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Abstract: PM2.5 pollution is of great concern in China due to its adverse health effects. Many diseases
have been proven to be associated with PM2.5 components, but the effects of chemical characteristics of
PM2.5 on toxicological properties, especially in different human organs, are poorly understood. In this
study, two seasonal PM2.5 samples (summer and winter) were collected in Nanjing, and their chemical
compositions (heavy metals, water-soluble ions, organic carbon (OC), and elemental carbon (EC))
were analyzed. Human lung epithelial carcinoma cells (A549), human hepatocellular liver carcinoma
cells (HepG2), and human neuroblastoma cells (Sh-Sy5y) were employed to evaluate the toxicological
properties of the collected PM2.5. The results showed that the average mass concentrations of PM2.5

were lower in summer (51.3 ± 21.4 µg/m3) than those in winter (62.1 ± 21.5 µg/m3). However, the
mass fractions of heavy metals, OC, and EC exhibited an opposite seasonal difference. Among all
tested fractions, water-soluble ions were the major compositions of particles in both summer and
winter, especially the secondary ions (SO4

2−, NO3
− and NH4

+). Besides, the ratio of OC/EC in
PM2.5 was greater than two, indicating serious secondary pollution in this area. The NO3

–/SO4
2−

ratio (< 1) suggested that fixed sources made important contributions. The toxicological results
showed that PM2.5 in the summer and winter significantly inhibited cell viability (p < 0.01) and
induced intracellular reactive oxygen species (ROS) production (p < 0.01). Moreover, the viability
inhibition in A549, Sh-Sy5y, and HepG2 cells was more prominent in summer, especially at high
PM2.5 (400 µg/mL) (p < 0.05), and the induction of reactive oxygen species (ROS) in A549 and Sh-Sy5y
cells was also more evident in summer. Such seasonal differences might be related to the variations
of PM2.5 components.
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1. Introduction

Over the past decade, China has been suffering from severe air pollution due to rapid economic
and heavy industry development. Haze pollution episodes occurred frequently in city-clusters
such as the Beijing Tianjin-Hebei Region, the Yangtze River Delta (YRD), and the Pearl River Delta.
Fine particulate matter (PM2.5) has received extensive attention due to its important role in global
climate and its adverse effects on air quality and terrestrial and aquatic ecosystems, especially on

Environments 2019, 6, 42; doi:10.3390/environments6040042 www.mdpi.com/journal/environments

http://www.mdpi.com/journal/environments
http://www.mdpi.com
https://orcid.org/0000-0001-5002-9360
http://dx.doi.org/10.3390/environments6040042
http://www.mdpi.com/journal/environments
https://www.mdpi.com/2076-3298/6/4/42?type=check_update&version=2


Environments 2019, 6, 42 2 of 15

human health [1,2]. Numerous studies have indicated that exposure to PM2.5 was associated with
many health issues, such as the onset or development of respiratory diseases, increased morbidity,
and mortality of cardiovascular illnesses [3,4]. The Global Burden of Disease Study showed that PM2.5

was the seventh largest important death risk factor in the world and the fourth largest important death
risk factor in China [5,6].

PM2.5 is consisted of carbonaceous cores with various absorbed chemical compounds, such as
metals, organic compounds, salts, and biological components (e.g., toxins and pollen) [7]. Considering
the chemical heterogenicity of PM2.5 and the complex interactions among multiple factors, including
particle size, composition, source, and meteorological conditions [8,9], only PM2.5 mass concentration
could not account for its comprehensive effects on human health. Therefore, the adverse health effects
of PM2.5 are thought to largely depend on particle-associated contaminants. Recent epidemiological
analysis and animal studies have verified that particle-bound metals were relevant to the increase in
cardiovascular mortality and morbidity, and could easily cause chronic poisoning to different human
organs and lung/nasal cancer after long-term exposure [10–12]. Oxidative damage in cells and cell
death were demonstrated to be caused by transition metal elements such as V, Ni, Cd, Cu, and Zn [13].

Wang et al. and Weber et al. also found that polycyclic aromatic hydrocarbons (PAHs)
and quinones in PM2.5 resulted in reactive oxygen species (ROS) production [14,15]. In addition,
water-soluble ions (e.g., SO4

2− and NO3
−) in PM2.5 would change the pH of the exposure solution

and affect cell viability [16].
An in vitro study is a cost and time effective method to evaluate the toxicity of chemicals.

PM2.5 can be transported into human body mainly through inhalation [17], and the lung is the
major exposed/contacted organ. The human lung epithelial carcinoma cell line (A549) has been
widely used to examine the cytotoxic mechanisms resulted from PM2.5 exposure [18,19]. Once entering
into system circulation, PM2.5 could be accumulated in other human organs and produce adverse
effects. Since the liver is the primary accumulation and detoxification organ, the human hepatocellular
liver carcinoma cell line (HepG2) is a rational choice for indicating potential hepatotoxicity and has
been used as a tool for studying inflammatory response, genotoxicity, oxidative stress, mitochondrial
dysfunction, and apoptosis [20]. Moreover, the central nervous system (CNS) was also proposed
as a target organ of airborne pollutants. PM exposure may lead to neurodevelopmental disorders
and neurodegenerative diseases, including autism spectrum disorder [21], Alzheimer’s disease [22],
and Parkinson’s disease [23]. The human neuroblastoma cell line (Sh-Sy5y), originated from bone
marrow, is known to be one type of the most sensitive cells to oxidative stress [24]. However, only a
few studies focused on the toxicity of PM2.5 to different cell models.

Nanjing is one of the fastest growing megacities in the YRD, and continuous industrialization
aggravates its air pollution and haze occurrence. Since seasonal differences exist in the compositions
of particulate matter in the same area—especially between summer and winter—which would affect
PM2.5 cytotoxicity [25], temporal differences should be taken into consideration when evaluating
the risks of regional PM2.5. In this study, we first collected the PM2.5 samples in both summer and
winter from the northern suburbs of Nanjing, analyzed the major components in PM2.5 (including
heavy metals, water-soluble ions, organic carbon (OC), and elemental carbon (EC)), and investigated
the cytotoxicity (cell viability) of PM2.5 on A549, Sh-Sy5y, and HepG2 cells. Considering that the
HepG2 cells contain higher levels of metabolic enzymes, which may be due to the fact that HepG2
cells have metabolic capabilities and cannot accurately reflect the oxidative stress of particulates [26],
we chose the A549 cell line and the Sh-Sy5y cell line for the oxidative damage test. Our results could
provide scientific basis for the development of health risk assessment and health protection measures
in Nanjing.
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2. Materials and Methods

2.1. PM2.5 Collection

PM2.5 were collected in the campus of Nanjing University of Information Science and Technology
(32◦12′9′′ N, 118◦42′49′′ E), which is surrounded by chemical companies, residential areas, and
farmland, and is 1 km from the freeway. The sampling site is located at the top of the library,
about 25 m above the ground and without high-rise buildings around (Figure 1). Two seasons were
chosen for PM2.5 sampling (33 samples for summer, 32 samples for winter): The summer sampling was
conducted from June to August 2016, and the winter sampling was from December 2016 to February
2017. The sampling time was from 9:00 a.m. to the next 7:00 a.m. A high-volume air sampler (Tisch
Environmental, Cleves, OH, USA) was used to collect PM2.5 samples with a flow rate of 1.13 m3/min.
PM2.5 were collected by a quartz filter (203 mm × 254 mm, Whatman, UK). Before sampling, all quartz
filters were placed in a muffle furnace at 450 ◦C for 4 h to remove any organic matter and wrapped
with aluminum foil within a desiccator for 24 h. Similarly, the quartz filters were desiccated after
collection, and each was weighed three times. The difference in filter mass before and after sampling
was recorded as the mass of PM2.5 collected. All the PM2.5 filters were then stored at −20 ◦C in the
dark for further analysis. Filter blanks were also prepared at the same time and in the same way.
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Figure 1. Position of the sampling point.

2.2. PM2.5 Chemical Analysis

A strip of 1 cm × 2 cm was cut from each filter (33 samples for summer, 32 samples for winter),
and digested with a mixture of 5 mL HNO3 (69%) and 1 mL HF. The acid digestion procedure
was conducted using a microwave digestion instrument (GEM Corpooration, Charlotte, NC, USA).
The suspension was then filtered, diluted with ultrapure water to a volume of 45 mL, and stored at
4 ◦C for analysis. Thirteen metal elements (Al, As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, V, and Zn) were
detected by inductively coupled plasma mass spectrometry (ICP-MS, Thermo, USA). Seven blank
membranes and two standard reference materials (GBW07403, GBW08401) were treated by the same
digestion method. The recovery rates of all elements were within 100 ± 15%.

A part of the extracted PM2.5 was prepared for the analysis of water-soluble ions, including Na+,
K+, Mg2+, Ca2+, NH4

+, F−, Cl−, NO3
−, and SO4

2−. They were first extracted in 45 mL of ultrapure
water, and then they ultrasonicated for 20 min in an ice bath. This step was repeated three times.
Then, the suspension was filtered with a 0.22 µm filter to obtain the water-soluble ions. The cations
were determined by a methanesulfonate elution method using a Dionex ICS-3000 ion chromatograph
equipped with an Ion Pac CS16 (5 mm × 250 mm) type separation column, and the anions were
analyzed by a KOH elution method using a Dionex ICS-2000 ion chromatograph with an Ion Pac
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(4 mm × 250 mm) separation column. For both anions and cations, conductivity detectors were used,
and the flow rate of eluent was 1 mL/min. The detection limit for each ion was less than 0.01 µg/m3.

Besides, PM2.5 samples (33 samples for summer, 32 samples for winter) were collected from each
filter by using a 17-mm-diameter ring cutter. The concentrations of OC and EC in the samples were
quantitatively determined using a Sunset Lab model 4 organic carbon analyzer (Sunset Lab., Tigard,
OR, USA).

2.3. Cytotoxicity

2.3.1. PM2.5 Preparation and Cell Culture

In tandem with the chemical analysis, PM2.5 samples were also prepared for the determination of
cytotoxicity. A 2 cm × 18 cm strip was cut from each filter (33 samples for summer, 32 samples for
winter), immersed in 150 mL of ultrapure water, and ultrasonicated for 20 min in an ice bath (repeated
three times). The solution was filtered, and then the collected solution was freeze-dried in vacuum to
obtain the extracted particles [27]. We thought the substance obtained by ultrasonic extraction was
only PM2.5, regardless of the decomposition of quartz filter membrane. In this experiment, particles
collected from the same season were grouped together, and a 5 mg/mL of particle stock solution was
then prepared for each season by Phosphate Buffer Saline (PBS, KeyGEN BioTECH, Suzhou, China).

Three human cell lines—the human lung epithelial carcinoma cells (A549), the human
hepatocellular liver carcinoma cells (HepG2), and the human neuroblastoma cells (Sh-Sy5y)—were
used in this study. They were all obtained from the School of Public Health of Nanjing Medical
University. The cells were cultured in a Dulbecco’s modified Eagle medium (DMEM) (Gibco, Grand
Island, NY, USA) containing 10% fetal bovine serum (Gibco, USA) and 1% streptomycin antibiotic.
These cells were maintained in a humidified incubator (Thermo, USA) at 37 ◦C with 5% CO2. At about
80% cell confluence, the cells were gently digested with 0.25% trypsin (Gibco, Grand Island, NY, USA)
for cytotoxicity tests.

2.3.2. Cell Viability

The A549 and HepG2 cells were used to examine the effects of PM2.5 on cell viability. The cells in
the logarithmic growth phase were collected, seeded in 96-well plates at the specific densities (each
5000/well), and incubated in the CO2 incubator for 24 h. Afterward, the culture medium was replaced
with the serum-free DMEM medium containing different levels of PM2.5: 50, 100, 200, and 400 µg/mL
(corresponding to 16, 31, 62, 125 µg/cm2). There were 6 replicates for each treatment. The blank
group and the control group were also prepared using PBS or serum-free DMEM medium instead of
PM2.5. After 24 h of incubation, 10 µL of CCK-8 (Beyotime Biotechnology CO., Ltd., Shanghai, China)
was added to each wel, and continually incubated at 37 ◦C for 2 h. The optical density (OD) of the
final solutions was measured by a multi-function microplate reader (Molecular Devices CO., USA) at
450 nm. The viability of cells was calculated using Equation (1):

Viability(%) =
ODsample −ODblank

ODcontrol −ODblank
(1)

2.3.3. ROS Assay

The A549 and Sh-Sy5y cells were chosen for an intracellular reactive oxygen species (ROS)
assay. Similarly, the cells in the logarithmic growth phase were inoculated into 6-well plates (each
2 × 105/well) and placed in the CO2 incubator at 37 ◦C for 24 h. Then the cells were exposed to the
PM2.5 solutions. There were three PM2.5 treatments (50, 100, and 200 µg/mL) (corresponding to 10, 21,
and 42 µg/cm2) and a control group, with three replicates for each treatment. After another 24 h, the
cells were labeled with an oxidative-sensitive fluorescent probe DCFH-DA (10 µmol/L) for 25 min in



Environments 2019, 6, 42 5 of 15

the dark. The fluorescence intensity was finally measured by a flow cytometry (Beckman, Miami, FL,
USA) with excitation wavelength at 488 nm and emission wavelength at 525 nm.

2.4. Data Analysis

Cytotoxicity data were used to calculate the LC20 and LC50 (IBM Statistics SPSS 21.0),
the concentrations of PM2.5 killing 20% and 50% of the cells, respectively. Statistical analysis was
performed by the Pearson’s correlation test, T-test, and One-Way Anova test (IBM Statistics SPSS 21.0).
p < 0.05 implies statistically significant, and p < 0.01 indicates extremely significant. The experimental
results are expressed as mean ± standard deviations.

3. Results

3.1. PM2.5 Mass Concentrations and Chemical Characteristics

The daily average concentrations of PM2.5 in summer and winter 2016 were 51.3 ± 21.4 µg/m3

(n = 33) and 62.1 ± 21.5 µg/m3 (n = 32), respectively. Compared with previous observations of
PM2.5 in the northern suburbs of Nanjing (the average observed values of summer and winter
were 69.8–82.9 µg/m3, 122.4–152.1 µg/m3), PM2.5 concentrations in summer and winter 2016 were
decreased by about 26.5%–38.1% and 49.3%–59.2%, respectively [28,29]. Such reductions suggest that
the implementation of environmental protection measures has made some progress in recent years, but
there is still a long way to go compared with the daily average standards (PM2.5: 25 µg/m3) proposed
by the World Health Organization.

3.1.1. Heavy Metals

The average concentrations of heavy metals in PM2.5 during our sampling periods are shown in
Table 1. These concentrations varied greatly among different elements and seasons, in which Al and
Zn were the major elements in both summer and winter PM2.5 samples. The average concentrations
of Al and Zn were 588.85 ± 284.99 ng/m3 and 678.16 ± 325.86 ng/m3 in summer, and they were
755.05 ± 738.39 ng/m3 and 724.40 ± 438.32 ng/m3 in winter. Correspondingly, these two elements
accounted for 85.0–88.9% of the metal concentration in PM2.5. These metal mass fractions are consistent
with the observations by Qi et al. in Nanjing [30]. Generally, Al is a quintessential crustal element,
and its existence in atmosphere was mainly derived from soil and dust. In contrast, the main
sources of elemental Zn were industrial smelting [31] and exhaust emissions from motor vehicles [32].
Our sampling point is located to the west of a traffic pollution zone (Nanjing Jiangbei Expressway) on
the northwest and southwest sides of many chemical plants. Therefore, Zn in PM2.5 had a relatively
high content and came from a wide range of pollution sources. In addition, the concentrations of As
in summer (3.37 ± 2.31 ng/m3) and winter (3.05 ± 1.90 ng/m3) were close to the Environmental Air
Quality Standard GB3095-2012 (As: 6 ng/m3). Given the high health risk of As for human beings [33],
it is critical to closely monitor As concentration levels and environmental fates. Though Fe, another
major crustal element [34], has not been determined in this study, the heavy metals detected accounted
for 2.8–3.2% of the PM2.5 mass concentration. Higher percentages of metals were found here than
those reported previously [35], indicating that metal pollution in this area need to be controlled locally
and strictly.

The metal enrichment factor (EF) was also calculated to differentiate the anthropogenic sources
from natural process, using Al as the reference element according to Senaratne’s study [36]. As shown
in Figure 2, the EF values of Zn, Cd, and Pb were far greater than 100 (except for Pb in winter),
indicating that these elements were heavily enriched and strongly affected by human activities.
Previous studies have demonstrated that Cd and Zn usually originated from metal smelting, electric
batteries, electroplating, pigments, building materials, and coatings [37]. The Pb content in PM2.5 was
higher in summer than in winter (p < 0.05), which is consistent with the observations of Liu Fengling
in Nanjing and which may be due to the difference in industrial emissions during the sampling
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period [28]. Cu, Cr, As, and Ni also had EF values greater than 10, indicating that anthropogenic
sources made an important contribution to these PM2.5-bound elements. In contrast, The EF values of
V, Mn, Co, Ba, and Sr were all less than 10, which is consistent with the findings that these elements
were commonly from both human activities and nature emissions [38]. The correlation between the
mass concentration of heavy metal elements (average values of summer and winter samples) are
shown in Table 2. A correlation coefficient of 0.470 (p < 0.01) was noted between As and Sr, and both
were generally considered to be trace elements of coal combustion, especially from coal-fired power
plants [39,40]. The correlation coefficients between Pb with Cu, Mn and V were 0.452, 0.394 and 0.568
(p < 0.01), respectively. Pb, Mn, and Cu were thought to be signs of traffic emissions [41,42]; the use
of fuel additives and combustion of fuel will lead to the emissions of these metals [43]. These results
suggest that human activity, especially industrial activity, traffic transportation, and dust, has led to
severe metal pollution in PM2.5 at the sampling site.

Table 1. Average mass concentrations (ng/m3) and mass fractions (µg/g) of heavy metals in PM2.5 in
summer and winter.

Elements
Summer (n = 33) Winter (n = 32) Mass Fraction

Ratio
Summer/Winter

Concentration
(ng/m3) Mass Fraction (µg/g) Concentration

(ng/m3) Mass Fraction (µg/g)

Al 588.85 ± 284.99 12,704.97 ± 6747.99 755.05 ± 738.39 12,559.83 ± 11,775.82 1.01
As 3.37 ± 2.31 65.95 ± 38.61 3.05 ± 1.90 51.18 ± 27.05 1.29
Ba 20.92 ± 38.82 512.71 ± 103.58 11.72 ± 4.99 198.11 ± 78.77 2.59
Cd 1.58 ± 1.27 31.24 ± 26.83 1.17 ± 0.71 19.18 ± 11.01 1.63
Co 0.73 ± 0.99 17.64 ± 3.63 0.47 ± 0.17 8.02 ± 3.54 2.20
Cr 23.38 ± 7.50 524.42 ± 244.98 34.70 ± 20.37 609.05 ± 434.21 0.86
Cu 35.99 ± 19.86 802.44 ± 507.76 36.23 ± 29.95 602.33 ± 391.26 1.33
Mn 26.98 ± 11.65 552.71 ± 183.13 29.88 ± 14.90 493.90 ± 214.84 1.12
Ni 11.49 ± 3.56 252.24 ± 98.97 7.86 ± 4.99 139.49 ± 100.74 1.81
Pb 86.16 ± 65.88 1742.57 ± 501.45 48.92 ± 22.24 799.80 ± 302.54 2.18
Sr 4.12 ± 1.83 86.49 ± 30.45 5.51 ± 2.27 93.38 ± 40.03 0.93
V 4.64 ± 3.28 90.02 ± 57.89 2.95 ± 1.67 50.17 ± 29.71 1.79

Zn 678.16 ± 325.86 14,979.87 ± 10,218.68 724.70 ± 438.32 12,784.79 ± 8830.23 1.17
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Table 2. Correlation between heavy metals in PM2.5 (n = 65).

Al As Ba Cd Co Cr Cu Mn Ni Pb Sr V Zn

Al 1
As 0.145 1
Ba −0.034 0.014 1
Cd 0.119 0.366 ** −0.024 1
Co −0.005 −0.033 0.013 0.562 ** 1
Cr 0.383 ** 0.152 −0.008 0.133 0.020 1
Cu 0.191 0.167 −0.035 0.388 ** 0.069 0.311 * 1
Mn 0.210 0.419 ** 0.024 0.257 * 0.097 0.341 ** 0.187 1
Ni 0.320 ** 0.151 0.204 0.405 ** 0.189 0.157 0.576 ** 0.154 1
Pb 0.063 0.115 −0.001 0.380 ** 0.127 0.098 0.452 ** 0.394 ** 0.338 ** 1
Sr 0.489 ** 0.470 ** 0.052 0.279 * 0.123 0.488 ** 0.348 ** 0.640 ** 0.254 * 0.207 1
V −0.040 0.016 0.012 0.471 ** 0.303 * 0.048 0.263 * 0.509 ** 0.403 ** 0.568 ** 0.140 1

Zn 0.152 −0.092 −0.065 0.068 −0.119 0.202 0.141 0.150 0.077 0.083 0.072 0.212 1

** Significantly correlated at the 0.01 level (both sides), * Significantly correlated at the 0.05 level (both sides).

3.1.2. Water-Soluble Ions

Figure 3 shows the proportions of water-soluble ions (WSI) in PM2.5. For summer and winter
particles, the ionic components accounted for 31.4% and 38.6% of the total mass of PM2.5, respectively.
Compared with other regions, the proportion of WSI was lower than Zhengzhou’s 66.1% [44], higher
than Xiamen’s 24.4% [45], and close to Beijing’s 38.6% [46]. The concentrations of nine ionic species
followed the order of SO4

2− > NH4
+ > NO3

− > Cl− > Mg2+ > K+ > Na+ > Ca2+ > F− in summer, while
the concentrations followed the order of SO4

2− > NO3
− > NH4

+ > Cl− > Na+ > Ca2+ > K+> Mg2+ > F−

in winter. Among these ions, SO4
2−, NO3

−, and NH4
+ (referred to as SNA) generally had the highest

concentrations, and the sums of SNA made up 85.7% and 77.8% of the measured water-soluble ions
in summer and winter, respectively. Generally, these three ions were rarely discharged from primary
sources, as they were mainly from secondary reactions instead [25]. Therefore, the high contents of SNA
in PM2.5 indicated the high frequency of secondary pollutions in this area. Besides, the concentration of
SO4

2− in summer was higher than that in winter (p < 0.01), which may be explained by the enhanced
photochemical oxidation of SO2 during warm periods. In contrast, the NO3

− concentration was lower
in summer, which may be conducive to the effective conversion of semi-volatile nitrate to gaseous
state at high temperature. In addition, significant differences were observed for Na+ and Ca2+ ion
concentration (p < 0.01) between summer and winter particles. Higher percentages of these two ions
in winter may be associated with crustal dust or construction around the sampling point, and they
could hardly be dispersed under unfavorable meteorological conditions during cold weather [47].
The ratio of NO3

−/SO4
2− was also used to explore the sources of PM2.5 pollutant. It is considered that

the mobile source is dominant when this ratio is greater than 1, while the fixed source is dominant
when the ratio is less than 1 [48]. The ratios of NO3

−/SO4
2− in summer and winter particles were 0.38

and 0.94, respectively, indicating again the major contribution of fixed sources (many chemical plants
around) in this area [49].
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3.1.3. OC and EC

As shown in Figure 4, the average concentrations of OC and EC were 6.1 ± 2.5 µg/m3 and
1.2 ± 0.7 µg/m3 in summer, and 5.8 ± 2.6 µg/m3 and 1.0 ± 0.4 µg/m3 in winter, respectively.
These carbonaceous compounds accounted for 10.8–14.3% of total PM2.5 mass. Our results were
comparable to the reported values in other major Chinese cities, that the PM2.5-associated OC and EC
concentrations were 7.8 and 4.4 µg/m3 in Hong Kong [50], 7.2 and 2.6 µg/m3 in Shanghai [51], and 12.1
and 5.4 µg/m3 in Beijing [52], respectively. Previous studies have also examined these carbonaceous
compounds in Nanjing: 13.8 and 5.3 µg/m3 in 2001 [53], 15.7 and 10.4 µg/m3 in 2007 [54], and 13.5 and
3.4 µg/m3 in 2012–2013 [55]. A decrease in OC/EC contents was observed on a yearly basis, implying
that air pollution control measures had obvious effects. Different from the PM2.5 levels discussed
above, the carbonaceous pollution in summer was higher than that in winter (p < 0.001), which may be
due to the factories working hours near the sampling point.
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The correlation coefficients between OC and EC in summer and winter were 0.785 (p < 0.01) and
0.810 (p < 0.01), respectively, showing that strong homology existed in the emission of carbonaceous
aerosols in different seasons. It has been proposed that the ratio of OC to EC could be used to identify
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the source of carbonaceous aerosols, the variation characteristics, and the formation of secondary
organic carbon (SOC) [56]. The ratios of OC/EC varied in the range of 2.7–9.4 in summer and
2.6–9.0 in winter, respectively. It can be seen that all these values were greater than 2, indicating that
secondary pollution was common in this area and came mainly from coal combustion and exhaust
emissions [57]. Considering the importance of SOC to visibility, climate, and human health, the average
concentrations of SOC have also been analyzed based on the minimum value of OC/EC [58], and they
were 2.9 ± 1.5 µg/m3 in summer and 3.3 ± 1.5 µg/m3 in winter. Such seasonal variation may be due
to lower temperature in cold periods, which could promote the generation of SOC [59].

3.2. PM2.5 Cytotoxicity

3.2.1. Cell Viability

The cell viability of three human cell lines exposed to different concentrations (50, 100, 200, and
400 µg/mL) of PM2.5 is shown in Figure 5. It is clear that dose-effect relationships (p < 0.01) existed in
all treatments. At lower PM2.5 levels (50 µg/mL), there was no significant difference (p > 0.05) in cell
viability between summer and winter PM2.5. When the concentrations of PM2.5 were above 200 and
100 µg/mL, respectively, significantly higher levels of cell viability (p < 0.05) were observed in winter
PM2.5 for A549, Sh-Sy5y, and HepG2 cells. Correspondingly, as shown in Table 3, the calculated LC50

values were higher in winter (323 µg/mL for A549 cells, 312 µg/mL for Sh-Sy5y cells, and 268 µg/mL
for HepG2 cells) than those in summer (274 µg/mL for A549 cells, 279 µg/mL for Sh-Sy5y cells, and
205 µg/mL for HepG2 cells). Similar results were obtained from the LC20 values, indicating that the
cytotoxicity caused by PM2.5 was higher in summer. Previous studies have shown that the toxicity of
particulate matter may be related to the contained elements and organic components [60–62]. First, as
shown in Table 1, almost all elements (except for Cr or Sr) had higher mass fractions in summer than
in winter, especially for Ba, Co, and Pb (2.59, 2.20, and 2.18-fold differences, respectively). Perrone
et al. found that the chemical components of PM samples, such as Cr, As, Cu, and Zn, were highly
correlated with the decrease of A549 cell viability [25]. Metal components were demonstrated to exert
adverse effects by producing oxidative stress and inflammatory factors, resulting in cell membrane
lipids, protein and DNA damage, and then cell death [14,61]. Second, the mass fractions of OC and
EC in summer were also higher than that in winter. OC is a complex mixture of polycyclic aromatic
hydrocarbons, normal paraffins, organic acids, hydroxy compounds, and heterocyclic compounds,
and EC consists mainly of pure carbon, graphitic carbon, and some relatively non-volatile organic
substances such as coke and tar [63,64]. The seasonal differences in carbonaceous components might
be another important reason for the relatively high cytotoxicity of PM2.5 in summer. Additionally,
the PM2.5 samples in summer showed higher percentages of SO4

2−, which might affect the acid-base
balance of the exposure solution and, thereby, affect cell viability [15].
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Table 3. LC20 and LC50 (µg/mL) of PM2.5 in summer and winter.

A549 Cells HepG2 Cells Sh-Sy5y Cells

LC20 LC50 LC20 LC50 LC20 LC50

Summer 96 (92–99)
(n = 30)

274 (250–291)
(n = 30)

66 (51–80)
(n = 27)

205 (173–274)
(n = 27)

98 (93–102)
(n = 22)

279 (249–310)
(n = 22)

Winter 130 (127–133)
(n = 29)

323 (268–379)
(n = 29)

84 (64–103)
(n = 30)

268 (221–315)
(n = 30) 127 (62–167)

(n = 26)
312 (311–415)

(n = 26)

For A549, Sh-Sy5y, and HepG2 cells, the decrease in cell viability became significant when the
concentration of PM2.5 was above 50 µg/mL. Such a decrease was more precipitous for HepG2 cells at
a higher PM2.5, with a few exceptions. For example, at a summer PM2.5 of 100 µg/mL, the cell viability
was 76% in A549 cells and 71% in Sh-Sy5y cells, as compared with 65% in HepG2 cells. Therefore,
the estimated LC20 and LC50 values of HepG2 cells were lower than those of A549 and Sh-Sy5y cells,
indicating that the HepG2 cells were more sensitive to PM2.5 exposure.

3.2.2. ROS Induction

It has been widely recognized that the induction of free radicals is an important mechanism of
fine particles toxicity [65,66]. Excessive free radical production may disturb the dynamic balance
between oxidants and antioxidants, and it may also damage normal human cells. The content of ROS
is considered as an important indicator of the degree of oxidative damage. According to the results
in the previous section, the cell viability was less than 50% when the PM2.5 concentration reached
400 µg/mL. Therefore, in order to collect enough cells for ROS analysis, A549 and Sh-Sy5y cells were
exposed to three different levels of PM2.5 (50, 100, and 200 µg/mL). The results, as measured by the
DCFH-DA assay, are presented as the relative increase in viable cells with respect to non-exposed
controls (Figure 6). Whatever the cell lines and seasons, the intracellular ROS production at the
lowest tested PM2.5 was significantly higher than that in the control group (p < 0.01) and increased
continuously with increasing exposure concentration. These trends are consistent with the results
of previous studies [67,68]. For Sh-Sy5y cells, the production of ROS was higher in summer than
that in winter at the same dose level (except for Sh-Sy5y cells at 50 µg/mL, p < 0.05), especially at
higher levels of PM2.5, indicating that the summer PM2.5 caused more serious oxidative damage to
the cells. For A549 cells, the production of ROS was obviously higher in summer than that in winter
only at 100 µg/mL (p < 0.05). Intracellular ROS production is mainly due to the presence of metal
elements, other inorganic, and organic chemicals [69,70] adsorbed on particle surfaces. Previous
extensive studies have shown that metal elements such as Pb, Ni, V, Cu, etc., were significantly related
with the production of ROS (R > 0.70, p < 0.05) [71–73]. Saffari et al. also found that there was a strong
correlation between OC content and ROS production (R = 0.79, p < 0.05) [74]. As discussed above, the
mass fractions of most metals and carbonaceous components were higher in summer than those in
winter samples, which might explain the higher induction of ROS after summer PM2.5 exposure. Such
inter-seasonal differences in ROS production were similar with the results of cell viability. Although
lower PM2.5 pollution levels are often observed in summer, the health risks of particles should not be
underrated due to the higher proportions of toxic components. Moreover, there was no significant
difference in oxidative damage between A549 and Sh-Sy5y cells (p > 0.05). Once PM2.5 has entered the
systemic circulation, human neuroblastoma cells are also important and sensitive targets.
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4. Conclusions

The average concentrations of PM2.5 in northern suburbs of Nanjing were 51.3 ± 21.4 µg/m3 in
summer and 62.1 ± 21.5 µg/m3 in winter. Among multiple components, heavy metals, water-soluble
ions, and carbonaceous compounds accounted for 2.8–3.2%, 31.4–38.6%, and 10.8–14.3% of total PM2.5

mass. Over half of heavy metals (Zn, Cd, Pb, Cu, Cr, As, and Ni) had EF values greater than 10,
indicating that these elements came mainly from human activities. SO4

2−, NO3
−, and NH4

+ made
up 77.8–85.7% of the measured water-soluble ions in PM2.5; combined with the OC/EC ratio greater
than two, it is clear that secondary pollution occurred frequently in this area. Moreover, the ratio of
NO3

−/SO4
2− (<1) implied the important contributions of fixed sources.

PM2.5 exposure led to a decrease in cell viability and an induction of ROS in cells, both of
which exhibited good dose-effect relationships. However, higher cytotoxicity was observed after
summer PM2.5 exposure as compared with the winter PM2.5 samples. Such seasonal variation may
be explained by the variations in PM2.5 components. Different from PM2.5 levels, both the metal and
carbonaceous fractions in summer PM2.5 were higher than those in winter particles. Of course, the
chemical composition of PM2.5 is extremely complex, and the cytotoxicity of PM2.5 may also be related
to undetermined organic pollutants, which together generate the observed joint effects. Therefore,
further research is needed to characterize the contributions of different components to PM2.5 toxicity.
At present, the method of ultrasonic extraction of particulate matter with water may cause some losses
to the extraction of some insoluble parts. In future experiments, studies on the extraction efficiency of
different methods for the extraction of particulate matter should be added.
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