,p’-DDD, hexachlorobenzene (HCB), 
cis-nonachlor, trans-nonachlor, cis-chlordane, trans-chlordane, mirex, 1,2,3,5-tetrachlorobenzene 
and 1,2,4,5-tetrachlorobenzene. Other compounds such as PCB #180, 183, β-heptachloroepoxide, 
aldrin, and heptachlor were below LOQ.  

3.1. PCB Congeners 

The POPs with the highest concentrations in the analyzed fish were PCB congeners and 
dichlorodiphenyltrichloroethane (DDT) breakdown products. This supports the finding by Bonito 
et al. [26] that the most common organochlorine pollutants in fish are PCBs.  

In our study, Arctic char and pink salmon had the highest ∑PCB8 concentrations of the 5 species 
studied with mean concentrations of 1.58 and 1.54 ng/g wet weight (ww), respectively. The lowest 
mean concentrations were present in northern pike muscle (∑PCB8 of 0.32 ng/g (ww)) (Table 2). 

PCB#153 was the dominant PCB congener, which was found in all fish species except northern 
pike, and the highest mean concentration was found in navaga (0.68 ng/g, ww) (Figure 1). When 
exploring other territories such as Western Europe, Asia and Africa, the presence of PCB#153 as the 
main congener in fish has also been confirmed [15,16,27,28,]. Navaga, which contains little fat in 
muscles, is a marine cod species, as are freshwater northern pike and humpback whitefish. 
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Figure 1. Average medium concentration of PCBs in fish muscle. 

As shown in Figure 1, another prevailing PCB congener was PCB#128. The highest mean 
concentration was present in pink salmon (0.51 ng/g (ww)). In humpback whitefish, this congener 
was below the detection limit. 

Comparing the data in the present study (Table 2) with those reported by Muir et al. (2003) 
[17], they show that the concentration of ∑PCB congeners in the same or closely related species of 
fish from NAO was generally lower than in fish caught in the White Sea in the 2000s. Thus, in the 
present study, the ΣPCB showed that the concentrations of these compounds were 16 times lower 
in navaga caught downstream of the Indiga River. In addition, the mean concentration of ∑PCB 
congeners in the northern pike in the present study was approximately 4 times lower than in the 
pike from the Kola Peninsula, and 7 times lower than in the pike from Chukotka Peninsula. For 
whitefish, the mean concentration of ∑PCB congeners was 3 to 4 times lower than in AMAP 2004 
[29]. The results of the present study show that the ∑PCB concentration in fish has decreased over 
the past 18 years in the North. This indicates that PCB reduction is a worldwide trend [26]. 

PCBs can be divided into dioxin-like PCBs (DL-PCBs), whose chemical structure and steric 
configuration are similar to dioxins, and non-dioxin-like (NDL-PCBs). In the present study, the DL-
PCBs were PCB#105, PCB#118 and PCB#123. Despite the fact that the value of ∑PCBs in Arctic char 
and pink salmon was approximately similar, the ∑DL-PCB in pink salmon (0.25 ng/g (ww)) was 
higher than that in Arctic char (0.19 ng/g (ww)). In humpback whitefish and northern pike, DL-
PCBs were not detected. In navaga, this value was (0.15 ng/g (ww)), but the ratio of ∑DL-PCB to the 
total PCB content was the same as in Arctic char and amounted to 12%. Additionally, fish with low 
amounts of NDL-PCBs contain less DL-PCB. 

3.2. DDT Breakdown Products 

DDT breakdown products were also found in the fish muscles. The ∑DDT means the sum of 
the following analytes: p,p’-DDE, p,p’-DDD, o,p-DDE and o,p-DDD. Pink salmon had the highest 
mean concentration ∑DDT (2.04 ng/g (ww)). The lowest mean concentration was present in 
northern pike (0.08 ng/g (ww)) (Table 2). 

In the present study, p,p’-DDE was the main DDT breakdown product residue, and this same 
result has also been observed in other studies [17,30] (Figure 2). 
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Table 2. Concentrations of persistent organic pollutants in fish muscle from Nenets Autonomous Okrug. 

Analytes, 
ng/g (ww) 

Limit of 
Quantification 

(LOQ) 

Limit of 
Detection 

(LOD) 

Arctic Char 
(N = 10) 

Pink Salmon 
(N = 12) 

Navaga 
(N = 10) 

Humpback 
Whitefish 

(N = 11) 

Northern Pike 
(N = 8) 

AM Min–
Max 

AM Min–Max AM Min–Max AM Min–Max AM Min–
Max 

∑PCB8 0.03 0.008 1.58 0.56–2.44 1.54 0.41–2.89 1.24 0.46–2.59 0.72 0.34–1.45 0.32 0.09–0.50 
DL-PCB *   0.19 0.11–0.25 0.21 0.02–0.38 0.13 0–0.21 - - - - 

NDL-PCB **   1.39 0.45–2.20 1.20 0.40–1.97 1.10 0.38–2.38 0.72 0.34–1.45 0.43 0–0.5 
∑DDT 0.03 0.009 0.66 0.33–1.11 2.04 0.50–3.95 0.55 0.18–0.88 0.63 0.27–1.25 0.08 0.03–0.15 
HCB 0.03 0.010 0.31 0.04–0.85 0.40 0.12–0.63 0.39 0.14–0.70 0.28 0.02–0.95 0.13 0.03–0.29 

∑Tetrachlorobenzene 0.004 0.001 0.02 0.01–0.04 0.02 0.01–0.03 0.02 0.01–0.06 0.17 0.09–0.35 <LOD 
Mirex 0.01 0.003 0.05 0.04–0.08 0.13 0.10–0.16 0.04 0.01–0.06 0.06 0.01–0.33 <LOD 

cis-Nonachlor 0.12 0.040 0.07 0.06–0.10 0.17 0.06–0.30 0.08 0.06–0.20 <LOD <LOD 
trans-Nonachlor 0.08 0.027 0.13 0.04–0.31 0.40 0.12–0.71 0.07 0.03–0.12 <LOD <LOD 
trans-Chlordane 0.04 0.013 0.03 0.02–0.06 0.10 0.04–0.16 0.03 0.02–0.04 <LOD <LOD 

cis-Chlordane(ng/g) 0.04 0.013 0.05 0.02–0.09 0.17 0.06–0.29 0.04 0.02–0.09 <LOD <LOD 
β-Heptachlor epoxide 0.03 0.010 <LOD <LOD <LOD <LOD <LOD 

Aldrin 0.04 0.013 <LOD <LOD <LOD <LOD <LOD 
Heptachlor 0.05 0.016 <LOD <LOD <LOD <LOD <LOD 

* Dl-PCB (105, 118, 123) 
** NDL-PCB (28, 52, 101, 128, 153) 
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Figure 2. Average medium concentration of DDT breakdown product in fish muscle. 

In Arctic char, pink salmon, navaga, humpback whitefish and northern pike, the concentration 
of p,p’-DDE was 0.58, 1.61, 0.49, 0.63 and 0.08 ng/g (ww), respectively. DDD was the next major 
DDT residue contaminant in fish, especially in pink salmon. The ∑DDT concentration in navaga 
caught in NAO was 28 times lower than that found in navaga caught in the White Sea [17]. ∑DDT 
congeners in whitefish from NAO were 3 to 4 times lower than in whitefish presented in AMAP 
2004 [29]; thus, the concentration in whitefish from the Pechora basin (1.6 ng/g (ww)) compared 
with present results (0.63 ng/g (ww)). However, the concentration of p,p’-DDE was nearly at the 
same level of 0.63 ng/g (ww) in our study compared with 0.43 to 1.1 ng/g (ww) in AMAP 2004 [29]. 
The highest mean concentration was found in pink salmon (1.61 ng/g (ww)), which was slightly 
higher than the 0.53 ng/g (ww) presented by Tsygankov et al. [30]. 

In four fish species, the total amount of PCBs was higher than ∑DDT. In Arctic char, the 
concentration of ∑PCB was 2.4 times higher than that of ∑DDT; in navaga, humpback whitefish 
and northern pike, it was 2.25, 1.14 and 4.0 times higher, respectively. The exception was pink 
salmon, where the total amount of PCBs was 0.75 times lower than ∑DDT. In addition, the average 
age of pink salmon in the present study was 1+ years, and from this we can conclude that the rate of 
DDT accumulation is greater than that of the accumulation of PCB. 

3.3. Other POPs 

Along with PCBs and DDTs, other POP were found in fish samples such as HCB, cis-
chlordane, trans-chlordane, cis-nonachlor, trans-nonachlor and mirex. HCB was measured in all fish 
species ranging from 0.13 ng/g (ww) in northern pike to 0.40 ng/g (ww) in pink salmon (Table 2). The 
concentration of HCB was only 1.6 times lower than in navaga from the White Sea [26]. However, 
the concentration was slightly higher or approximately at the same level compared with AMAP 
2004 [29]. This is likely due to a lower biodegradation rate for HCB than PCBs.  

Most of the other analytes in northern pike and humpback whitefish were less than the detection 
limit. β-Heptachlor epoxide, aldrin and heptachlor were less than the detection limit for all fish species. 
Muir et al. [17] present data on the content of heptachlor in fish samples (0.05–0.44 ng/g (ww)). 

Chlordane-related compounds (cis-chlordane, trans-chlordane) and nonachlor-related 
compounds (cis-nonachlor, trans-nonachlor) were present at low mean concentrations in all species 
and were lower than those presented by Muir et al. [17]. The highest sum concentration was 
observed in pink salmon with 0.84 ng/g (ww), whereas in Arctic char and navaga, it was 0.28 and 
0.22 ng/g (ww), respectively, and while in humpback whitefish and northern pike, it was below the 
limit of detection (LOD). 
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The amounts of mirex (0.04–0.13 ng/g (ww)) were practically at the same level as AMAP from 
2004 [29] (<0.05–0.13 ng/g (ww)), which indicates its resistance to biodegrade. Compared with the 
landlocked char from lakes in the Canadian High Arctic reported by Ana Cabrerizo et al. (2018) 
[31], the concentration of POP in the present study was significantly lower. Visually, the contents of 
the main analytes and POP groups are shown in Figure 3. 

 
Figure 3. The ratio of DL-PCB and NDL-PCB in various fish species: (a) Arctic char, (b) pink salmon, 
(c) navaga, (d) humpback whitefish and (e) northern pike. 

Figure 3 shows that the main compounds in fish are p,p’-DDE and ∑NDL-PCB. In all fish 
species, the predominant POP were NDL-PCB, except pink salmon, where p,p’-DDE was the 
predominant compound. The group “others” includes nonachlors, chlordanes, mirex and the 
remaining DDT breakdown products. An exception was pink salmon, where chlordanes and 
nonachlors were allocated to a separate group because their number occupies a significant 
percentage of the remaining POP. 

3.4. Correlation Analysis 

In all studied fish with a high fat content (especially pink salmon), the content of POP increased 
(R values ranged from 0.445 to 0.866; p < 0.01 to 0.05) (Table 3). This dependence is especially 
pronounced for ∑DDT (R = 0.724), trans-nonachlor (R = 0.733), trans-chlordane (R = 0.866) and cis-
chlordane (R = 0.800). The correlation between POP and lipid content is presented in Figure 4. 
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Table 3. Univariate associations (Spearman r and p-values (R)) between elements in all fish (n ¼ 51). 

 PCB 
52 

PCB 
101 

PCB 
105 

PCB 
118,123 

PCB 
128 

PCB 
153 

∑PCB ∑DDT HCB 
cis-

Nonachlor 
trans-

Nonachlor 
trans-

Chlordane 
cis-

Chlordane 
Mirex 

∑Tetrachloro-
Benzene 

Lipid Weight Аge 

PCB#28 0.461 ** 0.424 ** 0.330 0.246 0.384 * 0.406 ** 0.400 ** 0.215 0.338 * 0.056 0.315 0.231 0.202 −0.156 −0.090 0.054 0.135 0.162 
PCB#52  0.637 ** 0.654 ** 0.664 ** 0.726 ** 0.338 * 0.644 ** 0.695 ** 0.463 ** 0.577 ** 0.831 ** 0.784 ** 0.738 ** 0.332 * −0.110 0.550 ** 0.439 ** −0.174 
PCB#101   0.459 * 0.673 ** 0.680 ** 0.486 ** 0.840 ** 0.536 ** 0.392 ** 0.335 0.558 ** 0.510 ** 0.423 * 0.490 ** −0.499 ** 0.658 ** 0.529 ** −0.379 * 
PCB#105    0.589 ** 0.656 ** 0.522 * 0.646 ** 0.542 ** 0.357 0.521 * 0.541 ** 0.509 * 0.523 * 0.326 0.138 0.445 * 0.449 * −0.014 

PCB#118,123     0.791 ** 0.706 ** 0.837 ** 0.836 ** 0.727 ** 0.650 ** 0.658 ** 0.673 ** 0.608 ** 0.524 ** 0.348 0.590 ** 0.403 * −0.191 
PCB#128      0.486 ** 0.825 ** 0.725 ** 0.388 * 0.689 ** 0.816 ** 0.695 ** 0.694 ** 0.358 * −0.188 0.520 ** 0.244 −0.286 
PCB#153       0.763 ** 0.413 ** 0.537 ** 0.232 0.124 0.098 0.058 0.063 0.017 0.107 −0.102 0.188 
∑PCB        0.779 ** 0.663 ** 0.527 ** 0.590 ** 0.508 ** 0.471 ** 0.328 * −0.379 * 0.638 ** −0.072 −0.280 * 
∑DDT         0.596 ** 0.821 ** 0.914 ** 0.901 ** 0.864 ** 0.603 ** −0.135 0.724 ** 0.025 −0.360 ** 
HCB          0.461 ** 0.274 0.434 * 0.390 * 0.171 0.073 0.543 ** −0.127 −0.188 
cis-

Nonachlor 
          0.773 ** 0.842 ** 0.871 ** 0.667 ** 0.066 0.654 ** 0.605 ** −0.441 * 

trans-
Nonachlor 

           0.901 ** 0.883 ** 0.695 ** −0.146 0.733 ** 0.749 ** −0.603 ** 

trans-
Chlordane 

            0.941 ** 0.808 ** 0.038 0.866 ** 0.799 ** −0.508 ** 

cis-
Chlordane              0.749 ** −0.036 0.800 ** 0.746 ** −0.484 ** 

Mirex               −0.315 * 0.708 ** 0.615 ** −0.651 ** 
∑Tetrachloro

-benzene 
               −0.499 ** −0.269 0.611 ** 

Lipid                 0.107 −0.616 ** 
Weight                  −0.212 

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed). 
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Figure 4. Correlation between POP and lipid content, (a) between ∑DDT and lipid content in all fish 
samples and (b) between HCB and lipid content in Arctic char samples. 

Figure 4 shows a strong positive correlation between ∑DDT and lipid content in all fish. Some 
fish species have individual correlations between analyte and lipid content, such as the correlation 
between HCB and lipid content in Arctic char. 

However, in some samples, the weight of the sample affects the content of POP, and 
Spearman's correlation coefficient varies from 0.403 to 0.799. In navaga weighing between 0.125–
0.380 kg, cis-chlordane accumulates to a greater extent (Figure 5), indicating accumulation, and this 
is partly because old (large) fish have been exposed to cis-chlordane for a longer time than young 
(small) fish. 

 
Figure 5. Correlation between cis-chlordane and weight in navaga. 

However, in most fish samples, no statistically significant relationships between POP 
concentration and fish weight were found; the same results were observed by Cabrerizo et al. [31]. 

In addition, the current study revealed the relationship between several congeners (Table 3.) A 
strong positive relationship between ∑PCB and ∑DDT was observed by comparing all types of 
analyzed fish (R = 0.779). A strong positive correlation was observed between ∑DDT and cis-
nonachlor (R = 0.821), trans-nonachlor (R = 0.914), trans-chlordane (R = 0.901) and cis-chlordane (R = 
0.864). Additionally, a strong positive relationship was observed between PCB#52 and PCB#128 (R = 
0.726) and between PCB#128 and PCB#118,123 (R = 0.791). A strong positive correlation was 
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observed between PCB#153 and p,p’-DDE (Figure 6). The same correlation was observed by Storelli 
et al. [32]. 

 
Figure 6. Correlation between PCB#153 and p,p’-DDE in (a) pink salmon and (b) other fish species. 

Due to the higher ratio of ∑DDT to ∑PCB, the correlation between PCB#153 and p,p’-DDE for 
pink salmon does not fit the general correlation between PCB#153 and p,p’-DDE for other fish. 
Therefore, it is presented separately. 

Such a high ratio suggests that these POPs can come from similar sources and reflect old 
pollution, which may be background pollution in this area. Thus, the main factor in the 
accumulation of POP is lipid content. There was also a link of major POPs with each other.  

4. Conclusions 

The major POPs in fish from the NAO were DDT-related compounds and PCBs. The amounts 
of ∑PCB8 and ∑DDT were relatively low in all fish species and did not exceed 10 ng/g wet wt. A 
relationship between fat content in the fish and POP concentration was found, and fatty fish (pink 
salmon, Arctic char) from the Barents Sea basin contain 2 or more times higher concentrations of 
POP compared with lower fat fish (northern pike, humpback whitefish). A strong positive 
correlation was observed between ∑PCB and ∑DDT, ∑DDT and lipid contents and ∑DDT and 
chlordane and nonachlor. Despite the large number of fish in the diet of indigenous peoples from 
NAO, no significant risks were identified. Most legacy POP and OCPs tend to decrease, which can 
be explained by the past national and regional bans and the restriction on their use and emission. 
The aim of further research will be an expansion of the list of analytes and species including human 
blood. 
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