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Abstract: Gas-permeable membrane technology is a new strategy to minimize ammonia losses from 

manure, reducing pollution and recovering N in the form of an ammonium salt fertilizer. In this 

work, a new operational configuration to recover N using the gas-permeable membrane technology 

from swine manure was tested in a semi-continuous mode. It treated swine manure with a total 

ammonia nitrogen (TAN) concentration of 3451 mg L−1. The system was operated with low aeration 

rate (to raise pH), and with hydraulic retention times (HRT) of seven days (Period I) and five days 

(Period II) that provided total ammonia nitrogen loading rate (ALR) treatments of 491 and 696 mg 

TAN per L of reactor per day, respectively. Results showed a uniform TAN recovery rate of 27 g 

per m2 of membrane surface per day regardless of the ALR applied and the manure TAN 

concentration in the reactor. TAN removal reached 79% for Period I and 56% for Period II, with 90% 

of recovery by the membrane in both periods. Water capture in the acidic solution was also uniform 

during the experimental period. An increase in temperature of 3 °C of the acidic solution relative to 

the wastewater reduced 34% the osmotic distillation and water dilution of the product. These results 

suggested that the gas-permeable membrane technology operating in a semi-continuous mode has 

a great potential for TAN recovery from manure. 
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1. Introduction 

Ammonia (NH3) is a cause of air pollution and can potentially contribute to acidification and 

eutrophication, both of which can damage sensitive vegetation, biodiversity, water quality and 

human health [1–3]. The agricultural sector was the responsible for 93% of NH3 emissions in the 

European Union (EU) in 2013, resulting in 3.6 million tons. NH3 volatilization from livestock wastes 

accounted for almost 64% of the agricultural NH3 emissions [2]. Significant efforts are required to 

abate NH3 emissions from agricultural sources, mainly those coming from livestock wastes [4]. On 

the other hand, current practices used for production of nitrogen (N) fertilizers via the Haber–Bosch 

process are cost and energy intensive and contribute to global warming [5,6]. There is a renewed 

interest in recent years to recover nutrients from waste streams due to a combination of economic, 

environmental, and energy considerations [7,8]. 

Different technologies have been investigated for capture and recovery of NH3 emissions from 

livestock wastes. These technologies include: reverse osmosis using high pressure and hydrophilic 

membranes [9], ammonia stripping using stripping towers and acid absorption [10], zeolite 

adsorption through ion exchange [11], struvite precipitation through co-precipitation with phosphate 

and magnesium [12], and, more recently, gas-permeable membrane technology [13]. Traditional 

processes present some limitations: (1) reverse osmosis requires high pressure; (2) air stripping 
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towers and zeolite adsorption techniques need pre-treatment of manure; and (3) struvite precipitation 

requires the addition of Mg2+and PO43+ to balance the stoichiometry of struvite precipitation [14]. The 

technology based on gas-permeable membranes presents several advantages over traditional 

processes such as (1) low energy consumption (0.18 kWh kg NH3−1), (2) it is carried out at low 

pressure, (3) it does not require pre-treatment of wastewater, and (4) it does not need addition of any 

alkali reagent [15–17].  

The most important phenomenon related to gas-permeable membranes is the mass transfer 

driven by the difference in NH3 gas concentration between both sides of the microporous, 

hydrophobic membrane [14,18]. More specifically, NH3 contained in the livestock wastes passes 

through the membrane, being captured and concentrated in an acidic stripping solution on the other 

side of the membrane. The efficiency of the gas-permeable membrane is directly related to the 

availability of NH3 in the waste, where the total ammonia nitrogen species (TAN) NH3 and NH4+, are 

in equilibrium [19–21]. This equilibrium depends on the pH and temperature of the livestock waste, 

having the pH a greater influence [15,21]. Alkaline pH causes dissociation of NH4+ and forms free 

NH3 that can cross the membrane and be captured by the acidic solution.  

The gas-permeable membrane technology has been successfully applied to recover up to 99% of 

TAN from swine manure and anaerobically digested swine manure [5,14,21–23]. Previous research 

mainly focused on the influence of operational conditions such as animal waste strength and pH on 

TAN recovery using gas-permeable membranes always operated at batch mode. However, there is 

no experience operating this type of system in a semi-continuous mode. Thus, gathering more 

experience and experimental data on the use of gas-permeable membranes with new configurations 

for recovering TAN from livestock wastes is of major importance towards the development and 

demonstration of this technology.  

The objective of this study was to determine TAN recovery from swine manure using a gas-

permeable membrane system operating at semi-continuous mode. The semi-continuous gas-

permeable system was tested with decreasing hydraulic retention times (HRT) from seven to five 

days and increasing total ammonia nitrogen loading rates (ALR) in the range of 38.5 and 54.6 g TAN 

per m2 of membrane surface per day. The system was monitored in terms of removal and recovery 

of TAN as well as in changes of organic matter and solids in the swine manure during operation.  

2. Materials and Methods 

2.1. Origin of Manure 

Swine manure was collected from a farm located in Narros de Cuellar (Segovia, Spain). The 

manure was a centrate collected after on-farm centrifugation. The mean concentrations for 

centrifuged manure were pH of 7.6 ± 0.2, 33.3 ± 3.5 g total solids (TS) L−1, 23.5 ± 3.2 g volatile solids 

(VS) L−1, 67.1 ± 10.1 g total chemical oxygen demand (CODt) L−1, 3451 ± 132 mg TAN L−1, 253 ± 59 mg 

total phosphorous (TP) L−1 and 3119 ± 4 mg potassium L−1. The liquid centrifuged manure was 

collected in plastic containers, transported in coolers to the laboratory and subsequently stored at 4 °C 

for further use. 

2.2. Semi-Continuous Recovery of Ammonia from Manure 

2.2.1. Experimental Set-Up 

The experimental set-up consisted of a reactor with a total working volume of 2 L of fresh 

centrifuged swine manure (30 cm long, 20 cm wide, 4 cm high) (Figure 1). The acid tank used to 

concentrate TAN consisted of a 500 mL Erlenmeyer flask containing an acidic solution (300 mL of 1 

N H2SO4) which was replaced by a bigger flask. This was due to the increase of the volume of the 

acidic solution with time as a consequence of the occurrence of osmotic distillation (OD). This acidic 

solution was continuously recirculated using a peristaltic pump (Pumpdrive 5001, Heidolph, 

Schwabach, Germany) at 11 L d−1 through a tubular gas-permeable membrane submerged in the 

reactor. The tubular membrane was made of expanded polytetrafluoroethylene (e-PTFE) material 
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(Zeus Industrial Products Inc., Orangeburg, SC, USA). Membrane specifications are provided in 

Table 1. The ratio of the e-PTFE membrane length per effective reactor volume was 0.4 m L−1 and the 

ratio of the e-PTFE membrane area per reactor volume was 0.013 m2 L−1. The tubular membrane was 

placed in a bended horizontal configuration and held submerged by plastic connections. Low-rate 

aeration was used to naturally increased manure pH without chemicals according to previous work 

[15]. Air was supplied using an aquarium air pump (Hailea, Aco-2201) from the bottom of the reactor 

through a porous stone. The airflow rate was controlled at 0.24 L-air L manure−1 min−1 using an 

airflow meter (Aalborg, Orangeburg, NY, USA). The lid of the reactors was not sealed, having one 

open port that allowed air to escape. In order to ensure nitrification inhibition, a nitrification inhibitor 

(allythiourea) was added to the manure at a concentration of 10 mg L−1. The manure was continuously 

agitated using magnetic stirrers.  

Table 1. Specifications of the gas-permeable membranes used in experiments described in Section 2.2 

and 2.3. 

Membranes Properties First Experiment (Section 2.2) Second Experiment (Section 2.3) 

Inner diameter (mm) 8.64 4.08 

Wall thickness (mm) 0.76 0.56 

Pore size (µm) 2.5 - 

Bubble point (kPa) 207 - 

Density (g cm3) 0.45 0.95 

Length (m) 0.8 0.61 

Surface area (m2) 0.026 0.091 

 

Figure 1. Process diagram of gas-permeable system operating at semi-continuous mode. 

The volume of the reactor was checked daily and any water lost was replenished. The reactor 

was manually fed in semi-continuous mode five times per week: from Monday to Thursday with a 

load equivalent to one day each day, and Fridays with a load equivalent to three days. Prior to each 

feeding event, a volume equal to the feeding volume was removed from the reactor. The reactor was 

fed at an hydraulic retention time (HRT) of 7 d (total 2.0 L per week) during Period I (1–30 d) and at 

a HRT of 5 d (total 2.8 L per week) during Period II (31–50 d), corresponding to total ammonia 

nitrogen loading rates (ALR) of 491 and 696 mg TAN per L of the reactor per day (i.e., 38.5 and  

54.6 g TAN per m2 of membrane surface per day, respectively). As TAN was depleted from manure 

and transferred to the acid tank, the pH of the acidic solution increased. A protocol was established: 

concentrated H2SO4 (96–98%, Panreac) was added to the acidic solution to an endpoint of pH < 1 

whenever the pH of the acidic solution increased up to 2. The experiment was performed at a 

temperature of 22.0 ± 1.7 °C in duplicate reactors and the results were expressed as means and 

standard deviations.  
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2.2.2. Manure and Acidic Solution Sampling 

Samples of 50 mL were daily taken from the influent and from the effluent of the reactor. pH 

and TAN concentration were determined daily in both the influent and the effluent of the reactor. 

For each experimental day, TAN removal efficiency was calculated using Equation (1):  

TAN removal efficiency (%) = 100 × (TANin − TANeff)/TANeff (1) 

where TANin is influent TAN concentration and TANeff is TAN concentration in the effluent for each 

experimental day.  

Total alkalinity in influent and effluent was also determined twice a week, and analyses of total 

Kjeldahl nitrogen (TKN), TS, VS, and CODt were performed on samples collected once a week. Acidic 

solution samples of 6 mL from the acid tank were also collected daily to monitor pH and TAN. The 

acidic solution was analyzed at the end of the experiment for conductivity, CODt, total volatile fatty 

acids (TVFA), TP, sulfur, potassium, magnesium, calcium, zinc, copper, and iron.  

2.3. Effect of Differential Heating on Osmotic Distillation 

Two assays were performed in order to evaluate the effect of differential heating of the acidic 

solution on osmotic distillation, which is the passage of water vapor through the gas-permeable 

membrane from the wastewater into the acid trap. In the first assay (control assay) the acidic solution 

was not heated. The measured temperature of the acidic solution was 23.2 ± 0.5 °C and that of the 

wastewater in the reactor was 24.3 ± 0.8 °C. In the second assay, the temperature of the acidic solution 

(30.0 ± 0.8 °C) was kept at 3 °C above the temperature of the reactor (26.9 ± 0.8 °C) using a heated 

water bath.  

For these assays, the experimental set-up consisted of a reactor with a total working volume of 

0.7 L (diameter 20 cm, height 3 cm). In this case, a synthetic solution having a balanced TAN to 

alkalinity ratio > 4.1 [24] was used to simulate swine manure, consisting of NH4Cl at a concentration 

of 3.47 ± 0.07 g TAN L−1 and NaHCO3 at a concentration of 15.6 ± 0.2 g CaCO3 L−1. In order to ensure 

nitrification inhibition, a nitrification inhibitor (allythiourea) was added at a concentration of  

10 mg L−1. Average pH of this synthetic solution was 8.3 ± 0.3. The tank used to concentrate TAN in 

each reactor consisted of a 500 mL Erlenmeyer flask initially containing 90 mL of 1 N H2SO4. This 

stripping solution was continuously recirculated using a peristaltic pump (Pumpdrive 5001, 

Heidolph, Schwabach, Germany) through a tubular gas-permeable membrane submerged in the 

reactors at a flow rate of 12 L d−1. The tubular membrane was made of e-PTFE material (Zeus 

Industrial Products Inc., Orangeburg, SC, USA) and their characteristics are provided in Table 1. The 

ratio of the tubular membrane length per synthetic wastewater volume was 0.8 m L−1 and the ratio of 

the membrane area per volume of synthetic wastewater was 0.013 m2 L−1. Reactors were fed at a HRT 

of 7 d during a period of 7 d each assay. The evaluation of the performance of the system and the 

sampling method was identical to those described in Section 2.2.1 and 2.2.2, respectively. Each assay 

was conducted in duplicate.  

2.4. Analytical Methods and Statistical Analysis 

Total alkalinity and pH were monitored using a pH meter Crison Basic 20 (Crison Instruments 

S.A., Barcelona, Spain). Total alkalinity was determined by measuring the amount of standard 

sulfuric acid needed to bring the sample to pH of 4.5. Analyses of TS, VS, CODt, TAN, and TP were 

performed in accordance with Standard Methods [25], according to methods 2540 B for VS, 5220-D 

for CODt, 4500-NH3 E for TAN and 4500-P C for TP.  

Conductivity was measured using a conductimeter Crison 524 (Crison Instruments S.A., 

Barcelona, Spain). Magnesium, calcium, zinc, copper, and iron were analyzed using an atomic 

absorption spectrometer (AA 240 FS, Varian). Potassium was analyzed using an atomic emission 

spectrometer (AA 240 FS, Varian). These compounds were analysed following the methods described 

by USEPA [26]: for magnesium EPA method 215.1, for calcium EPA method 242.1; for zinc EPA 

method 289.1, for iron EPA method 236.1 and for potassium EPA 258.1. Sulfur was measured by 
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combustion and infrared detection (LECO CNS 2000). The concentration of TVFA (i.e., sum of acetic, 

propionic, butyric, iso-butyric, valeric, iso-valeric, hexanoic and heptanoic acids) was determined 

using a gas chromatograph (Agilent 7890A) equipped with a Teknokroma TRB-FFAP column of 30 m 

length and 0.25 mm i.d. followed by a flame ionization detector (FID). The carrier gas was helium (1 

mL min−1). The temperature of the detector and the injector was 280 °C. The temperature of the oven 

was set at 100 °C for 4 min, then increased to 150 °C for 2 min and thereafter increased to 210 °C. 

Free ammonia (FA) was quantified according to Hansen et al. [27] (Equation (2)):  

[NH3]/[TAN] = (1 + (10−pH/10−(0.09018 + 2729.92/T)))−1 (2) 

where NH3 was the FA content, T was the manure reactor temperature, and pH was measured in the 

effluent.  

The mass transfer coefficient (Km; m d−1) has been calculated using Equation (3) [18]: 

J= Km (C1−C2) (3) 

where J is the TAN mass flux per area (g m−2 d−1), and C1 and C2 are the concentrations of free 

ammonia. The Km coefficient depends on several factors, including the flow rate of the acidic solution 

and membrane characteristics such as porosity or thickness [18].  

Results obtained were analysed using one-way analysis of variance (ANOVA) with significance 

at p < 0.05. 

3. Results and Discussion 

3.1. TAN Removal and Recovery by the Gas-Permeable System in Semi-Continuous Mode: Effect of Total 

Ammonia Nitrogen Loading Rate 

In this study, the TAN removal from centrifuged swine manure was evaluated using a gas-

permeable membrane with low-rate aeration at semi-continuous mode. The semi-continuous system 

was evaluated with two different ALRs: 491 mg TAN L−1 d−1 for Period I (1–30 d) and 696 mg TAN 

L−1 d−1 for Period II (31–50 d). Corresponding HRTs were 7 d during Period I and 5 d during Period 

II. As shown in Figure 2, TAN concentration in the manure effluent decreased steadily from 3646 mg 

L−1 to 611 mg L−1 in the first 16 days. After this day, TAN concentration remained approximately 

constant (average value of 690 ± 139 mg L−1). When ALR was increased in Period II, TAN 

concentration in the effluent significantly (p < 0.05) increased up to a constant concentration of about 

1500 mg L−1. Free ammonia concentration during the process inside the reactor (calculated according 

to Equation (2)) also varied between periods with average values of 195 ± 61 mg L−1 for Period I and 

328 ± 56 mg L−1 for Period II. As an average, TAN removal was 79 ± 5% for Period I (days 10–30) and 

56 ± 7% for Period II (days 35–50). However, the rate of TAN mass removal (mg TAN per day) from 

manure was the same during the whole experimentation time regardless of the ALR applied, as it 

can be seen from the uniform linear trend (R2 = 0.9962) of the mass TAN removal vs. time data 

presented in Figure 3 that fits well both periods. No significant differences (p = 0.41) were found 

among TAN removal rates of the two periods. The slope present in Figure 3 leads to a TAN removal 

rate of 387 mg L−1 d−1.  

The results displayed the same trend for TAN recovery in the acidic solution (Figure 3). A linear 

(R2 = 0.9976) TAN recovery rate by the gas-permeable membrane with a mass recovery rate of 347 mg 

L−1 d−1 (27.1 g m−2 d−1), and an average TAN recovery efficiency of 90%, were evidenced during the 

whole experimentation time regardless of ALR and TAN content in reactor (Figure 3). No significant 

differences (p = 0.71) in TAN recovery rates was observed between both periods. The mass transfer 

coefficient (km) was calculated according to Equation (3), resulting in an average value of 1.5 × 10−6 m 

s−1. This value was in the range of that reported by Samani-Majd et al. [18] for an e-PTFE membrane 

system operating at different pH values. The loss of TAN by the system (mass difference between 

TAN removal and TAN recovery) was 10% of TAN removal and could be due to volatilized N loss 

as the system was not closed. A nitrogen mass balance was carried out and no organic nitrogen 
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degradation was evidenced (Table 2), thus an increase of initial TAN concentration did not occur due 

to biological activity.  

 

Figure 2. TAN concentration in the influent swine manure ( ) and in effluent of the gas-permeable 

membrane system ( ). The error bars represent the standard deviation of duplicate experiments. 

 

Figure 3. Mass of TAN removed from swine manure ( ) and recovered in the acid tank ( ). Linear 

equations and R2 are represented. The error bars represent the standard deviation of duplicate 

experiments. 

Table 2. Nitrogen mass balance for the system for Period I and Period II. 

Period TKNin (mg L−1) TANin (mg L−1) N orgin (mg L−1) TKNeff (mg L−1) TANeff (mg L−1) N orgeff (mg L−1) 

I 4481 ± 182 3425 ± 122 1029 1830 ± 381 748 ± 153 1082 

II 4685 ± 222 3486 ± 134 1199 2745 ± 345 1525 ± 83 1220 

TKNin is influent TKN concentration; Norgin is the influent organic N concentration; TKNeff is the TKN 

concentration in the effluent; Norgeff is the organic N concentration in the effluent. 
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Although the TAN concentration in the reactors varied significantly between periods, the TAN 

mass recovery rate was constant. This is surprising because previous research in batch systems 

indicated a marked effect of TAN concentration on the mass N recovery rate by the gas-permeable 

membrane system [14]. Table 3 shows a comparison of recovery efficiencies obtained by other authors 

operating gas-permeable membranes systems in batch mode and the results of this study operating 

in semi-continuous mode. Operating at batch mode, Vanotti et al. [28] treated anaerobically digested 

swine wastewater containing 2350 mg TAN L−1 using submerged membranes plus low-rate aeration 

to recover NH3. TAN reduction obtained at five to six days was higher than 93%. Dube et al. [5] 

studied the effect of aeration on pH increased when treating digested effluents from covered 

anaerobic swine lagoons with different TAN concentrations. The pH of digested effluents with 

aeration increased to 9.2, achieving TAN recovery efficiencies of 96–98% in five days of batch 

operation. In that study, the recovery of TAN was five times faster with aeration compared with 

treatment without aeration. García-González et al. [15] also tested in batch mode operation the 

application of low-rate aeration as an alternative to the use of alkali to recover NH3 from raw swine 

manure with 2390 mg TAN L−1. Under these conditions, the manure pH increased above 8.5 with 99% 

TAN recovery efficiency. Table 3 shows the comparison between these studies and the present study 

all based on the average TAN recovery rate per membrane area (in g of TAN m−2 membrane d−1). The 

average TAN recovery in the semi-continuous system accounted for 27.1 g m−2 d−1 that was in the 

range (22.7–30.7 g m−2 d−1) of recoveries obtained in batch studies with similar treatment time (Table 

3). This good performance in semi-continuous mode was obtained with a process pH of 8.46 that was 

about one unit lower than the pH obtained with aeration using batch mode (up to 9.5) (Table 3). pH 

was the most critical variable determining the amount of free NH3 available to pass through the gas-

permeable membrane [14]. In batch mode, ammonia capture efficiency decreased as TAN 

concentration was depleted from the reactors [14]. However, in semi-continuous mode the daily 

supply of TAN maintained a consistently high TAN recovery rate in spite of the lower pH process.  

3.2. Characterization of the Acidic Solution Containing the Concentrated Ammonia Product 

TAN concentration in the acidic solution rapidly increased in the first 16 days to values near 

16,000 mg L−1, increasing much slower after that time and reaching an approximately constant 

concentration from day 21 close to 19,000 mg L−1 (Figure 4). This is attributed to the diffusion of water 

vapor gas through the membrane, averaging 16 g per day and liter of manure in reactor, 

corresponding to 1252 g of water per day and m2 of membrane surface (Figure 4). Similar to TAN 

recovery, water capture in the acidic solution was uniform during the whole experimental period, 

with no significant differences between the two periods (p = 0.53). This led to a continuous dilution 

of the acidic solution and increased its volume. Thus, the weight of the acidic solution was more than 

6-fold higher after 50 days of experimentation compared to the initial weight (Figure 4). Darestani et 

al. [29] pointed out that the transfer of water vapor may occur during the TAN removal process using 

hydrophobic membranes due to differences in vapor pressure between both sides of the membrane 

(i.e., osmotic distillation or OD). This process could have a great impact on the economy of the 

process. Firstly, TAN could not be concentrated in the acidic solution as expected and a further 

process will be required to concentrate ammonium sulfate and to reduce transportation cost to export 

this fertilizer outside the farm. Secondly, OD also affects the design of the acid tank that must foresee 

increasing volume of the acidic solution. A possible strategy to counteract and effectively inhibit 

osmotic distillation could be heating the stripping solution and/or cooling the feed solution [19,30]. 

Therefore, this strategy was evaluated with a new assay shown in Table 4. A temperature increment 

of the acidic solution of only 3 °C caused a decrease of approximately 34% of the OD as represented 

by the reduced water recovery in the acidic solution, with no significant differences in ammonia 

recovery (Table 3). Thus, heating of the acidic tank by a few °C offers a good and cheap alternative 

for reducing OD during recovery of ammonia using gas-permeable membranes. 
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Table 3. Comparison of results from this study operating in semi-continuous mode with previous studies also recovering TAN using gas-permeable membranes from 

livestock wastewaters applying low-rate aeration but operating in batch mode. 

Type of 

Wastewater 

Operation 

Mode a 

Treatment 

Time (d) 

Ratio Membrane 

Surface/Manure 

Volume (m2 L−1) 

Aeration Rate  

(Lair Lwaste−1 min−1) 

Initial TAN 

Concentration (mg L−1) 

TAN 

Removal (%) 

TAN 

Recovery over 

Removed (%) 

Average TAN 

Recovery  

(g m−2 d−1) b 

Initial 

pH 

Final 

pH  
Reference 

Digested swine 

effluent 
Batch  6 0.013 0.12 2350 97 93 c 25.1 c 8.36 9.47 [28] 

Anaerobically 

digested swine 

manure 

Batch 5 0.013 0.12 2097 97 98 30.7 8.71 9.26 [5] 

Anaerobically 

digested swine 

manure 

Batch 5 0.013 0.12 1465 99 96 22.7 8.47 9.17 [5] 

Raw swine 

manure 
Batch 18 0.013 0.24 2390 99 99 9.5 7.50 9.20 [15] 

Raw swine 

manure centrate 

Semi-

continuous 
7 0.013 0.24 3451 79 90 27.1 7.60 8.46 

Present 

study 

(period I) 

a Operational temperatures were laboratory room temperatures between 22–25 °C in all studies. b TAN recovery efficiency was equal to TAN recovered in the acidic solution 

divided by TAN removed from manure multiplied by 100. c 7.8% TAN was recovered in phosphorous precipitate.
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Figure 4. TAN concentration in the acid tank ( ) and weight of the acidic solution ( ) during the 

experimental time. The error bars represent the standard deviation of duplicate experiments. 

Table 4. Effect of heating the acidic solution (3 °C warmer than wastewater in the reactor) on the 

recovery of both water and ammonia. Data are means of duplicate experiments ± standard deviations. 

 No heating Heating 

Water recovery (g m−2 d−1) 921 ± 185 612 ± 22 

Ammonia recovery (g m−2 d−1) 49.5 ± 0.3 51.8 ± 2.6 

The acidic solution contained about 24% (dry weight) of sulfur, which is also a valuable nutrient 

for fertilization. Regarding the presence of other inorganic compounds, among potassium, 

magnesium, calcium, zinc, copper, and iron, only K+ was detected in average value of 28 mg L−1. The 

high salt concentrations lead to a conductivity of the acidic solution of 90 mS cm−1.  

After some days of testing, the acidic solution changed from transparent to brownish. The same 

visual observation was made by Zarebska et al. [31]. The quantification of COD concentration of this 

solution indicated a low level (139 ± 12 mg L−1). Such a result is consistent with the analysis of total 

VFA by gas chromatography, in which only acetic acid was detected among seven VFA 

determinations, at a concentration of 60 ± 25 mg acetic acid L−1 equivalent to 64 mg COD L−1 (using a 

conversion factor of 1.07 [32]). Xie et al. [8] indicated that volatile organic compounds, such as VFA 

that exert partial vapor pressures comparable to or higher than water, are transported across 

hydrophobic membranes with the water vapor.  

3.3. Practical Considerations and Further Research 

Different ALRs (i.e., HRTs) could be applied to the gas-permeable system operated at semi-

continuous mode depending on the TAN concentration required in the effluent. From an agronomic 

point of view, the three main nutrients (N, P, and K) presented in swine manure in Spanish farms are 

not balanced in relation to crop needs, occasionally containing an excess of N [33]. In those cases, 

nitrogen capture through the implementation of gas-permeable membrane technologies could 

balance swine manure nutrients, enhancing the fertilizing properties of the by-product. Moreover, 

gas-permeable membranes for capturing N from swine manure can also be combined with other 

treatment technologies to improve their performance, such as anaerobic digestion process [15,34] or 

phosphorous recovery [24,28]. In the first case, the use of gas-permeable membrane technology for 

treating swine manure or other wastes with high ammonia concentration could diminish the 
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ammonia toxicity in anaerobic digestion [35]. With regard to P recovery, the increase in pH together 

with the reduction of TAN concentration and alkalinity after the recovery of N using gas-permeable 

membranes could promote P recovery using precipitation processes [28]. More specifically, manure 

aeration without nitrification causes a pH increase due to OH- release after bicarbonate destruction. 

This rise in the pH increases the formation of NH3 [5]. As shown in Figure 5, alkalinity was consumed 

due to the TAN removal by the process. In Period I, alkalinity consumption was higher than in Period 

II. This can be attributed to the higher percentage of TAN removed in Period I, thus consuming higher 

alkalinity. In this way, the combination of both the increasing of pH and reduction of ammonia and 

alkalinity using gas-permeable membranes encourage P recovery from swine manure and municipal 

wastewaters using Ca or Mg compounds [24].  

  

Figure 5. Alkalinity ( ) and pH ( ) of manure in reactor during the experiment. The error bars 

represent the standard deviation of duplicate experiments. 

Although the main objective of the semi-continuous gas-permeable system was to remove 

nitrogen from manure, the treatment also reduced organic matter and solid content (Table 5). During 

Period I, CODt, TS, and VS removals were 37 ± 12%, 15 ± 7%, and 17 ± 8%, respectively (average 

values from 10 to 30 d). During Period II, corresponding removal efficiencies were slightly lower: 27 

± 3%, 6 ± 4% and 7 ± 5%, respectively (average values from 35–50 d). Only a very low (<0.1%) amount 

of the organic matter (CODt) lost from manure was recovered in the acidic solution. Thus, the 

removal of organic and VS compounds could be attributed to biological degradation processes that 

take place at room temperature. This organic degradation has been reported in previous assays 

working with gas-permeable membranes. Dube et al. [5] obtained CODt from negligible to 24% for 

anaerobically digested effluents after treatment with gas-permeable membranes and low-rate 

aeration. García-González et al. [15] found consistent CODt removals (60–65%) when recovering 

ammonia from fresh swine manure using in a gas-permeable membrane system with or without 

aeration. Differences among studies could be attributed to the different biodegradability of the 

livestock wastes used (digested vs. fresh manure). COD removal could have consequences from a 

practical point of view. For instance, the reduction of organic content in treated manure will reduce 

methane production in a further anaerobic process.  

  



Environments 2019, 6, 32 11 of 13 

 

Table 5. Average COD, TS, and VS removal efficiencies (± standard deviations) during Period I and II. 

 Period I  Period II 

COD removal (%) 36.6 ± 11.6 26.5 ± 3.2 

TS removal (%) 15.4 ± 7.1 6.2 ± 3.7 

VS removal (%) 17. 1 ± 7.5 6.6 ± 5.3 

Membrane fouling is an important consideration that determines useful life of the gas-permeable 

membranes and affects its economic viability [31]. In the present work, the surface of the membrane 

on the manure side changed color from white to brownish during the 50 days of semi-continuous 

operation using manure. However, reduction of the rate of TAN recovery over time was not detected. 

This observation suggests that the membrane soiling did not block membrane pores and did not 

impact TAN recovery.  

The results obtained in the present study are very promising, being the first study (to the best of 

our knowledge) evaluating gas-membrane technology to recover nitrogen from manure in semi-

continuous mode. Nevertheless, further research is needed in order to optimize the process before 

scaling up this technology. Particularly, in view of the obtained results, the effect of different aeration 

rates over the pH increase for enhancing N recovery should be evaluated.  

5. Conclusions 

TAN was successfully removed and recovered from swine manure using gas-permeable 

membrane system operated at semi-continuous mode. A uniform TAN recovery rate of 27 g m−2 d−1 

was obtained, regardless of the TAN loading rate applied and the manure TAN concentration in 

reactor. TAN removal reached 79% for Period I (HRT = 7 d) and 56% for Period II (HRT = 5 d), with 

90% of recovery by the semi-continuous membrane system in both periods. Simultaneously, 

ammonia was converted to ammonium sulfate, obtaining a solution of up to 1.9% of N. Osmotic 

distillation during the recovery process led to the dilution of this acidic solution, reducing the N 

concentration of the fertilizer product. However, an increase in temperature of 3 °C of the acidic 

solution relative to the wastewater reduced 34% the osmotic distillation and water dilution of the 

product. 
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