
environments 

Article

Analysis and Modelling of Taste and Odour Events in
a Shallow Subtropical Reservoir

Edoardo Bertone 1,* and Kelvin O’Halloran 2

1 Griffith School of Engineering, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia
2 Scientific Services and Data Systems, Seqwater, 117 Brisbane St., Ipswich, Queensland 4305, Australia;

Kelvin.O’Halloran@seqwater.com.au
* Correspondence: edoardo.bertone@griffithuni.edu.au; Tel.: +61-7-5552-9044

Academic Editors: Luigi Berardi and Daniele Laucelli
Received: 10 June 2016; Accepted: 15 August 2016; Published: 19 August 2016

Abstract: Understanding and predicting Taste and Odour events is as difficult as critical for drinking
water treatment plants. Following a number of events in recent years, a comprehensive statistical
analysis of data from Lake Tingalpa (Queensland, Australia) was conducted. Historical manual
sampling data, as well as data remotely collected by a vertical profiler, were collected; regression
analysis and self-organising maps were the used to determine correlations between Taste and Odour
compounds and potential input variables. Results showed that the predominant Taste and Odour
compound was geosmin. Although one of the main predictors was the occurrence of cyanobacteria
blooms, it was noticed that the cyanobacteria species was also critical. Additionally, water temperature,
reservoir volume and oxidised nitrogen availability, were key inputs determining the occurrence and
magnitude of the geosmin peak events. Based on the results of the statistical analysis, a predictive
regression model was developed to provide indications on the potential occurrence, and magnitude,
of peaks in geosmin concentration. Additionally, it was found that the blue green algae probe of the
lake’s vertical profiler has the potential to be used as one of the inputs for an automated geosmin
early warning system.
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1. Introduction

The detection of Taste and Odour (T&O) compounds, such as geosmin or 2-methylisoborneol
(MIB), can compromise the organoleptic quality of the water and divert consumers from its use
despite not presenting any health-related risk. Although the human detection threshold can largely
change from one individual to another [1], geosmin concentrations as low as 5 ng/L are detectable [2].
Understanding and modelling T&O compounds is a priority for water utilities, in order to produce
treated water with high organoleptic quality and thus enhance the confidence and reliance of the
consumers towards the drinking water supply system. As a result great economic and social benefits
could be achieved if a model was developed that can predict in advance T&O events.

Modelling geosmin and other T&O compounds is extremely challenging, as the reasons for the
appearance of these compounds are still largely unknown [3–5]. Variables and factors affecting T&O
compound presence can be several; typically are different from location to location [1,6] and over
time [1]. However, a number of models have been developed which, for a specific lake, can predict
geosmin concentrations with acceptable accuracy based on water quality (e.g., [1,7–10]).

Although it has been pointed out (e.g., [11]) that there can be several possible sources of
geosmin and MIB in a reservoir (e.g., vegetation and standing timber, actinomycetes), a typical
event that can cause T&O complications is an algal bloom. During their growth and subsequent
decay, algae, and specifically cyanobacteria [7], can produce metabolites including biotoxins and T&O
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compounds [2,12]. However, the production of metabolites is related to the species and strain of the
cyanobacteria blooming [13], and there is still large uncertainty related to which species can produce
these compounds, since newer studies often prove older studies wrong (as explained in [14]). During a
bloom, different species and strains are in competition and interacting with each other, through a
number of nonlinear behaviours determined by factors, such as nutrient availability, presence of
grazing zooplankton, or physical factors [5]. For example, in Hinze dam (South-East Queensland,
Australia), Uwins et al. [11] reported steadily increasing geosmin concentration following an early
spring bloom in Anabaena sp. Following the bloom, and decay of precipitating cells, geosmin was
released. Actinobacteria on the other hand, despite potential for contributing to T&O compounds
release, were inhibited in this production by high water temperature, high dissolved oxygen and low
phosphorus levels. As a result of this complexity and high uncertainty, certain variables which are
surrogate estimators of algal counts, such as chlorophyll-a, have been correlated with geosmin both
positively, i.e., high chlr-a levels linking to high geosmin concentrations (e.g., [15] although based on
only few data points; [4,16]), and negatively, with higher geosmin levels measured where lower chlr-a
was detected (e.g., [1]).

In general, the presence of geosmin and MIB, which in many cases is linked to algal blooms,
has been correlated to a large number of possible predictors. Aside the already mentioned chlr-a,
also the sum of green algae [4], regardless of the species, sometimes proved to be a good
predictor. In that particular study however, single species and strains were not measured, thus
it is unknown if geosmin was caused by the same specific type of algae, or if different ones result
in similar geosmin concentrations. Other possible predictors include nutrients such as nitrogen
and phosphorus [4,10,17–19], as well as metallic micronutrients, such as copper or manganese [4,17].
Other critical factors proved to be water temperature [17,19,20], light intensity [17,21], turbidity and
water clarity [9,10], dissolved oxygen [7], rainfall [11] and oxidation-reduction potential [4].

The importance of light availability is related to the energy that light provides to enable
photosynthetic fixation of dissolved inorganic carbon, which can be subsequently routed into the
cellular synthesis of geosmin [1]. Additionally, although algal blooms, and thus T&O events, typically
occurred in warm stratified seasons, some studies [22] also proved how high geosmin levels can be
detected during lake circulation periods; interestingly, other studies [23] also found how low, instead of
high, temperatures can stimulate the production of geosmin and their accumulation in cells due to
lower chlr-a demand, although high temperature or optimum light intensity would be necessary for
more intracellular geosmin release.

This study aims to exploit historical sets of relevant data, and use cutting-edge data analytics
to better understand, and model, the occurrence of T&O events in a relatively shallow, subtropical
reservoir in Australia. As already mentioned, there is large uncertainty around T&O events, with
the understanding and prediction of such events being site and season specific. Therefore, a full
statistical analysis of the available historical data was performed to gain a specific understanding
of the behaviour of the reservoir of interest. Given the relatively large amount of data, and recent
advancements in the hydroinformatics field, it was possible to identify potential predictor variables of
T&O events.

Based on the correlations found, a simple statistical model was also developed which enables a
prediction of the magnitude of possible future high geosmin concentrations. Despite limited by the
number of historical events available for analysis and the complexity of the system, the model can
assist water treatment operators for an improved understanding and preparedness towards geosmin
peak events; the results of this analysis also provide an example of potential geosmin production
behaviour in similar reservoirs.
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2. Materials and Methods

2.1. Study Location

Lake Tingalpa (Figure 1), bounded by Leslie Harrison dam, is located about 20 km south-east
of Brisbane, in Queensland (Australia). The main purpose of the reservoir is to supply water to
the Redland City, which has around 150,000 inhabitants. On average, it supplies 20% of the water
demand in this area. The main inflow to the reservoir is Tingalpa Creek. The 535-m-long dam wall
was completed in 1984, and the reservoir could supply 24,868 ML at full capacity; however, its capacity
decreased to 13,206 ML on Friday, 1 August 2014, due to safety concerns with the integrity of the wall.
The catchment area covers 87 km2. An intake tower allows the withdrawal of raw water, which is
redirected to the Capalaba water treatment plant (WTP).
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Figure 1. Lake Tingalpa location. 

2.2. Data Collection 

Through an effective collaboration with Seqwater, the main bulk water supplier in South-East 
Queensland, and custodian of the Capalaba WTP and Lake Tingalpa, historical data necessary for 
this research study was made available. Among a wide range of parameters, the most relevant ones 
for this study were essentially raw water values for algae biovolumes, metals (iron, aluminium and 
manganese, both soluble and total), nutrients, organics, physical properties (e.g., pH, alkalinity, 
water temperature, turbidity, true colour) and obviously T&O compounds (specifically geosmin and 
MIB). These data have a fortnightly frequency and cover the period from 2011 to 2016. Additionally, 
daily reservoir volume data were made available for the same period. 

With regards to lake data, data collected from a Vertical Profiling System (VPS) located near the 
dam wall was also available. A VPS consists of a system of probes, connected to a floating buoy, 
which are winched up and down the reservoir and can collect information for the full water column, 
every hour with a 1-m vertical resolution, for a number of parameters, such as water temperature, 
pH, dissolved oxygen (DO), conductivity, but also, importantly for this study, chlr-a and blue-green 
algae (BGA) counts. 

2.3. Data Analysis 

Firstly, data were analysed with a number of statistical techniques. Software such as Microsoft 
Excel (Microsoft Corporation, Redmond, WA, USA) and Matlab 2015a (Mathworks, Natick, MA, 
USA) were used. The first step involved time series data analysis to identify critical historical T&O 
events; once these were identified, a number of potential input factors were also selected based on 
the literature. These included: total cyanophytes biovolume; Microcystis, Merismopedia and 
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2.2. Data Collection

Through an effective collaboration with Seqwater, the main bulk water supplier in South-East
Queensland, and custodian of the Capalaba WTP and Lake Tingalpa, historical data necessary for
this research study was made available. Among a wide range of parameters, the most relevant ones
for this study were essentially raw water values for algae biovolumes, metals (iron, aluminium and
manganese, both soluble and total), nutrients, organics, physical properties (e.g., pH, alkalinity, water
temperature, turbidity, true colour) and obviously T&O compounds (specifically geosmin and MIB).
These data have a fortnightly frequency and cover the period from 2011 to 2016. Additionally, daily
reservoir volume data were made available for the same period.

With regards to lake data, data collected from a Vertical Profiling System (VPS) located near the
dam wall was also available. A VPS consists of a system of probes, connected to a floating buoy,
which are winched up and down the reservoir and can collect information for the full water column,
every hour with a 1-m vertical resolution, for a number of parameters, such as water temperature, pH,
dissolved oxygen (DO), conductivity, but also, importantly for this study, chlr-a and blue-green algae
(BGA) counts.

2.3. Data Analysis

Firstly, data were analysed with a number of statistical techniques. Software such as Microsoft
Excel (Microsoft Corporation, Redmond, WA, USA) and Matlab 2015a (Mathworks, Natick, MA, USA)
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were used. The first step involved time series data analysis to identify critical historical T&O
events; once these were identified, a number of potential input factors were also selected based
on the literature. These included: total cyanophytes biovolume; Microcystis, Merismopedia and
Dolichospermum biovolumes; nitrogen and total phosphorus; iron, aluminium and manganese; rainfall;
reservoir volume; turbidity; pH; dissolved oxygen; and water temperature. A smaller dataset,
containing data for T&O compounds and potential inputs around the events periods only, was created.
Secondly, self-organising maps (SOMs) were used to investigate the actual presence of any significant
correlation between those multiple variables. SOMs [24,25] are a type of unsupervised learning
Artificial Neural Network (ANN) that produce topologically ordered maps based on their own
classification of the presented data and the dimensionality reduction of the feature space. These ordered,
colour contour maps enable the researcher to visually identify similar patterns between some of them;
this would mean that similar levels of different variables typically matched over time. That is, the visual
inspection of the component planes of the SOM provides a rapid and intuitive means of examining
the covariance between the selected variables in order to obtain an increased understanding of the
system [26], especially in complex problems with several potential variables involved (e.g., [27]).
Based on the conclusions of these first steps, a more in-depth analysis could be performed, and a
simple prediction model was developed.

3. Results and Discussion

3.1. Time-Series Analysis

Figure 2 illustrates the temporal variation of sampled geosmin and MIB concentrations in the
raw water of Lake Tingalpa since 2011. Figure 2a allows a better analysis of earlier, smaller events
while Figure 2b includes the major, more recent events. Therefore, it can be seen how a number of
geosmin events above the detection threshold (5 to 10 ng/L) were detected over time, however two
extreme events occurred during late spring/summer 2015, leading to concentrations over 150 ng/L,
and resulting in wide spread customer complaints. Table 1 displays how these events increased the
calculated average geosmin concentrations. As a further consideration, MIB concentrations were
consistently much lower than geosmin levels, thus the attention of this research shifted to geosmin
only, after these preliminary outcomes.
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Table 1. Average Geosmin and MIB peak/overall values, including and excluding 2015 extreme
Geosmin events.

Period Average Geosmin Average MIB Average Peak Geosmin Average Peak MIB

July 2011–May 2015 3.9 ng/L 1.6 ng/L 15 ng/L 17 ng/L
July 2011–May 2016 10.4 ng/L 1.5 ng/L 44 ng/L 17 ng/L

As a first step, data were filtered to include only the events periods. Then, based on the literature
and available data, a number of potential predictors were included, such as: total cyanophytes,
as well as particular species of them (such as Microcystis aerug. and spp., Dolichospermum circ.
and Merismopedia spp.), water temperature, reservoir volume, iron, total oxidised nitrogen, turbidity,
and past week change in reservoir volume (proportional to rain and evaporation among others).
Other parameters that were expected to play a role (such as dissolved oxygen and phosphorus) showed
instead only a very weak correlation with geosmin peak events. Additionally, since geosmin was
occasionally already detected the week/fortnight before the peak, the independent variable considered
was the increase rate of geosmin, assumed linear, in ng/L per day, calculated by dividing the overall
weekly/fortnightly variation by the number of days in between the two sampling (i.e., 7/14). This gives
a better representation of the dynamics leading to the peak, and accounts for initial concentrations that
might have been detected.

3.2. Self-Organising Maps

The prepared smaller dataset was used to create self-organising maps (Figure 3). Table 2
also presents the numerical quantification of each of these variables during those critical events,
with conditional formatting helping to visually inspect similar trends. The first thing that can
be noticed from the SOMs, is how the map for geosmin peaks has very similar colour patterns
(highlighted with green connections) to turbidity, total iron, and total oxidised nitrogen (NO3 and NO2),
as well as being inversely proportional to the reservoir volume (highlighted with a red connection).
This means that any time there was a major geosmin peak, usually also those parameters recorded
higher values; similarly, higher geosmin peak values were also recorded in times of low reservoir
volume. From Figure 4, a confirmation can be found and a very clear correlation can be seen between
the substantial volume reduction, which occurred in winter 2014, and the sharp increases in iron,
nitrogen and turbidity, most likely due to less dilution and increased reservoir instability leading
to higher mixing. As a consequence, the geosmin peak events also became much more drastic.
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Increased nutrient availability is a well-documented factor cited in the literature that favours the
production of geosmin. Turbidity was also found to positively correlate with geosmin in a number of
studies [9,10]. Additionally, from the SOMs it can be also noticed how warmer water temperatures
are typically linked to larger geosmin concentrations, as well as higher daily increase rates. This is
again in agreement with the literature [17,19,20], as it implies, for instance, a higher intracellular
geosmin release.
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Table 2. Geosmin peak events and main predictors’ values.
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(B.V.)

Microcystis +
Anabaena (mm3/L)

Geosmin (t−7)
(ng/L)

Daily Geosmin
Increase (ng/L)

10/11/2011 15.4 0.153 0.130 5.6 1.4
29/12/2011 22.2 0.163 0.133 4.5 2.5
16/02/2012 12.5 0.095 0.080 10.8 0.2
3/05/2012 0.0 0.277 0.271 2.9 −0.4

20/11/2012 12.9 0.156 0.156 8.8 0.6
3/09/2013 9.5 0.014 0.0 6.95 0.4

10/06/2014 21.1 0.031 0.0 5.8 2.2
14/10/2014 0.0 0.191 0.0 0.0 0.0
19/11/2015 161 0.183 0.161 35.3 20.6
31/12/2015 195 0.125 0.125 80.5 16.4
28/01/2016 38.7 0.091 0.091 25.4 1.9
1/03/2016 30.7 0.020 0.0 14.9 2.3
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10/11/2011 29.5 2.38 23642 −406.19 0
29/12/2011 25.8 1.67 23199 291.62 0
16/02/2012 26.1 1.4 24414 187.56 49
3/05/2012 22.5 3.24 24537 230.42 44

20/11/2012 25.1 1.94 22415 −204.53 41
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19/11/2015 26.2 2.97 11728 −62.22 200
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28/01/2016 27.4 4.74 10862 −129.6 61
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3.3. Events Analysis

Table 2 allows for a better understanding of the role that cyanophytes blooms play in determining
geosmin increment rates during peak events. The figure reports the biovolumes of total cyanophytes,
as well as the sum of Microcystis species and Dolichospermum circ. (former Anabaena), typically
associated to T&O compounds production [14,28,29]. This table also includes two entries (3 May 2012,
and 14 October 2014) where, despite cyanophytes blooms, there was no detection of geosmin. In this
way it was possible to gain a fuller picture of the relationships between cyanobacteria and geosmin
events. In addition, for event extremely high algal counts, including cyanophytes, were recorded on
9 January 2014. Extremely high iron levels were also recorded. This event is not herein analysed or
reported, since further investigation is required for this particular event, as the levels are incredibly
high and sampling/analysis issues would need to be validated. As a confirmation, the sampling
immediately preceding and following this critical one yielded values for all the parameters within
absolutely normal ranges. Additionally, no geosmin was detected. Thus, given the uncertainty around
it, this particular event was excluded from the next steps of the analysis.

Firstly, attention was focused on the two blooms not leading to geosmin peaks. On the
14 October 2014, a total cyanophytes biovolume of 0.191 mm3/L, the second highest in the dataset, was
recorded. However, no geosmin was detected in the nearest sampling. This can be explained by the fact
that neither Microcystis nor Dolichospermum species were detected; the dominant species leading to that
bloom was Merismopedia spp., which is not known to be able to produce geosmin. This would strongly
suggest that the type of cyanobacteria causing the bloom provides a much more useful prediction
of a potential T&O event than the total aggregate cyanobacteria count. Nevertheless, the second
event not leading to a geosmin peak event occurred on the 3 May 2012 (0.271 mm3/L, the highest
value in the dataset), and in this case it was largely (98%) due to Microcystis and Dolichospermum circ.
What is evident here, besides a high volume, is the low temperature of the raw water (22.5 ◦C).
Although more research is needed, since contrasting outcomes emerged on the role of temperature in
geosmin production, we can assume that below certain temperature thresholds, the production/release
of geosmin by Microcystis species and Dolichospermum circ. is limited or inhibited. This also highlights
how algal (cyanobacterial) blooms, despite often being a critical predictor for geosmin events, are only
one of the factors of a far more complex system, where nutrients, dam level, temperature, and other
parameters also play determinant roles.

3.4. Model Development

Based on the available data, its analysis and on the considerations above, we developed a
conceptual regression tree, illustrated in Figure 5. Since it is based on only few events, currently it
cannot be deemed reliable to correctly estimate the exact amount of future peaks in geosmin.
However, based on the analysis of historical events, it provides a structural hypothesis of
relevant variables and processes, which determined the previous events or unexpected low values.
Often, simpler regression models can outperform more complicated ones [30]. It can be seen how
variables, such as water temperature and total amount of geosmin-producing cyanophytes, do not
directly enter the regression equation (i.e., their value is not directly proportional to the geosmin daily
increase rate), however they are determinant factors in setting up thresholds under/above which
different processes are inhibited or supported. Additionally, certain variables, such as iron, turbidity
and reservoir volume, were not included in the model due to multicollinearity (i.e., they exhibit a
similar behaviour to nitrogen), although they are relevant predictors too.

The first cut is set by water temperature; regardless of other factors, there is no evidence of
geosmin events when the raw water temperature was below 23 ◦C. If the raw water is instead warmer
than 23 ◦C, a number of other options are possible. Under this initial constraint, the presence of
geosmin-producing cyanophytes plays a critical role. If they are not detected, and also nitrogen is
not present, then there would be no increase whatsoever in geosmin concentration. Even if oxidised
nitrogen is detected, geosmin might slightly increase only if it was already present in some noticeable
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(>5 ng/L) amounts in the previous sample. This can be due to the occurrence of a long peak event,
which can persist if enough nutrients are available. If instead the geosmin-producing cyanophytes
are detected, and in large amounts (i.e., >0.1 mm3/L), then the rate of increase will depend on the
available amount of nutrients (represented by oxidised nitrogen); if oxidised nitrogen is also present in
large amounts (i.e., >0.1 mg/L), then the geosmin increase rate will be proportional to it; if instead,
despite a bloom of geosmin-producing algae, there is no large amount of nutrients available, then the
rate of increase would depend on the dam volume variation over the last week. In case of positive
variation, rain and inflow were larger than evaporation and outflow, leading to higher increases in
geosmin, which is in line with outcomes of previous studies [11]. The remaining scenario is given
by medium-size geosmin-producing algal blooms (i.e., between 0.01 and 0.1 mm3/L); in this case,
nitrogen plays again a critical role and its amount is proportional to the increase rate of geosmin.
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Figure 5. Regression analysis tree for estimation of daily rate of increase of geosmin. Variables are:
Gr = daily rate of increase of geosmin (ng/L); Tw = water temperature (◦C); MD = total biovolume
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In order to validate the model, we focused on the two extreme events occurring at the end of 2015.
Figure 6 shows how both geosmin events were preceded by earlier peaks in total cyanophytes.
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Figure 6. Total Cyanophytes biovolume (mm3/L) and total count of geosmin and MIB (ng/L) in the
raw water, Capalaba WTP, 13 October 2015, to 28 January 2016.

In addition, Figure 7 shows the speciation of the cyanophytes. It can be seen how both peaks
were largely caused by species of Microcystis and Dolichospermum, although the two peaks were quite
different to each other. Looking back at Figure 2, it seems that Dolichospermum is responsible for the



Environments 2016, 3, 22 10 of 14

production of some MIB as well. However, as previously mentioned, the dominant compound is
geosmin and this is produced by both Microcystis and Dolichospermum species.
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Figure 7. Dominant classes and species of cyanophytes in the raw water, Capalaba WTP,
13 October 2015 to 28 January 2016.

Looking at the regression analysis tree developed in Figure 5, the temperature detected in the raw
water during that period (which corresponds to late spring and summer months) was consistently
above the threshold of 23 ◦C, thus allowing for geosmin event to occur. Additionally, as it can be
seen from Figure 8, the total biovolume of Microcystis and Dolichospermum is above 0.1 mm3/L,
thus leading towards the far right side of the tree. Finally, it was pointed out (Figure 4c) that the nutrient
availability, in particular oxidised nitrogen, increased remarkably after the decrease in volume, reaching
concentrations higher than 0.1 mg/L in the weeks preceding the geosmin event. Thus, these conditions
led the developed model to predict sharp increases in geosmin levels; which actually occurred.
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Since the peaks in relevant cyanophytes typically occur a couple of weeks before the T&O events,
it is possible to use these data, as well as the other information (water temperature, oxidised nitrogen,
dam volume variation) required by the tree, to estimate the potential for the occurrence of geosmin
peak events, and thus proactively adjust the treatment procedures accordingly.

3.5. VPS Data Analysis and Predictive Potential

The historical data from the Vertical Profiling System (VPS) installed in Lake Tingalpa were
analysed. The VPS was installed in 2013; hence it was possible to use its data for analysis of the more
recent T&O events only. Additionally, during winter 2014, a number of sondes where changed from
the previous YSI 6-Series Sensors to the newer EXO multiparameter water quality sonde product
line, leading to newer units of measure, probe sensitivity to other water parameters and calibration
procedures. Hence, for this study, we will focus on the two large 2015 events only. In particular, the aim
was to analyse the phycocyanin-based blue-green algae (BGA-PC) sensor to see if it can be used to
assist in predicting geosmin peak events.

The sensor measures blue-green algae in real-time through the in vivo fluorometry technique,
which directly detects the fluorescence of a specific pigment in living algal cells and determines relative
algal biomass. However, the sensor can be sensitive to variables such as turbidity, with newer EXO
sondes less sensitive than the previous 6-series [31]. In Figure 8, the BGA readings (at depth = 1 m)
adjusted for turbidity based on YSI indications [31] are reported. A proper calibration should be
performed for this specific location, which evaluate the effect of not only turbidity, but also of other
variables; however this was out of the scope of this work. Although hourly data was provided, the
chart shows 24-h moving averages. Between 16 November 2015, and 2 December 2015, the VPS
was not operational and therefore data is missing for those two weeks. It can be noticed how,
before 16 November 2015, the average turbidity was slightly higher (around 30 NTU) than in the
following months (around 20 NTU), thus, by adjusting the readings, the difference in the BGA peak
values in November and in December is relatively smaller than initially measured. Nevertheless the
difference is minimal, and such adjustment would be crucial only in case of extreme turbidity events.

Figure 9 illustrates the BGA values at 1, 5 and 9 m depths of Lake Tingalpa, as well as the
geosmin values in the raw water redirected to the Capalaba WTP. Typically, the values closer to the
surface are higher than at the bottom, consistent with the literature findings (e.g., more light, higher
temperatures, etc.). Although not extremely clear, a pattern can be noticed, with BGA peaks often
anticipating geosmin high values. For instance, peak A in BGA occurred 12 days before the peak 1 in
geosmin. Peak 2 occurred 23 days after a very high peak (B) in BGA; despite the longer lag, a smaller
peak in geosmin was already detected 7 days later. Peak C also occurred 5 days before peak 3, as well
as peak D with peak 4. Peak 5, interestingly, did not yield any sharp, lagged geosmin peak, although
there was a slow, constant increase after that. Finally, peak F anticipated peak 5 by 8 days.

It is clear from the previous paragraphs how there is high complexity and uncertainty involved in
these T&O events, and other parameters (e.g., water temperature, nitrogen, dam level) are as important
as cyanobacteria. Nevertheless, given the large amount of VPS data which are collected remotely
(i.e., no need for samplers), and in real-time, collected in the reservoir, future work (e.g., accurate
calibration with manual sampling data; analysis of new events) could focus on better exploring the
potential of the VPS BGA probe to be used as an input for a prediction model which could provide
early warnings of T&O events. Although it was evident that also the strain of cyanophytes is a
critical predictor, more work is needed to understand if the fluorescence approach of the BGA probe
allows for all the strains to be detected, or not. The correlations found between its readings and
T&O events are interesting as they may imply that the BGA probe can mainly detect T&O-causing
strains. Additionally, similar VPS-based models were already developed by the authors [30] for other
parameters, leading to monetary and operational benefits for the water utility.
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Figure 9. VPS BGA adjusted readings (RFU) at 1, 5 and 9 m depths in Lake Tingalpa, and geosmin
levels (ng/L) in the raw water at the Capalaba WTP, October 2015–March 2016.

4. Conclusions

A comprehensive analysis of data related to a number of T&O events was performed for Lake
Tingalpa and the Capalaba WTP. Geosmin was found to be the dominant compound, and two extremely
high peaks occurred in November/December 2015. One of the key-factors triggering geosmin events
was the occurrence of cyanobacteria blooms; however, the species of cyanobacteria was also a critical
factor, since some of them (e.g., Merismopedia spp.) did not produce geosmin. Importantly, blooms
alone cannot fully explain the occurrence and magnitude of geosmin events; other factors such as
water temperature, nitrogen and reservoir volume variations were found to be determinant input
factors. In particular, it was noticed how higher geosmin peaks have been recorded since the reservoir
volume was lowered in 2014, and in turn turbidity and nutrients increased. As a result, a simple
regression analysis tree was developed and validated to provide predictive capabilities and better
understanding of geosmin peak events. Although such model can be already used, with caution, by
the plant operators for early prediction of T&O events, this requires manual data input based on the
results of the latest lake sampling; nevertheless, analysis of VPS BGA probe data, in conjunction with
other VPS data (e.g., water temperature, turbidity), showed potential to use only remotely collected
data to provide early warnings for T&O events. The development of such tool will be the focus of
future research.
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