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Abstract: Modeling ecosystem services (ESs) intrinsically involves the use of spatial and temporal
data. Correct estimates of ecosystem services are inherently dependent upon the scale (resolution and
extent) of the input spatial data. Sensitivity of modeling platforms typically used for quantifying ESs
to simultaneous changes in the resolution and extent of spatial data is not particularly clear at present.
This study used the Nutrient Delivery Ratio (NDR) model embedded in InVEST (Integrated Valuation
of Ecosystem Services and Tradeoffs) for ascertaining the sensitivity of the outputs to three digital
elevation models (DEM), two land cover datasets, and three precipitation grids for 57 watersheds
located in Georgia, United States. Multivariate regression models were developed to verify the
influence of the spatial resolution of input data on the NDR model output at two spatial extents (the
state of Georgia and six physiographical regions within the state). Discrepancies in nutrient exports
up to 77.4% and 168.1% were found among scenarios at the state level for nitrogen and phosphorus,
respectively. Land cover datasets differing in resolution were responsible for the highest differences
in nutrient exports. Significance (at 5% level) of spatial variables on the model outputs were different
for the two spatial extents, demonstrating the influence of scale when modeling nutrient runoff and
its importance for better policy prescriptions.

Keywords: ecosystem services modeling; nutrient runoff; precipitation dataset; land cover; digital
elevation model

1. Introduction

Ecosystem services (ESs) are defined as the direct and indirect benefits people obtain from
ecological systems [1,2]. Although ESs play a critical role in ensuring overall human wellbeing, current
estimates suggest that most of them are declining worldwide. For example, Costanza et al. [3] reported
that the global loss in ESs due to land use changes was between $4.3 and $20.2 trillion/year from 1997
to 2011. Assigning monetary values to these ESs is important for raising awareness about ESs to
decision makers [4,5] and society, at large [6]. Correct valuation of ESs is inherently dependent upon
the quantification of ESs [7] which in turn is dependent upon the scale of the input data. Defining the
role of scale on the models which are typically used for quantifying ESs is essential for developing
an understanding about the possible changes in ESs relative to changes in resolution and extent of
the input data. This is especially true, as existing studies use different scales for quantifying ESs [8].
This information could directly feed into policies which focus on maintaining or enhancing ESs over a
landscape [9].
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The process of quantifying ESs typically integrates spatial and temporal data within a modeling
platform resulting in a situation where the outputs are sensitive to the characteristics of the input
data [10]. Coarser datasets aggregate information and are more likely to lose heterogeneity and
variation [11], causing rare land cover classes with small patch sizes to disappear [12] or altering
the terrain’s surface water flow itself [13]. Similarly, substantial differences in the provision of ESs
occur when coarser and finer resolution land use datasets are used for quantifying ESs for the same
geographical area [12]. Kandziora et al. [14] found that ESs were overestimated in coarser land
use maps relative to finer datasets. However, Konarska et al. [15] found a difference of 200% in
the monetary values of ESs while comparing outputs obtained using the International Geosphere
Biosphere Programme (IGBP) land cover dataset with 1 km spatial resolution with the outputs obtained
using National Land Cover Dataset (NLCD) with 30 m spatial resolution. Apart from land cover
data, another crucial data for modeling ESs is the digital elevation model (DEM). Although finer
spatial data resolution is recommended as the input data in modeling ESs [13], the impact of different
DEM resolutions on the model output is not linear and, therefore, unpredictable [16]. For instance,
Redhead et al. [17] found that the model output was little affected by DEM and land cover when spatial
resolutions less or equal to 100 m were used, but significant effects were found when datasets coarser
than 100 m were used.

The complexity of nature is studied using three perspectives particularly in landscape ecology:
process, pattern, and scale [18]. The interactions between process and pattern are investigated under a
selected scale. Moreover, the scale can be divided into two components of resolution and the extent
of the mapped area [8]. A challenge for assigning social, economic, and ecological values to ESs is
the inconsistency in methods used for quantifying and mapping ESs across existing studies [19,20].
One major cause of this inconsistency is the use of different spatial data resolution across studies,
resulting in outputs which are hard to compare. In addition, studies modeling ESs have a large
variation in the spatial extent [8]. In this context, analyzing the effects of simultaneous changes in
spatial data resolution and the spatial extent on the outcome of ESs is crucial for better understanding
the full effect of scale on the quantification of ESs [9]. This becomes even more important as there is a
lack of studies comparing the impact of simultaneous changes in resolution and extent on ESs using
similar modeling assumptions for a selected geographical area [21].

Many studies had applied ES models to map and quantify provision of ESs to clarify key areas
for conservation and to serve as guidelines for policymakers. For instance, Krueger and Jordan [22]
applied the Watershed Management Priority Index (WMPI) to identify conservation priorities aiming
to maintain water quality within the Lower Savannah watershed in Georgia, USA, mainly by protecting
forests and well-managed agricultural fields. Brown and Quinn [23] used several InVEST (Integrated
Valuation of Ecosystem Services and Tradeoffs) models, including the NDR (Nutrient Delivery Ratio)
model, to determine the effects of zoning regulations in improving or maintaining provision of ESs in
urban watersheds and found that zoning was effective in preventing degradation of only one ES out of
five. Butsic et al. [24] also used the NDR model in their analysis that applied InVEST models to assess
the effectiveness of the establishment of conservation easements in providing a variety of ESs and
their results suggested that protected areas have relatively higher values of ESs. All these modeling
approaches require a prior definition of which scale to use in the analysis. Moreover, such studies
have the potential to influence decision makers when allocating funds for conservation. However,
a question remains: How would the outcome and conclusions of these studies have changed if other
scales, including spatial resolution and extent, were used instead? As a result, this study becomes even
more important as we bring an alternative perspective for increasing the comprehensiveness of the
policymaking process through better modeling of ESs.

To assist practitioners in addressing the role that different scales play on ES modeling, this study
used the InVEST NDR model, which maps and quantifies the delivery of nutrients (nitrogen and
phosphorus) to water streams and is one of the most employed models within all the models present
in InVEST. The NDR model was used for investigating the joint effects of resolution of input spatial
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data (land cover, DEM, and precipitation) and spatial extent on the outputs generated by this model
under common modeling assumptions. This study focused on a set of 57 watersheds divided into six
physiographical regions [25] located within the state of Georgia in the southern USA and covering more
than half a million hectares. The developed understanding about the impact of scale on ESs would
directly feed into landscape level planning processes which will further guide practices for managing
natural resources in a manner where ESs are not only maintained but enhanced for society welfare.

2. Materials and Methods

2.1. Study Area

The United States Geological Survey (USGS) hydrologic unit code (HUC) 12 watershed
classification system was used to select the watersheds for the study. There are 1659 HUC 12
watersheds within the state of Georgia, and they have an average area of 8491 hectares (ha), which is
adequate for nutrient delivery analysis [13]. To capture the landscape heterogeneity, 57 watersheds
were randomly selected such that no watershed was further than 60 km to the nearest watershed and
to the nearest weather station. Georgia is divided into six distinct physiographical regions [25], and
the chosen watersheds represent variations in elevation, precipitation, land cover, and demographics
across these regions (Figure 1).

The Blue Ridge region is located in the northeast of the state and is characterized by a sequence
of mountains and ridges covered by forest, with an elevation ranging from 480 to 1410 m. Within
this region, 11 watersheds were selected. The Piedmont region is located in the central portion of
Georgia and is the most populous region in the state, as Atlanta is located in this region. This region
has vast pasture and mixed forest lands. Thirteen watersheds were selected in this area. The Ridge
and Valley region, located in northwestern Georgia has most of its lands covered by pasture, and it is
somehow flat, with an elevation ranging from 210 to 240 m. Five watersheds were selected from this
region. The Southeastern Plains is the region with most of the agricultural lands in the state. Some
important cities of Georgia are partially located in the upper part of this region, such as Augusta and
Columbus. Twenty-one watersheds fell within this region. The Southern Coastal Plains is located in
the south portion of the state and has an expressive acreage of wetlands. Six watersheds were selected
in this region. Finally, the Southwestern Appalachians region is a relatively small area in the extreme
northwest portion of the state mostly covered by forest. Only one watershed was chosen in this region.
For the statistical analysis, this watershed was included with watersheds located in the Ridge and
Valley region. The total area of selected watersheds was 560,910 ha.
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Figure 1. The full extent of the study area is a set of 57 watersheds within the state of Georgia in 
southern United States. Georgia can be divided in six physiographical regions, as displayed on the 
map. The Wildcat Creek and Griffin Lake–Ochlockonee River watersheds are highlighted on the map 
as they are mentioned in the text. 

2.2. The InVEST Nutrient Delivery Ratio Model 

The modular toolset InVEST combines tabular and spatial data with biophysical models to 
quantify and evaluate selected ESs and is widely used in the literature [13,24,26–28]. This study used 
the InVEST NDR model version 3.4.2 for mapping and quantifying nutrient (nitrogen and 
phosphorus) delivery to local water streams. Although the model was modified from previous 
versions (3.1) to reduce the sensitivity to spatial data resolution [13], this study tested the influence 
of this factor on the output by creating scenarios using a variety of combinations of input spatial data 
and keeping other parameters constant. Spatial data resolution is especially important because the 
NDR model only accounts for diffuse nutrient sources (non-point sources) when mapping and 
quantifying nutrient delivery [10]. More details about the NDR model can be found in the InVEST 
User Guide [13], and alternatively in other publications that tested the sensitivity of this model mostly 
for changes in spatial resolution under different conditions [16,17]. 

2.3. Input Data for the InVEST NDR Model 

2.3.1. Land Use/Land Cover 

The NDR Model needs a land use/land cover raster file to represent how different classes 
influence the nutrient delivery to streams within a watershed. This study selected two land cover 

Figure 1. The full extent of the study area is a set of 57 watersheds within the state of Georgia in
southern United States. Georgia can be divided in six physiographical regions, as displayed on the
map. The Wildcat Creek and Griffin Lake–Ochlockonee River watersheds are highlighted on the map
as they are mentioned in the text.

2.2. The InVEST Nutrient Delivery Ratio Model

The modular toolset InVEST combines tabular and spatial data with biophysical models to
quantify and evaluate selected ESs and is widely used in the literature [13,24,26–28]. This study used
the InVEST NDR model version 3.4.2 for mapping and quantifying nutrient (nitrogen and phosphorus)
delivery to local water streams. Although the model was modified from previous versions (3.1) to
reduce the sensitivity to spatial data resolution [13], this study tested the influence of this factor on
the output by creating scenarios using a variety of combinations of input spatial data and keeping
other parameters constant. Spatial data resolution is especially important because the NDR model
only accounts for diffuse nutrient sources (non-point sources) when mapping and quantifying nutrient
delivery [10]. More details about the NDR model can be found in the InVEST User Guide [13], and
alternatively in other publications that tested the sensitivity of this model mostly for changes in spatial
resolution under different conditions [16,17].

2.3. Input Data for the InVEST NDR Model

2.3.1. Land Use/Land Cover

The NDR Model needs a land use/land cover raster file to represent how different classes influence
the nutrient delivery to streams within a watershed. This study selected two land cover datasets to
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conduct the analysis, the NLCD and the Global Land Cover (GlobCover). The most recent NLCD
dataset represents the year of 2011, and the last version of GlobCover is relative to 2009. Fortunately,
there is an NLCD available for the year of 2006, and a GlobCover available for the year of 2005 with
some data obtained in 2006. Therefore, 2006 was chosen as the base year to minimize the influence of
land cover change across time on the model outputs. The NLCD has a spatial resolution of 30 m and is
created by the Multi-Resolution Land Characteristics (MRLC) Consortium using circa 2006 Landsat
satellite data based on a decision-tree classification [29]. This dataset uses 16 land cover classes for the
conterminous United States and has an overall accuracy of 78% [30].

The European Space Agency (ESA) alongside with the Université Catholique de Louvain (Belgium)
provided the GlobCover, which is a public access land cover dataset with 300 m spatial resolution
covering all continents, except for Antarctica [31]. This dataset is a 19-class land cover classification
system and has an overall accuracy of 73% when the weight of each land cover class is accounted
for [32]. This study used the GlobCover covering the period from December 2004 to June 2006,
originally created based on the ENVISAT (Environmental Satellite) mission using the MERIS (MEdium
Resolution Imaging Spectrometer) sensor. Both land cover datasets and all spatial data used in this
study were projected to the same coordinate system (WGS 1984 UTM Zone 17N). To illustrate the
difference between these two land cover datasets, Figure 2 depicts the Wildcat Creek watershed
classified according to NLCD 2006 (a) and GlobCover 2005 (b), respectively.
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Figure 2. The Wildcat Creek watershed represented by the NLCD 2006 (a) as a land cover map with
30 m spatial resolution (https://www.mrlc.gov/nlcd2006.php), and by the GlobCover 2005 (b) with 300
m spatial resolution (© ESA 2010 and UCLouvain. http://due.esrin.esa.int/page_globcover.php).
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2.3.2. Digital Elevation Model

A critical input data of the NDR model is the DEM, as it displays the surface water flow patterns
across the study area [13]. In addition, the DEM should extend beyond the boundary of the study area.
The toolbox ArcHydro contained within the ESRI® ArcMap 10.5 was used to fill in sinks on DEM
files, which are cells that the flow direction cannot be assigned and can cause errors in the output
of the NDR model [13]. For testing the influence of DEM on the output of the NDR model, three
DEMs with different resolutions (1/3 arcsec, 1 arcsec, and 5 arcsec) were selected. Both 1/3 and 1 arcsec
DEM datasets were retrieved from the National Elevation Dataset (NED) provided by the USGS [33].
The NED is public domain data and is updated every two months to integrate the newest and best
elevation data available. This dataset covers the conterminous United States, Hawaii, and Alaska (only
lower resolution data are available to Alaska).

The 5 arcsec ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) GDEM
(Global Digital Elevation Map) is a product of National Aeronautics and Space Administration (NASA)
and Ministry of Economy, Trade, and Industry (METI) of Japan and was obtained from the online
Data Pool, courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC) [34].
Although this dataset has coarser data than the first two aforementioned DEMs, it is available at a
global scale and could be an option for researchers conducting studies in countries that do not offer
finer resolution DEM.

The threshold flow accumulation (TFA) is a parameter associated with the DEM, which is used to
generate a water streams layer and can be calculated using the formula provided by the InVEST User
Guide, which is 1 over the pixel area in km2 [13]. All DEMs used in this study, alongside their data
sources, spatial resolutions, and TFAs are reported in Table 1.

Table 1. Digital elevation models (DEMs) with their respective data sources, spatial resolutions in
arcsec and meters, and threshold flow accumulation (TFA).

Source Resolution (arcsec) Resolution (m) Threshold Flow
Accumulation (TFA)

USGS 1 1/3 ~10 10,000

USGS 1 1 30 1111

NASA 2 5 ~90 123
1 USGS: United States Geological Survey [33]. 2 NASA: National Aeronautics and Space Administration [34].

2.3.3. Precipitation (Nutrient Runoff Proxy)

The dominant effect when determining the production of nutrient runoff within a watershed is the
spatial variability of precipitation, and averaging the rainfall or using a single rain gauge or station to
calculate precipitation will potentially decrease the accuracy of results [35]. The NDR model requires a
dataset showing the spatial variability in runoff potential of the study area, which is the capacity to
transport nutrient downstream. An annual precipitation grid can be used as the input data [13]. This
study used three different precipitation grids. One was retrieved from PRISM (Parameter-elevation
Regressions on Independent Slopes Model) Climate Group at Oregon State University [36] as a 4 km
resolution raster file for the year of 2006. Climatologically-aided interpolation (CAI) was used to model
the grids, which is an adequate technique to handle large variations in weather station data density for
a longer time [36]. Datasets with 4 km resolution are available from the PRISM Climate Group website,
along with annual datasets with an 800m spatial resolution for a fee.

The two other grids were created using rainfall data for the year of 2006 from 66 weather stations in
Georgia managed by the University of Georgia Weather Network [37]. Although there are 86 weather
stations within this network, 20 of them did not have rainfall data for 2006. To test the influence of
the spatial distribution of rainfall across the landscape in the output of the NDR model, the average
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precipitation for the year of 2006 was calculated (1000.65 mm) using data from the weather stations
and a homogeneous precipitation grid was created and used as one of the input precipitation grids.

Weather stations data were interpolated to create the third precipitation grid. The general idea of
performing a spatial interpolation for producing a precipitation grid was to estimate regional values
of rainfall to unsampled points based on data collected in the same region [38–40]. There are many
techniques to interpolate precipitation data, and they can be divided into two groups: geostatistical
and deterministic. The former connects mathematics and earth science, and a good example of the
geostatistical technique is kriging, introduced by Matheron [41]. This technique uses autocorrelation
for determining the relationships among measured points and interpolates values of unknown points.
Deterministic techniques basically forecast rainfall to unsampled points by basing the calculations on
the weight of the data collected on that region [42].

Results comparing interpolation methods differ among studies, and there is no unanimous
method selected as the best interpolation method in the literature [43–45]. However, geostatistical
methods apparently perform better than deterministic ones for annual and monthly rainfall, especially
if elevation is included as a variable in the model [46–49]. Therefore, this study used one deterministic
method (IDW) and four geostatistical methods (simple kriging (SK), ordinary kriging (ORK), universal
kriging (UNK), and cokriging including elevation of stations (OCK)) to create five precipitation grids
and chose one for the NDR model analysis.

Statistics associated with each interpolation method (Table 2) suggested OCK had the smallest
difference between RMS error and ASE, and its RMS standardized was closest to 1. Since these are the
most important components to select the best method [50], the OCK interpolation was used to create a
30 m spatial resolution precipitation grid for the analysis. Figure 3 shows all the weather stations used
to create the precipitation grids, the watersheds selected for this study, the precipitation grid generated
by the OCK model (3a), and the 4 km resolution precipitation grid retrieved from the PRISM Climate
Group (3b).

Table 2. Output displaying the statistics of deterministic and geostatistical interpolation methods used
to create precipitation grids based on all available data collected from weather stations in Georgia
managed by the University of Georgia Weather Network.

Interpolation Method

Deterministic Geostatistical

IDW ORK SK UNK OCK

Mean −11.393 −7.086 −0.467 −7.086 −0.113

Mean Standardized - −0.037 −0.001 −0.037 0.003

Root-Mean-Square (RMS) 138.691 138.921 137.618 138.921 150.429

Root-Mean-Square Standardized - 1.005 1.111 1.005 0.996

Average Standard Error (ASE) - 135.032 123.152 135.032 150.451

Difference (RMS-ASE) 3.889 14.466 3.889 −0.022

Abbreviations: Inverse Distance Weighting (IDW), Ordinary Kriging (ORK), Simple Kriging (SK), Universal Kriging
(UNK), and Cokriging (OCK).
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cover (LULC) class is required for each different LULC dataset used. This table contains data related 
to nitrogen and phosphorus and requires values of nutrient load associated with LULC classes 
(kg/ha/year), maximum retention efficiency displaying the percentage of nutrient retained by 
vegetation, critical distance that a patch of LULC will retain nutrient in its maximum capacity (set to 
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and subsurface (set to default value, which is zero). If this last parameter is set to a value different 
than zero, then two more parameters are added to the model: subsurface maximum retention 
efficiency and subsurface critical length. Nutrient loads and efficiency coefficients were derived from 
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Figure 3. Precipitation grid with 30 m spatial resolution created interpolating rainfall and elevation
(cokriging) data from weather stations in Georgia (a) [37], and precipitation grid with 4 km spatial
resolution created by PRISM (b) (Copyright© 2018, PRISM Climate Group, Oregon State University,
http://prism.oregonstate.edu. Map created on 03/16/2018) [36]. All watersheds used in this study are
displayed in both maps. Precipitation is displayed as millimeters per year.

2.3.4. Parameters

In addition to spatial data, the NDR model requires a series of other parameters. The Borselli kb
parameter is used to calibrate the model by determining the relationship between the model itself and
the hydrologic connectivity, which is the degree of connection from land patches to the stream [13].
Redhead et al. [17] conducted a sensitivity analysis and concluded that this relationship is site-specific
due to different responses obtained in different catchments when a variety of kb parameters were used.
However, this study had the objective to vary only spatial data rather than parameters and used the
default value (2) suggested by Sharp et al. [13].

Moreover, a biophysical table containing information on nutrient loads for each land use/land
cover (LULC) class is required for each different LULC dataset used. This table contains data related to
nitrogen and phosphorus and requires values of nutrient load associated with LULC classes (kg/ha/year),
maximum retention efficiency displaying the percentage of nutrient retained by vegetation, critical
distance that a patch of LULC will retain nutrient in its maximum capacity (set to pixel resolution
according to each LULC dataset), and proportion of nutrient that travels via surface and subsurface
(set to default value, which is zero). If this last parameter is set to a value different than zero, then two
more parameters are added to the model: subsurface maximum retention efficiency and subsurface
critical length. Nutrient loads and efficiency coefficients were derived from a variety of published
studies [17,51–54]. Finally, land cover classes from NLCD and GlobCover were matched and assigned
with the same coefficients. The biophysical tables used in this study are available in the Appendix A.

2.4. Scenarios for the Assessment

All variations of DEM, land cover, and precipitation were combined in a unique manner to
generate a total of 18 different scenarios (Table 3). Each scenario served the purpose of testing the
influence of different input spatial data in the results of the NDR model. These 18 scenarios were
used to run the NDR model for nitrogen and phosphorus export in all 57 watersheds of the study
area. For each scenario, the total nutrient export of each watershed was quantified using the tool
“Cell Statistics” of ArcMap. Finally, the relative nutrient load of each watershed was calculated dividing
the total nutrient export by the area of the watershed.

http://prism.oregonstate.edu
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Table 3. Scenarios used in this study are a unique combination of input spatial data of the Nutrient
Delivery Ratio (NDR) model. Digital elevation models (DEM), land cover datasets, and precipitation
grids used are displayed with their respective data source and spatial resolution.

Scenario
DEM Land Cover Precipitation

Source Resolution (m) Source Resolution (m) Source Resolution (m)

Baseline USGS 1 30 NLCD 2006 3 30 PRISM 5 4000

1 USGS 1 10 NLCD 2006 3 30 PRISM 5 4000

2 NASA 2 90 NLCD 2006 3 30 PRISM 5 4000

3 USGS 1 30 GlobCover 2005 4 300 PRISM 5 4000

4 USGS 1 10 GlobCover 2005 4 300 PRISM 5 4000

5 NASA 2 90 GlobCover 2005 4 300 PRISM 5 4000

6 USGS 1 30 NLCD 2006 3 30 Stations 6 30

7 USGS 1 10 NLCD 2006 3 30 Stations 6 30

8 NASA 2 90 NLCD 2006 3 30 Stations 6 30

9 USGS 1 30 GlobCover 2005 4 300 Stations 6 30

10 USGS 1 10 GlobCover 2005 4 300 Stations 6 30

11 NASA 2 90 GlobCover 2005 4 300 Stations 6 30

12 USGS 1 30 NLCD 2006 3 30 Average 6 4000

13 USGS 1 10 NLCD 2006 3 30 Average 6 4000

14 NASA 2 90 NLCD 2006 3 30 Average 6 4000

15 USGS 1 30 GlobCover 2005 4 300 Average 6 4000

16 USGS 1 10 GlobCover 2005 4 300 Average 6 4000

17 NASA 2 90 GlobCover 2005 4 300 Average 6 4000
1 USGS: United States Geological Survey [33]. 2 NASA: National Aeronautics and Space Administration [34].
3 NLCD: National Land Cover Dataset [29]. 4 GlobCover: Global Land Cover [31]. 5 PRISM: Climate Group at
Oregon State University [36]. 6 Stations: University of Georgia Weather Network [37].

2.5. Statistical Analysis

The statistical analysis of this study was conducted using the software R version 1.0.153 [55].
Twelve multivariate linear regression models (six for each nutrient: nitrogen and phosphorus) were
developed for testing the significance of different input spatial data on the output of the NDR model.
Two models were fit for the full study area, and the other ten tested each physiographical region
in Georgia.

The relative nutrient export, represented as kilograms of nitrogen or phosphorus per hectare per
year (kg/ha/yr) delivered to water streams, was first set to 100% for each watershed for the Baseline
Scenario. Then, a percentage was calculated for each scenario and for each watershed with respect to
the Baseline. This percentage was used as the continuous dependent variable in the regression model
(“%Nut.load” in Equation (1)).

%Nut.loadi = β0 + β1DEM.10mi + β2DEM.90mi + β3GlobCoveri + β4Stationsi + β5Avg + εi
i = 1, 2, . . . , 57

(1)

The independent variables were discrete indicators for the presence or absence of each spatial data
used in the study, represented by “DEM.10m”, “DEM.90m”, “GlobCover”, “Stations”, and “Average”
(precipitation grids) in Equation (1). All discrete indicators used the Baseline Scenario as contrast, and
coefficients of Equation (1) should be interpreted as the percentage change with respect to the Baseline.
Consistently, if all variables are set to zero (absence), the model yields the Baseline percentage, which
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should be as close to 100% as possible. All analyses were conducted using a significance level of 5%
(α = 0.05).

3. Results

3.1. Overall Nutrient Export

Scenario 8, which combined a 90 m DEM with the NLCD land cover, yielded the highest aggregated
nitrogen export among all the scenarios and the precipitation grid created using weather stations data
(Figure 4). This scenario modeled a total export of 242,953 kg of nitrogen for all watersheds combined,
which gives an average of 0.433 kg/ha/year of nitrogen. This relative nitrogen export is equivalent
to 136.2% of the Baseline. The smallest nitrogen export was modeled in Scenario 16, which used a
10 m DEM combined with the GlobCover land cover and the average precipitation grid. This scenario
yielded a total nitrogen export of 136,953 kg for all watersheds combined, with a relative nitrogen
export of 0.244 kg/ha/year, which is equivalent to 76.8% of the Baseline.
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The phosphorus export was highest in Scenario 8 (39,840 kg for all watersheds) with an average
of 0.071 kg/ha/year of this nutrient being delivered to water streams (Figure 5). This export was
relatively the highest among all scenarios including nitrogen and phosphorus, representing 138.4% of
the Baseline. Scenario 16 yielded the smallest phosphorus export, with a total export of 14,861 kg for
all watersheds combined, averaging 0.026 kg/ha/year of runoff to streams. In percentage terms, this
scenario produced the overall smallest export, including nitrogen and phosphorus, yielding a result
equivalent to 51.6% of the Baseline.
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Overall, results for scenarios with varying the precipitation grid did not present high differences,
relative to the Baseline. For example, Scenarios 6 and 12, which used the same DEM and land cover
maps but different precipitation grids yielded nitrogen exports equivalent to 99.9% and 98.8% of the
Baseline, respectively. Similarly, for phosphorus, these scenarios yielded very similar results, with
nutrient exports equivalent to 99.9% and 97.8% of the Baseline, respectively. Clearly, the results differed
when different DEMs were used, and all other variables were held constant.

Figure 6 illustrates the difference in the output caused by the DEM using the Griffin Lake–
Ochlockonee River watershed extracted from the output of the NDR model to display the relative
nitrogen exports relative to the Baseline for Scenarios 1 and 2. These scenarios used the NLCD land
cover, PRISM precipitation grid, and DEMs with 30 m, 10 m, and 90 m spatial resolution, respectively.
The spatial resolution of the NDR model output is the same as the DEM used.



Environments 2019, 6, 52 12 of 22
Environments 2019, 6, x FOR PEER REVIEW 12 of 21 

 

 
Figure 6. Land cover of the Griffin Lake–Ochlockonee River watershed according to the NLCD (a), 
and the outputs of the NDR models for the Baseline (b), Scenarios 1 (c), and 2 (d) showing the nitrogen 
export (kg/pixel/year) to water streams within this watershed. Figure 6a,b have a spatial resolution of 
30 m, Figure 6c has a spatial resolution of 10 m, and Figure 6d has a spatial resolution of 90 m. 

Land cover is another variable that presented high variance among all scenarios. Figure 7 shows 
the relative nitrogen exports for Scenarios 3, 4, and 5, which are a combination of GlobCover land 
cover, PRISM precipitation grid, and DEMs with 30 m, 10 m, and 90 m spatial resolution, respectively. 
A similar nitrogen exports spatial pattern was observed in all outputs and is visible in Figures 6 and 
7. The same was observed for phosphorus export.  

Figure 6. Land cover of the Griffin Lake–Ochlockonee River watershed according to the NLCD (a), and
the outputs of the NDR models for the Baseline (b), Scenarios 1 (c), and 2 (d) showing the nitrogen
export (kg/pixel/year) to water streams within this watershed. Figure 6a,b have a spatial resolution of
30 m, Figure 6c has a spatial resolution of 10 m, and Figure 6d has a spatial resolution of 90 m.

Land cover is another variable that presented high variance among all scenarios. Figure 7 shows
the relative nitrogen exports for Scenarios 3, 4, and 5, which are a combination of GlobCover land
cover, PRISM precipitation grid, and DEMs with 30 m, 10 m, and 90 m spatial resolution, respectively.
A similar nitrogen exports spatial pattern was observed in all outputs and is visible in Figures 6 and 7.
The same was observed for phosphorus export.
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Figure 7. Land cover of the Griffin Lake–Ochlockonee River watershed according to the GlobCover (a),
and the outputs of the NDR models for the Scenarios 3 (b), 4 (c), and 5 (d) showing the nitrogen export
(kg/pixel/year) to water streams within this watershed. Spatial resolutions of Figure 7a–d are 300 m,
30 m, 10 m, and 90 m, respectively.

3.2. Scale of Input Spatial Data

When the full extent of the study area was considered, the NDR model was sensitive to changes
in DEM and land cover at a 5% significance level (Table 4). According to the output of the regression
model, reductions of 15.5% for nitrogen and 14.1% for phosphorus are expected if a DEM with 10 m
spatial resolution is used relative to the 30 m DEM. On the other hand, increments of 10.6% for nitrogen
and 13.5% for phosphorus are predicted when a 90 m DEM is used keeping all other variables constant.
The highest impact in the NDR output modeling phosphorus export was observed for a change in land
cover. When GlobCover was used, and all other variables held constant, the regression model predicted
a reduction of 37.4% in this nutrient export compared to the Baseline. Finally, both precipitation grids
were not significant at the 5% significance level.
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Table 4. Outputs of the multivariate linear regression models predicting the percentage change in
nitrogen and phosphorus export (kg/ha/year) with respect to the Baseline Scenario for the full extent of
the study area using input spatial data as independent variables (digital elevation model (DEM), land
cover, and precipitation).

Variable
Nitrogen Phosphorus

Coefficient p-Value Coefficient p-Value

Intercept 105.489 <0.001 104.635 <0.001

DEM: 10 m −15.537 <0.001 −14.051 <0.001

DEM: 90 m 10.594 <0.001 13.482 <0.001

GlobCover −15.136 <0.001 −37.392 <0.001

Stations 1.357 0.459 1.090 0.637

Average −0.253 0.890 0.049 0.983

F-statistic 61.68 107.30

p-value <0.001 <0.001

R2 0.232 0.345

n 1026 1026

To account for geographic, climate, and demographic variations across the study area, the watersheds
were then divided into physiographical regions. Similar regression models were fit for each of the five
regions, with the percentage of nutrient export with respect to the Baseline serving as the dependent
variable, and the presence or absence of input spatial data being the independent indicator variables.
Replacing the 30 m DEM used in the Baseline by a 10 m DEM significantly impacted the output of all
models, causing a decrease in the nitrogen export (Table 5). When a 90 m DEM was used, a significant
increase in export was predicted in all regions, except by the Blue Ridge, where this variable was
not significant.

Table 5. Outputs of the multivariate linear regression models predicting the percentage change in
nitrogen export (kg/ha/year) with respect to the Baseline Scenario for the five physiographical regions
of Georgia using input spatial data as independent variables (digital elevation model (DEM), land
cover and precipitation).

Blue Ridge Piedmont Ridge/Appalachian SE Plains S Coastal Plains

Variable Coeff. p-Value Coeff. p-Value Coeff. p-Value Coeff. p-Value Coeff. p-Value

Intercept 102.093 <0.001 105.061 <0.001 104.085 <0.001 107.695 <0.001 106.322 <0.001

DEM: 10 m −7.994 0.029 −16.881 <0.001 −15.550 <0.001 −18.562 <0.001 −15.851 <0.001

DEM: 90 m −5.602 0.125 6.580 0.043 6.777 0.043 18.966 <0.001 23.505 <0.001

GlobCover 8.221 0.006 −16.928 <0.001 −33.141 <0.001 −16.769 <0.001 −30.352 <0.001

Stations −13.192 <0.001 9.367 0.004 4.870 0.145 2.586 0.382 2.864 0.501

Average −26.696 <0.001 7.371 0.023 −3.973 0.233 6.020 0.042 13.473 0.002

F-statistic 13.34 21.32 40.99 42.70 35.03

p-value <0.001 <0.001 <0.001 <0.001 <0.001

R2 0.258 0.319 0.668 0.365 0.632

n 198 234 108 378 108

Land cover was significant in all regions, but when GlobCover was used in the Blue Ridge
region, an export increase of 8.2% was predicted, while all other regions had negative predictions
for this variable. The weather stations precipitation grid was significant in two regions, predicting a
negative change of 13.2% in nitrogen export for the Blue Ridge, and an increase of 9.4% in Piedmont.
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The grid using the average rainfall was significant in four regions, with a negative prediction of 26.7%
for the Blue Ridge, and a positive prediction of 13.5% for the Southern Coastal Plains. All regional
nitrogen models had higher R2 (proportion of the variance in the dependent variable explained by the
independent variables) compared to the nitrogen model fit to all watersheds (R2 = 0.232). The Southern
Coastal Plains model presented the highest R2 among all nitrogen models (R2 = 0.632).

The same approach was followed for estimating phosphorus export in all five regions, but results
had some important differences compared to nitrogen (Table 6). The 10 m DEM was significant in four
models when replacing the 30 m DEM of the Baseline, causing a negative impact in the phosphorus
export, while the 90 m DEM significantly impacted three models, but with positive effect in the output.
Land cover was significant in all regions, except for the Southern Coastal Plains, with GlobCover
causing a negative impact of 61.72% in the Ridge/Appalachian model, which was the highest impact
across all models, including nitrogen. The precipitation grid using weather stations data was significant
in two regions, predicting a negative change of 11.7% in the Blue Ridge model, and an increase of 8.2%
in the Piedmont model.

Table 6. Outputs of the multivariate linear regression models predicting the percentage change in
phosphorus export (kg/ha/year) with respect to the Baseline Scenario for the five physiographical
regions of Georgia using input spatial data as independent variables (digital elevation model (DEM),
land cover and precipitation).

Blue Ridge Piedmont Ridge/Appalachian SE Plains S Coastal Plains

Variable Coeff. p-Value Coeff. p-Value Coeff. p-Value Coeff. p-Value Coeff. p-Value

Intercept 99.586 <0.001 103.738 <0.001 101.398 <0.001 107.645 <0.001 108.539 <0.001

DEM: 10 m −7.329 0.019 −14.988 <0.001 −12.924 <0.001 −16.444 <0.001 −17.095 0.141

DEM: 90 m −4.910 0.114 5.829 0.090 7.177 0.015 22.561 <0.001 38.310 0.001

GlobCover −9.450 <0.001 −39.117 <0.001 −61.716 <0.001 −49.691 <0.001 −17.509 0.066

Stations −11.721 <0.001 8.204 0.017 3.825 0.190 2.146 0.489 2.737 0.813

Average −23.797 <0.001 6.567 0.056 −3.311 0.256 5.255 0.091 14.785 0.203

F-statistic 15.78 48.41 147.30 109.90 5.903

p-value <0.001 <0.001 <0.001 <0.001 <0.001

R2 0.291 0.515 0.878 0.596 0.224

n 198 234 108 378 108

The average precipitation grid was significant only in the Blue Ridge model, predicting a decrease
of 23.8% in phosphorus export. Two regional phosphorus models yielded lower R2 than the model using
all watersheds (R2 = 0.345), and the highest R2 among all models, including nitrogen, was observed
in the Ridge/Appalachian phosphorus model (R2 = 0.878). All p-values of nitrogen and phosphorus
regional models were significant, suggesting a relationship between independent variables and the
dependent variables.

4. Discussion

This study aimed to provide information to researchers on how the results of the NDR model can
vary with respect to the resolution of spatial data and spatial extent. A total of three DEMs, two land
cover datasets, and three precipitation grids were used in unique combinations as input spatial data
for the model. All parameters required, except by TFA which was calculated according to DEM spatial
resolution as suggested by Sharp et al. [13], were set the same across all scenarios, so the variation in
the output can be attributed solely to different spatial data used. A control scenario (Baseline) using a
30 m DEM, the NLCD land cover, and the precipitation grid retrieved from PRISM was set. Suitable
multivariate regression models were employed to verify the influence of the spatial resolution of input
data on the NDR model output at two spatial extents (the state of Georgia and six physiographical
regions within the state).
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Although the nitrogen and phosphorus export fit models for all watersheds had low R2 (nitrogen:
0.232 and phosphorus: 0.345), DEM and land cover were significant at a 5% significance level.
The model may not be used to precisely predict the percentage of nutrient export according to changes
in spatial data resolution, but as the F-statistic and p-value of both nitrogen and phosphorus models
indicated, there was a relationship among independent variables and the dependent variable, which
can certainly be interpreted as an evidence that these DEM and land cover datasets significantly
affected the nutrient export.

Consistently with other studies [16,17], changes in DEM caused a significant impact on the
output, but the direction of this impact varied across models. Nutrient export of scenarios using
NLCD was highest when the 90 m DEM were used, and lowest for 10 m DEM for all watersheds.
Alternatively, a different trend was observed in scenarios using the GlobCover, where highest exports
were modeled in 30 m DEM scenarios and lowest in 10 m DEM scenarios. These results indicated finer
DEM resolutions do not necessarily imply higher or lower nutrient export, and it was not possible to
devise an absolute trend regarding DEM resolution for the full study area.

When regression models were fit using watersheds grouped by physiographical regions, the 90 m
DEM was not significant predicting nitrogen exports only in the Blue Ridge, while this variable was not
significant in the aforementioned region and Piedmont for phosphorus, which indicated that replacing
the 30 m DEM by the 90 m DEM did not have a significant impact in the output of these regions.
The outputs of both nutrients for the other three regions were significantly affected when the 90 m
DEM was used, with these models predicting an increase in nutrient export relative to the Baseline.
The presence of the 10 m DEM had a negative effect in all models but was not found significant in the
model predicting phosphorus export in the Southern Coastal Plains region. In addition, models using
the 10 m DEM predicted overall lowest exports when all other variables were constant in the model,
suggesting that such DEM resolution may be associated with lower exports.

As expected due to possible inconsistencies matching land cover classes between the two datasets
used in this study, and to a difference in spatial resolution, land cover significantly influenced nutrient
export in both models’ fit in the full study area. Although the GlobCover is a coarser land cover dataset
and consequently aggregates smaller and sparse land cover classes into more representative classes
causing the disappearance of sensitive areas from the final grid, such as wetlands, this aggregation also
causes agricultural, pasture, and urban lands with presence of trees and shrubs to be classified into a
mosaic category, and be finally assigned lower levels of nutrient loads, as previously investigated by
Avelino et al. [11] and Grêt-Regamey et al. [12].

Among all regression models predicting nutrient export for the five physiographical regions, the
nitrogen model for the Blue Ridge was the only one that the presence of the GlobCover positively
impacted the output. Moreover, the phosphorus model for this region was negatively impacted by this
variable, but this impact was the smallest due to the presence of GlobCover in terms of magnitude.
Apparently, the watersheds within this region have fragmented occurrence of agricultural and urban
lands according to the NLCD, which were aggregated into more common land cover classes present in
this region, such as evergreen and deciduous forest, in the GlobCover dataset. This aggregation itself
would cause a nitrogen export decrease in GlobCover models outputs compared to NLCD models,
due to higher nutrient loads associated with agricultural and urban lands. However, the GlobCover
identifies vast areas of evergreen forests in this region while the NLCD classifies these areas mainly as
deciduous forest. Since evergreen forests were assigned with higher nutrient loads, it was expected that
areas covered by this class would export more nutrients to water bodies than deciduous forest areas.

The overall highest impact in regional models was predicted by the phosphorus model fit for
the Ridge/Appalachian region, with an expected decrease of 61.7% when GlobCover replaced NLCD.
This high decrease can be explained by differences in land cover classification in these two datasets.
Many pixels that the GlobCover classified as deciduous forest in this region were classified as pasture
by the NLCD and consequently assigned with very distinct nutrient loads. The Southern Coastal
Plains nitrogen regional model was negatively affected by GlobCover, which was not significant for
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phosphorus. Vast wetlands areas identified by NLCD in this region were classified mostly as mixed or
evergreen forest, less often as deciduous, by GlobCover. Although lower nutrient loads were assigned
to wetlands compared to forests, and an increase in the nutrient export was expected when using
GlobCover, agricultural lands were mostly classified into mosaic categories or grasslands and assigned
lower nutrient loads, resulting in this predicted decrease.

Three precipitation grids were tested to verify the influence of rainfall modeling nutrient exports
using the NDR model. The PRISM grid was used in the Baseline Scenario, but when it was replaced by
other grids, no significant effect was observed in the output for all watersheds combined. As shown in
Figure 3, this grid had a similar spatial distribution compared to the grid created using data collected
from weather stations in Georgia. Due to this similar distribution, results were not expected to vary
drastically in scenarios switching only these two spatial data as suggested by Redhead et al. [17],
and in fact, this lack of variation was observed for the models using all watersheds of the study area.
The average precipitation grid had an obvious different distribution compared to the others, and it
was expected that these differences would be reflected in the outputs, causing a significant change in
nutrient exports predictions. Surprisingly, this precipitation grid was not significant for all watersheds
combined, suggesting that all precipitation grids used in this study yielded overall similar results by
holding all other variables at constant values.

Results were clearly different when watersheds were grouped according to physiographical
regions. For both nitrogen and phosphorus export, the precipitation grid created using weather stations
data was significant in two regions (Blue Ridge and Piedmont), indicating that although the rainfall
distribution looks similar in these two grids, this distribution was different enough in these two regions
for significantly changing the outputs for both nutrients. The Blue Ridge region historically has the
highest annual average precipitation in the state [37]. Since the NDR model relates the average of the
precipitation grid with the pixel value for rainfall to account for runoff potential [13], regions with
extreme values of precipitation within the study area, such as the Blue Ridge, may be more sensitive to
changes in precipitation grid. The PRISM grid provided the highest rainfall for this region compared
to the other two grids. This is consistent with the coefficients of the regional model for this region,
which predicted a decrease in nitrogen and phosphorus exports when the PRISM grid was replaced by
the weather stations grid.

Regional models outputs for nitrogen exports were significantly influenced by the replacement of
the PRISM grid by the average grid in all regions, except Ridge/Appalachian. It was observed that in
drier regions, such as the Southern Coastal Plains, this grid was significant with a positive coefficient,
indicating that when the average grid was used in this region, an increase in nitrogen export was
predicted compared to results using the PRISM grid. Moreover, the regional model of the Blue Ridge,
which has a precipitation level above the average, predicted a negative coefficient for the presence
of the average grid, suggesting a significant decrease in nitrogen export compared to the presence of
PRISM. This was somehow expected because the average grid leveled out rainfall across all regions.
However, the presence of the average grid was not significant in four of the regional phosphorus
models. This grid significantly affected only the Blue Ridge model, predicting a decrease when the
PRISM was replaced by the average grid.

5. Conclusions

InVEST models are experiencing an increase in popularity, and many studies have been using
them to quantify and valuate ESs for a variety of reasons, such as policy-making and scientific research.
Sensitivity analyses of these models help the users’ community to understand possible changes in the
outputs caused by variations in input data. This study provided an analysis on how the results of the
NDR model were affected by variations in the required input spatial data, which are DEM, land cover,
and precipitation. In addition, the influence of these spatial variables under two different extents were
analyzed. Overall, the DEMs used in this study caused a significant impact on the model’s output.
However, this impact did not follow a consistent trend across spatial resolution and extent.
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The results in both extents were significantly affected by the two land cover datasets. These
changes could have been caused mainly by inconsistency when matching the land cover classes of
these two datasets or by differences in land cover classification itself. The GlobCover is a coarse dataset
and aggregates less representative areas into broad classes. This aggregation can cause both negative
and positive changes in the NDR model’s output compared to finer resolution datasets (e.g., NLCD).
Classes assigned with low nutrient loads, such as wetlands, can be incorporated into more common
classes assigned with higher nutrient loads, such as forests. Alternatively, agricultural fields, pasture,
and low intensity developed areas can be classified as a mosaic of vegetation, being assigned with
lower nutrient loads. The precipitation grids used to analyze the model did not significantly impact
the output when used in the full extent of the study area. However, different grids yielded distinct
results in some models applied to physiographical regions in Georgia.

Our study clearly indicates that the resolution and extent of the input data could significantly
affect the quantification of ESs. This further suggests that policymakers should be cognizant about
the resolution and extent of input data used in any analysis before using the same for policies on ESs.
There also exists a need for better empirical data on nutrient export for further demonstrating the
influence of resolution of input spatial data and extent using the NDR model or other similar models
for quantifying and validating the models. We hope that this study will guide future research on ESs
for informed policymaking in the context of ESs worldwide.
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Appendix A

Table A1. Biophysical table used for scenarios using the NLCD land cover dataset.

Lucode LULC_desc load_n eff_n load_p eff_p

24 Developed, High intensity 14.95 0.07 4.85 0.05

23 Developed Medium intensity 12.78 0.08 4.17 0.05

82 Cultivated crops 12.42 0.25 2.21 0.25

81 Pasture/Hay 6.28 0.1 1.35 0.25

71 Grasslands/Herbaceous 5.67 0.6 0.15 0.4

22 Developed, Low intensity 4.97 0.09 0.53 0.05

52 Shrub/Scrub 3 0.65 0.15 0.4

21 Developed, Open Space 2.6 0.1 0.18 0.05

42 Evergreen forest 2.38 0.8 0.298 0.8

43 Mixed forest 2.2 0.83 0.275 0.8

41 Deciduous forest 2 0.85 0.25 0.8

90 Woody wetlands 1.3 0.7 0.07 0.8

95 Emergent herbaceous wetlands 1.5 0.6 0.08 0.8

31 Bare rock/Sand/Clay 1 0.05 0.1 0.05

11 Water 0 0 0 0

Other parameters kept constant in all land cover classes: “crit_len_n”: 30, “crit_len_p”: 30 and
“proportion_subsurface_n”: 0.
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Table A2. Biophysical table used for scenarios using the GlobCover land cover dataset.

Lucode LULC_desc load_n eff_n load_p eff_p

190 Artificial surfaces (Urban areas >50%) 12.78 0.08 4.85 0.05

11 Post-flooding/irrigated croplands (or aquatic) 12.42 0.25 2.21 0.25

14 Rainfed croplands 12.42 0.25 2.21 0.25

20 Mosaic cropland (50–70%)/natural vegetation (20–50%) 6.28 0.1 1.35 0.25

30 Mosaic natural vegetation (50–70%)/cropland (20–50%) 5.67 0.6 0.15 0.4

120 Mosaic grassland (50–70%)/forest or shrubland (20–50%) 5.67 0.6 0.15 0.4

140 Closed to open (>15%) herbaceous vegetation 5.67 0.6 0.15 0.4

110 Mosaic forest or shrubland (50–70%)/grassland (20–50%) 3 0.65 0.15 0.4

130 Closed to open (>15%) shrubland (<5m) 3 0.65 0.15 0.4

150 Sparse (<15%) vegetation 3 0.65 0.15 0.4

70 Closed (>40%) needleleaved forest (>5m) 2.38 0.8 0.298 0.8

40 Closed to open (>15%) broadleaved forest (>5m) 2.2 0.83 0.275 0.83

90 Open (15–40%) needleleaved forest (>5m) 2.2 0.83 0.275 0.83

100 Closed to open (>15%) mixed forest (>5m) 2.2 0.83 0.275 0.83

50 Closed (>40%) broadleaved forest (>5m) 2 0.85 0.25 0.8

60 Open (15–40%) broadleaved forest (>5m) 2 0.85 0.25 0.8

160 Closed to open (>15%) broadleaved forest regularly flooded 1.3 0.7 0.07 0.8

170 Closed (>40%) broadleaved forest/shrubland permanently flooded 1.3 0.7 0.07 0.8

180 Closed to open (>15%) grassland/woody vegetation regularly flooded 1.5 0.6 0.08 0.8

200 Bare areas 1 0.05 0.1 0.05

210 Water bodies 0 1 0 0

Other parameters kept constant in all land cover classes: “crit_len_n”: 290, “crit_len_p”: 290 and
“proportion_subsurface_n”: 0.
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