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Abstract: In Cambodia and the Vietnamese Mekong Delta, floods commonly occur during the
rainy season, and a better understanding of their spatio-temporal distribution is important for
both disaster prevention and the improvement of agricultural production. This study investigated
spatio-temporal flood inundation and land cover change from 2002 to 2013 in the southern part of
Cambodia using Terra satellite on-board Moderate Resolution Imaging Spectroradiometer (MODIS)
images. The algorithm for flood inundation detection, WFFI (Wavelet-based Filter for detecting
spatio-temporal changes in Flood Inundation) was used, and the parameters were modified to fit
the present study. The estimated inundation areas were validated using eight Landsat images. In a
comparison between the original and modified WFFIs, the modified WFFI (70–96%) exhibited better
accuracy than the original WFFI (30–70%). Overall, the temporal change in the flood inundation area
presented a decreasing trend, and a link to the in-situ observed water level showed a decreasing trend
during the rainy season. Furthermore, the estimated flood inundation exhibited a significant delay
since 2008. Based on the yearly land cover MODIS product, the permanent water body and wetland
areas decreased, whereas the cropland areas increased. This was as a result of increased agricultural
productivity. However, water shortage was the major obstacle to increasing agricultural productivity,
and it also had a negative impact on aquatic ecology, such as fish spawning grounds.
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1. Introduction

In Cambodia, as in the most of the countries along the Mekong River, which is the seventh longest
river in Asia, floods commonly occur during the rainy season, and they have both beneficial and

Environments 2019, 6, 57; doi:10.3390/environments6050057 www.mdpi.com/journal/environments

http://www.mdpi.com/journal/environments
http://www.mdpi.com
https://orcid.org/0000-0002-2824-1266
http://dx.doi.org/10.3390/environments6050057
http://www.mdpi.com/journal/environments
https://www.mdpi.com/2076-3298/6/5/57?type=check_update&version=2


Environments 2019, 6, 57 2 of 13

harmful effects. Flooding is the main natural disaster, followed by drought and, to a lesser extent,
health epidemics and storms [1]. Meanwhile, annual flooding in the Mekong River basin provides
vital resources to agro-ecosystems [2,3]. For example, floods improve the soil moisture and fertility of
the soil [4] and also provide ecological benefits for fisheries [5].

Remote sensing is a promising tool for observing and understanding the spatial and temporal
dynamics of floods. To date, numerous studies have been conducted using Synthetic Aperture Radar
(SAR) and optical images to detect the spatial and temporal changes in the extent of flood inundation,
including the delineation of wetlands [6–9]. SAR images can monitor ground surface data without
cloud cover effects. They are very sensitive to water surface effects due to wind and currents. On the
other hand, optical images are strongly disturbed by cloud cover but are less sensitive to surface
features. Thus, optical images with high temporal resolution sensors are suited to monitoring water
bodies. Based on the optical images, several methodologies have been developed to detect surface
water bodies and flood areas in different areas of research such as crop productivity estimation in
paddy fields [10,11], cropping systems identification [12,13], mapping inland aquaculture [14], habitat
studies for fish and aquatic life [15] and flooded disaster zones [10].

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on-board the Terra satellite
is one of the most widely applied moderate-resolution optical sensor used to monitor inundation areas
with high temporal resolution. The MODIS data are provided free of charge throughout the world
from the Earth Observation System (EOS, http//:reverb.echo.nasa.gov). Using time-series MODIS data,
Sakamoto et al. [16] developed an algorithm, “Wavelet-based Filter for detecting the spatio-temporal
changes in Flood Inundation (WFFI),” specifically for Cambodia and Vietnam. The WFFI method
includes a wavelet-based filter for the interpolation of missing data and noise reduction within temporal
data. Using WFFI, Sakamoto et al. [16] determined the spatial characteristics of the estimated start dates,
end dates, and duration of inundation cycles from 2000 to 2004 in Cambodia and Vietnam. Their results
clearly indicated that the estimated area of long-term water body increased in size from 2000 to 2004,
particularly in coastal areas of the Ca Mau and Bac Lieu province. Islam et al. [17] modified the WFFI
for flood detection in Bangladesh by comparing it with RADARSAT images. Their results indicate that
MODIS data with the WFFI method are very useful for detecting spatio-temporal flood inundation.

Water resource development in the Mekong basin will control annual flooding and reduce the
inundation area. Understanding flood patterns and trends could be potentially useful for many reasons,
such as the preparation of crop calendars and disaster management. In particular, the yields of an
agricultural area may be determined by a decrease in water content. The spatial and temporal extent
of flood inundation is important information for the evaluation of the relationships between the water
regime and local agricultural activities. Furthermore, recent and rapid population growth and a lack of
clear development plans, laws and regulations have resulted in uncontrolled changes in land use and
land cover in the Phnom Penh city [18].

Therefore, this study investigated spatio-temporal flood inundation and land cover change during
the period from 2002–2013 in the southern part of Cambodia, using time series MODIS data with
the WFFI algorithm. In this study, the parameters of the WFFI algorithm have been adopted from
Sakamoto et al. [16] due to updating of the MODIS surface reflectance products and the fact that the
study area is on a provincial scale in Cambodia with the same characteristics. First, the spatio-temporal
changes of a water body area were detected from a MODIS image using the modified WFFI. The water
body detection methods were compared to the results using the original WFFI. The estimated inundation
areas were validated using eight Landsat-derived inundation areas. Then, we assessed the yearly
trends in seasonal changes of flooding areas and its relation to land cover changes.

2. Study Area

The study area is located in Southern Cambodia (10◦30′–13◦45′ N; 103◦25′–106◦00′ E) (Figure 1)
and is approximately 28,800 km2; the Cambodian climate is tropical with two distinct seasons: Dry
and rainy. The majority of the land area is at an elevation below 40 m, which is vulnerable to flooding.

http//:reverb.echo.nasa.gov


Environments 2019, 6, 57 3 of 13

Phnom Penh is the capital city, and three other provinces (Kampong Cham, Kandal and Prey Veng) are
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Figure 1. Location map of study area. (a) Satellite images of study area with locations of water station. 
Sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, Centre National d’études Spatiales 
(CNES)/Airbus Defense and Security (DS), US Department of Agriculture (USDA), United States 
Geological Survey (USGS), AeroGRID, Institut Géographique National (IGN), and the GIS user 
community. (b) Location of study area with the Mekong River basin. 

3. Data Set 

3.1. MODIS Data 

This study used the following two MODIS products: (1) The MODIS/Terra Surface Reflectance 
8-Day L3 Global 500 m SIN Grid V005 (MOD09A1) and (2) The Land Cover Type Yearly L3 Global 
500 m SIN Grid (MCD12Q1). The MOD09A1 products yield the best surface spectral-reflectance data 
over an 8-day period, with the least effects from atmospheric water vapor (EOS, 2014). This study 
involved an analysis of MOD09 8-day composite data acquired from 2002 (day of year (DOY) 1) to 
2013 (DOY 365). The spatial distribution of the start dates varied year by year [16]. Although the level 
of cloud cover in the wet season means that it is difficult to obtain cloud-free images every day, 8-
day composite products can provide an image that is almost free of clouds and that is atmospherically 
corrected. Although there is a limitation that spatial resolution becomes coarser than Landsat, the 
time series MODIS data could be used to determine these dates to the nearest week and to map the 
spatial extent of a flood. 

The MCD12Q1 product is supplied annually, and it covers land areas with a 500 m spatial 
resolution. There are five classification schemes in this product that display land cover properties 
from observations, which include one year’s input of Terra and Aqua MODIS data. In this study, we 
used the primary land cover scheme (17 land cover classes) defined by the International Geosphere 
Biosphere Program (IGBP), which includes 11 natural vegetation classes, three developed and 
mosaicked land classes, and three non-vegetated land classes.  

The default projection of original MODIS data is a MODIS sinusoidal tiling system. After 
mosaicking six tiled images to cover the study area, all the data were transferred into the Geographic 
Tagged Image File Format (GeoTIFF) with geographic projection (Latitude/Longitude, WGS84) using 
the MODIS reprojection tool [19]. 

3.2. Landsat Data 

Figure 1. Location map of study area. (a) Satellite images of study area with locations of water
station. Sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, Centre National d’études Spatiales
(CNES)/Airbus Defense and Security (DS), US Department of Agriculture (USDA), United States
Geological Survey (USGS), AeroGRID, Institut Géographique National (IGN), and the GIS user
community. (b) Location of study area with the Mekong River basin.

3. Data Set

3.1. MODIS Data

This study used the following two MODIS products: (1) The MODIS/Terra Surface Reflectance
8-Day L3 Global 500 m SIN Grid V005 (MOD09A1) and (2) The Land Cover Type Yearly L3 Global
500 m SIN Grid (MCD12Q1). The MOD09A1 products yield the best surface spectral-reflectance data
over an 8-day period, with the least effects from atmospheric water vapor (EOS, 2014). This study
involved an analysis of MOD09 8-day composite data acquired from 2002 (day of year (DOY) 1) to
2013 (DOY 365). The spatial distribution of the start dates varied year by year [16]. Although the level
of cloud cover in the wet season means that it is difficult to obtain cloud-free images every day, 8-day
composite products can provide an image that is almost free of clouds and that is atmospherically
corrected. Although there is a limitation that spatial resolution becomes coarser than Landsat, the time
series MODIS data could be used to determine these dates to the nearest week and to map the spatial
extent of a flood.

The MCD12Q1 product is supplied annually, and it covers land areas with a 500 m spatial
resolution. There are five classification schemes in this product that display land cover properties from
observations, which include one year’s input of Terra and Aqua MODIS data. In this study, we used the
primary land cover scheme (17 land cover classes) defined by the International Geosphere Biosphere
Program (IGBP), which includes 11 natural vegetation classes, three developed and mosaicked land
classes, and three non-vegetated land classes.

The default projection of original MODIS data is a MODIS sinusoidal tiling system.
After mosaicking six tiled images to cover the study area, all the data were transferred into the
Geographic Tagged Image File Format (GeoTIFF) with geographic projection (Latitude/Longitude,
WGS84) using the MODIS reprojection tool [19].
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3.2. Landsat Data

Eight Landsat images (see Table 1) were downloaded from the Global Land Cover Facility
GLCF [20]. In the study, five images were obtained from the Landsat 7 satellite on-board Enhanced
Thematic Mapper plus (ETM+), and another three images were obtained by the Landsat 8 satellite
on-board Operational Land Imager (OLI) within only one path/row (126/52). Atmospheric correction
was performed using a Fast Line-of-sight Atmospheric Analysis of a Spectral Hypercube (FLAASH)
module on ENVI software ver. 5.1 (Excelis Visual Information Solutions, Colorado, USA).

Table 1. Estimated accuracy of the WFFI product relative to the inundation area derived from
Landsat images.

Satellite/Sensor Date (Day of Year (DOY))
Overall Accuracy (%)

Original WFFI Modified WFFI

Landsat 7/ETM+ 3 January 2002 (003) 30.61 82.11
20 February 2002 (051) 37.75 93.51

8 March 2002 (067) 40.66 93.80
7 February 2003 (038) 41.58 91.64

12 April 2003 (102) 41.93 95.39
Landsat 8 OLI 5 May 2013 (137) 41.82 96.2

14 October 2013 (297) 70.23 70.12
27 December 2013 (361) 43.14 81.31

3.3. Daily Water Level

Daily water level data between 2002 and 2013 from five stations were provided by the Mekong
River Commission (MRC). The stations are located at Bassac Chaktomuk (11◦33′7” E, 104◦55′59” N),
Phnom Penh Port (11◦34′30” E, 104◦55′22” N), Kampong Cham (11◦54′32” E, 105◦23′16” N), Koh Khel
(11◦16′4” E, 105◦1′40” N) and Neak Luong (11◦15′39” E, 105◦17′52” N) (Figure 1a).

4. Methods

4.1. Detecting Water Surface Using MODIS Data with WFFI

The WFFI algorithm used in this study is a modified approach, as shown in Figure 2, based on the
techniques originally developed by Sakamoto et al. [16] to detect spatio-temporal flood distributions in
Cambodia and Vietnam. The WFFI is based on smoothed indices of MODIS images, including the
Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and their difference (DVEL):

EVI = 2.5×
NIR−Red

NIR + 6×Red− 7.5× Blue + 1
, (1)

LSWI =
NIR− SWIR
NIR + SWIR

, (2)

DVEL = EVI − LSWI, (3)

where Blue, Red, NIR and SWIR are the surface reflectance value in blue (band 3; 459–479 nm),
red (band 1; 621–670 nm), near infrared (NIR) (band 2; 841−875 nm) and short-wave infrared (SWIR)
(band 6; 1628–1652 nm), respectively.

In the original WFFI algorithm of MODIS sensor, a wavelet-based filter was used to interpolate
any missing information. The production of the inundation maps involved a decision tree to classify
each pixel into one of the following categories: flood, mixture, non-flood and a long-term water body.
In the present study, the threshold values of the decision tree were modified based on the smoothed
EVI, LSWI and DVEL values (Figure 3). The modified WFFI was evaluated by comparing it with the
original WFFI.



Environments 2019, 6, 57 5 of 13
Environments 2019, 6, x FOR PEER REVIEW 5 of 13 

 

 
Figure 2. Flow chart of the mechanisms of the Wavelet-based Filter for detecting the spatio-temporal 
changes in Flood Inundation (WFFI), developed by Sakamoto et al. [16]. Red fonts indicate modified 
threshold values in this study. 

Figure 2. Flow chart of the mechanisms of the Wavelet-based Filter for detecting the spatio-temporal
changes in Flood Inundation (WFFI), developed by Sakamoto et al. [16]. Red fonts indicate modified
threshold values in this study.
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Figure 3. Smoothed (a) Enhanced Vegetation Index (EVI), (b) Land Surface Water Index (LSWI) and 
(c) difference between EVI and LSWI (DVEL) of four land cover types with threshold values in the 
original WFFI and modified WFFI (black and red line, respectively). 

4.2. Validation with Landsat Data 

Several studies have been conducted on detecting water bodies using Landsat data [21–25]. To 
detect water bodies from Landsat image, several band ratio indices have been developed. In this 
study, the water surface pixels were identified using the Modified Normalized Difference Water 
Index (MNDWI) [25] as a simple but more effective band ratio method than others. First, the non-
analysis areas including cloud cover and cloud shadow were determined from the blue reflectance 
value. The cloud-cover areas were derived from the majority analysis (window size: 3 × 3 pixels) for 
pixels whose blue reflectance (band 1 in Landsat 7 ETM+ or band 2 in Landsat 8 OLI) was greater 
than 0.2. The cloud-shadow areas were then masked by the cloud-cover areas, including 10-pixel 
buffer zones, where they were shifted in the opposite direction from the sun orientation. Next, water 
surface pixels were identified where the MNDWI was greater than or equal to 0. The equation for the 
MNDWI used in this study is as follows [25], MNDWI = , (4)

where Green and MIR are the surface reflectance values in green (band 2; 530–600 nm for Landsat 5, 
530–610 nm for Landsat 7) and middle-infrared (MIR) (band 5; 1550–1750 nm) bands 

Figure 3. Smoothed (a) Enhanced Vegetation Index (EVI), (b) Land Surface Water Index (LSWI) and
(c) difference between EVI and LSWI (DVEL) of four land cover types with threshold values in the
original WFFI and modified WFFI (black and red line, respectively).

4.2. Validation with Landsat Data

Several studies have been conducted on detecting water bodies using Landsat data [21–25].
To detect water bodies from Landsat image, several band ratio indices have been developed. In this
study, the water surface pixels were identified using the Modified Normalized Difference Water Index
(MNDWI) [25] as a simple but more effective band ratio method than others. First, the non-analysis
areas including cloud cover and cloud shadow were determined from the blue reflectance value.
The cloud-cover areas were derived from the majority analysis (window size: 3 × 3 pixels) for pixels
whose blue reflectance (band 1 in Landsat 7 ETM+ or band 2 in Landsat 8 OLI) was greater than 0.2.
The cloud-shadow areas were then masked by the cloud-cover areas, including 10-pixel buffer zones,
where they were shifted in the opposite direction from the sun orientation. Next, water surface pixels
were identified where the MNDWI was greater than or equal to 0. The equation for the MNDWI used
in this study is as follows [25],

MNDWI =
Green−MIR
Green + MIR

, (4)

where Green and MIR are the surface reflectance values in green (band 2; 530–600 nm for Landsat 5,
530–610 nm for Landsat 7) and middle-infrared (MIR) (band 5; 1550–1750 nm) bands



Environments 2019, 6, 57 7 of 13

Lastly, ‘not water-surface’ pixels were identified where MNDWI was less than 0. The threshold
value of 0 was adopted from previous literature by Xue [25]. The land-surface map was resampled
to a grid with a resolution of 25 m using the nearest neighbor method, and then the areas of these
different land-surface types were aggregated within each grid with a resolution of 500 m to compare
the MODIS-derived results.

4.3. Start and End Dates of Flooding

The continuous flood period was determined by the following procedures: (1) The continuous
inundation period was recorded by water-related pixels (both flood and mixture pixels) and computed
with water-related or non-flood pixels over 12 years; (2) if the periods of continuous inundation were
identified twice or more in a year, the longer period was taken as the period of annual flood inundation;
and (3) the duration of annual flood inundation was detected using the start and end dates of annual
flood inundation.

4.4. Water Level Trends

The annual changes in water levels in the rainy season (June–November) were examined.
According to the slope factor of the linear regression function, the trend in water level time-series data
could be incorporated into the calculation; the slope of the linear regression model fit resembles a
straight line, with the water level data plotted on the y-axis as the response variable and the value of
time (t = 1,2,3,...) plotted on the x-axis as an explanatory variable. Therefore, if the slope factor ≥0,
the water has increased or not changed, and if the slope factor <0, the water has decreased.

5. Results

5.1. Detecting Flood Areas

Figure 4 shows the surface water area derived by the modified WFFI and original WFFI on 1 January
2002. In the inundation map from the original WFFI, approximately 78% of the area is covered by water,
suggesting overestimation. In a comparison between the original and modified WFFIs (see Table 1),
the modified WFFI (70–96%) exhibited better accuracy than the original WFFI (30–70%). This might be
considered to be differences in the sensitivity of the bands used for WFFI due to the change in MODIS
product. The original WFFI was developed in version 4 of the MODIS product, while version 5 was
used in this study, so it was necessary to adjust the threshold value for extracting water-related pixels in
WFFI. This was in agreement with a previous study by Islam et al. [17] with MODIS product in version 5.
They adopted and modified WFFI in Bangladesh to produce a flood inundation map and obtained similar
accuracy (R2 = 0.96) in validation using the RADARSAT derived surface water area.

Spatial resolutions of 500 m could be another limitation in original WFFI, which are not always suited
to small river catchments [26]. The threshold value in NDWI varies depending on the proportions of
subpixel water or non-water components [27]. In this study, inundation maps derived from Landsat
images, which was resampled in a resolution of 500 m to conform the MODIS-derived results were used
for the validation. Better spatial resolution data, such as Landsat (30 m) or Sentinel-2 (10 m), could be
reduced by the mixture issues, and provide more appropriate spatial information to water mapping
applications [28–30]. However, their temporal frequency (revisit every 16 days in Landsat and 5 days
in Sentinel-2) are not suited for monitoring spatial dynamics in flood events. Therefore, MODIS data
is still used for mapping flood events due to the near-global spatial (250–1000 m) and high temporal
(daily) characteristics.

Due to the limitation of field data, in this study, the validation was made by Landsat-derived
results using MNDWI as the most suitable indices for detecting surface water [31]. To date, several
indices have been developed to determine water-related pixels in optimal satellite data, such as
normalized difference water index (NDWI) [32]. Future work needs to examine this by comparing
other indices with field surveys data.



Environments 2019, 6, 57 8 of 13
Environments 2019, 6, x FOR PEER REVIEW 8 of 13 

 

 

Figure 4. Inundated (water surface) area derived from (A) original WFFI and (B) modified WFFI on 1 
January 2002. 

Table 1. Estimated accuracy of the WFFI product relative to the inundation area derived from Landsat 
images. 

Satellite/Sensor Date (Day of Year (DOY)) 
Overall Accuracy (%) 

Original WFFI Modified WFFI 
Landsat 7/ETM+ 3 January 2002 (003) 30.61 82.11 

 20 February 2002 (051) 37.75 93.51 
 8 March 2002 (067) 40.66 93.80 
 7 February 2003 (038) 41.58 91.64 
 12 April 2003 (102) 41.93 95.39 

Landsat 8 OLI 5 May 2013 (137) 41.82 96.2 
 14 October 2013 (297) 70.23 70.12 
 27 December 2013 (361) 43.14 81.31 

5.2. Temporal Characteristics of Annual Floods and Water Levels 

Using the estimated inundation maps from the modified WFFI, the spatial distributions of the 
start and end dates of annual floods were computed (Figure 5). The spatial distribution of the start 
and end flood dates varied year by year. Furthermore, seasonal changes in the extent of the estimated 
flood area were calculated for each year (Figure 6). The estimated start date of the flood indicated 
that flood occurrence was late from 2010 to 2013. Moreover, the estimated flood inundation area 
showed 27% decrease over the last few years.  

Water infrastructure developments, such as flood control, dam hydropower, and irrigation, 
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the Bassac Chamtomuk station in the rainy season. The water level showed decreased trends over 
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Figure 4. Inundated (water surface) area derived from (A) original WFFI and (B) modified WFFI on
1 January 2002.

5.2. Temporal Characteristics of Annual Floods and Water Levels

Using the estimated inundation maps from the modified WFFI, the spatial distributions of the
start and end dates of annual floods were computed (Figure 5). The spatial distribution of the start and
end flood dates varied year by year. Furthermore, seasonal changes in the extent of the estimated flood
area were calculated for each year (Figure 6). The estimated start date of the flood indicated that flood
occurrence was late from 2010 to 2013. Moreover, the estimated flood inundation area showed 27%
decrease over the last few years.

Water infrastructure developments, such as flood control, dam hydropower, and irrigation, were
the main causes of reduced inundation area [33]. At the same time, the gradient of the water level
at five stations in the rainy season exhibited a negative trend. Figure 7 shows the water levels at the
Bassac Chamtomuk station in the rainy season. The water level showed decreased trends over the
past 12 years (2002–2013). There are many water infrastructure plans in the upstream river, especially
hydropower dams (Osborne 2008; Pearse-Smith 2012). Similarly, Arias et al. [34] found that water
infrastructure development was expected to shrink the magnitude of floods by raising the water level
during the dry season and reducing it during the rainy season. These developments resulted from the
amount of water used and the demand increase due to economic development, especially hydropower
dam construction upstream. Nik Hashim [35] noted that dam construction and water demands led to a
4% decrease in the maximum water level in the rainy season and a catchment area decline of 5% in the
Tonle Sap region. This negative impact would lead to decreased fish production and thereby threats to
food security, restricted agriculture productivity from reduced water supply for agriculture land, water
pollution that is harmful to the livelihoods of local communities, and ecological changes, especially in
aquatic ecosystems, and environmental changes that will also affect economic development [36].



Environments 2019, 6, 57 9 of 13

Environments 2019, 6, x FOR PEER REVIEW 9 of 13 

 

and water demands led to a 4% decrease in the maximum water level in the rainy season and a 
catchment area decline of 5% in the Tonle Sap region. This negative impact would lead to decreased 
fish production and thereby threats to food security, restricted agriculture productivity from reduced 
water supply for agriculture land, water pollution that is harmful to the livelihoods of local 
communities, and ecological changes, especially in aquatic ecosystems, and environmental changes 
that will also affect economic development [36]. 

 

Figure 5. Spatial distribution maps of start/end dates (day of year (DOY)) of flooding in 2004, 2006 
and 2010 using modified WFFI with MODIS data. 

 
Figure 6. Seasonal changes in the extent of the estimated area of flood pixels with the method 
proposed. 

 
Figure 7. Water level trend at the Bassac Chamtomuk station during the rainy season (June to 
November). 

Figure 5. Spatial distribution maps of start/end dates (day of year (DOY)) of flooding in 2004, 2006 and
2010 using modified WFFI with MODIS data.

Environments 2019, 6, x FOR PEER REVIEW 9 of 13 

 

and water demands led to a 4% decrease in the maximum water level in the rainy season and a 
catchment area decline of 5% in the Tonle Sap region. This negative impact would lead to decreased 
fish production and thereby threats to food security, restricted agriculture productivity from reduced 
water supply for agriculture land, water pollution that is harmful to the livelihoods of local 
communities, and ecological changes, especially in aquatic ecosystems, and environmental changes 
that will also affect economic development [36]. 

 

Figure 5. Spatial distribution maps of start/end dates (day of year (DOY)) of flooding in 2004, 2006 
and 2010 using modified WFFI with MODIS data. 

 
Figure 6. Seasonal changes in the extent of the estimated area of flood pixels with the method 
proposed. 

 
Figure 7. Water level trend at the Bassac Chamtomuk station during the rainy season (June to 
November). 

Figure 6. Seasonal changes in the extent of the estimated area of flood pixels with the method proposed.

Environments 2019, 6, x FOR PEER REVIEW 9 of 13 

 

and water demands led to a 4% decrease in the maximum water level in the rainy season and a 
catchment area decline of 5% in the Tonle Sap region. This negative impact would lead to decreased 
fish production and thereby threats to food security, restricted agriculture productivity from reduced 
water supply for agriculture land, water pollution that is harmful to the livelihoods of local 
communities, and ecological changes, especially in aquatic ecosystems, and environmental changes 
that will also affect economic development [36]. 

 

Figure 5. Spatial distribution maps of start/end dates (day of year (DOY)) of flooding in 2004, 2006 
and 2010 using modified WFFI with MODIS data. 

 
Figure 6. Seasonal changes in the extent of the estimated area of flood pixels with the method 
proposed. 

 
Figure 7. Water level trend at the Bassac Chamtomuk station during the rainy season (June to 
November). 
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5.3. Land Cover and Water Body Changes between 2002 and 2012

Based on the MCD12Q1 product, Table 2 summarizes the land cover change between 2002 and
2012. The area of water, forest, grassland and permanent wetland decreased from 1686.3, 2570.3,
2468.5 and 790.8 km2 in 2002 to 919.8, 2195.8, 1602 and 435.8 km2 in 2012, respectively. The area
of croplands increased 11.7% from 20,138.0 km2 in 2002 to 22,498.8 km2 in 2012. By applying the
change detection method, it is evident that most of the permanent water bodies have been converted
to permanent wetlands and croplands.
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The expansion of agricultural land is one of the reasons for decreasing water area.
Senevirathne et al. [37] also found that water bodies significantly decreased due to increase croplands
and built up areas in Cambodia.

However, the increasing trend of cropland area may be closely linked to economic growth in
Cambodia. Agriculture is one of the main sectors contributing to economic growth, and the expansion
of agricultural land would lead to an increase in productivity, which would contribute to national food
security and the alleviation of poverty [38]. The consistent trends in the estimated flood area and the
decrease in the permanent water body land cover might be caused by hydropower dams, which take
water for electricity generation, and other water uses fueling economic growth, such as industry and
irrigation for agriculture [39,40].

Table 2. Land cover change between 2002 and 2012 from MCD12Q1 product.

Year
Land Cover Area (km2) and the Percent (%) Ratio since 2002

Water Forest Grassland Permanent Wetland Urban Cropland

2002 1686.3
(100)

2570.3
(100)

2468.5
(100)

790.8
(100)

135.3
(100)

20,138.0
(100)

2003 1520.0
(90.1)

2516.5
(97.9)

2215.8
(89.8)

763.3
(96.5)

135.5
(100.2)

20,638.0
(102.5)

2004 1211.0
(71.8)

2157.3
(83.9)

2211.3
(89.6)

545.8
(69.0)

136.3
(100.7)

21,527.5
(106.9)

2005 488.0
(28.9)

2353.3
(91.6)

2220.0
(89.9)

236.0
(29.8)

137.0
(101.3)

21,527.5
(106.9)

2006 706.8
(41.9)

2189.3
(85.2)

2080.5
(84.3)

462.3
(58.5)

136.5
(100.9)

22,249.8
(110.5)

2007 650.8
(38.6)

2076.8
(80.8)

2144.8
(86.9)

411.5
(52.0)

136.8
(101.1)

22,368.5
(111.1)

2008 744.5
(44.2)

2076.8
(80.8)

2144.8
(86.9)

659.0
(83.3)

135.8
(100.4)

22,071.8
(109.6)

2009 633.5
(37.6)

2054.3
(79.9)

2076.8
(84.1)

690.5
(87.3)

136.3
(100.7)

22,194.8
(110.2)

2010 594.8
(35.3)

2142.5
(83.4)

2123.0
(86.0)

574.3
(72.6)

136.5
(100.9)

22,218.0
(110.3)

2011 1082.5
(64.2)

2082.3
(81.0)

1723.5
(69.8)

680.5
(86.1)

136.0
(100.6)

22,084.3
(109.7)

2012 919.8
(54.5)

2195.8
(85.4)

1602.0
(64.9)

435.8
(55.1)

137.0
(101.3)

22,498.8
(111.7)

6. Conclusions

This study investigated spatio-temporal flood inundation and land cover change in the southern
part of Cambodia using the Terra MODIS products. The WFFI algorithm for flood inundation detection
was used in this research, and the parameters were modified to fit with the current study. The flood
inundation maps from MODIS 500 m resolution were evaluated by comparing them with flood
inundation maps based on resampled Landsat data. In a comparison between the original and
modified WFFIs, the modified WFFI (70–96%) showed better accuracy than the original WFFI (30–70%).
This demonstrates that the modified WFFI methodology is very useful for detecting flood inundation
and that the flood inundation maps from MODIS images can be used to characterize flooding, which is
very useful for the integration of water resources, flood management and the maintenance of wetland
ecosystems. Overall, the WFFI products are in good agreement with the water surface area derived
from Landsat images and hydrological data in terms of temporal change and spatial distribution.
Furthermore, the estimated flood inundation data exhibited a significant delay since 2008 caused by
climate change. Based on the yearly land cover data, the permanent water body and wetland areas
decreased, while the cropland areas increased. This was a result of increased agricultural productivity.
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However, water shortage is one of the major obstacles to increasing agricultural productivity, and it
also has a negative impact on aquatic ecology such as fish spawning grounds.
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