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Abstract: Tungsten is an essential element for many cutting-edge industries. Its use is increasing,
so much that it has become a “critical element”. With the increase in the use of tungsten, a possible
increase in its presence in environmental matrices including soil is expected. In this research, we
assessed the environmental availability and bioaccessibility of W in relation to soil properties. Four
representative Mediterranean soils, collected in Italy, were spiked with tungsten and incubated for
12 months. In the spiked soils, the environmental availability of the element was determined by the
Wenzel sequential extractions. The bioaccessibility was determined by the UBM (BARGE) method
in both the gastric and intestinal phases. The findings indicated that the environmental availability
is largely influenced by soil properties such as pH and organic matter, while a lower influence was
discovered for bioaccessibility, particularly for the gastric phase. These differences could be ascribed
to the characteristics of the extractants utilized in the various tests, in particular the pH values. These
results could be a valuable reference to integrate with studies on really and not spiked contaminated
soils, for the improvement of risk assessments and the development of strategies for remediating
soils polluted with tungsten.

Keywords: environmental availability; bioaccessibility; Wenzel extraction; UBM (BARGE) method;
soil properties; spiked soils

1. Introduction

Tungsten (W) plays a vital role in various emerging key technologies, including
renewable energy, energy efficiency, electronics, and various hi-tech industries [1]. Its
unique properties make it indispensable for the development and optimization of various
cutting-edge technologies. Rapid advances in technology have led to a growing demand
for tungsten; however, its extensive use can lead to an undesirable increase in its release
into the environment [2,3].

The goal of achieving the ambitious target of a CO2-neutral society [4] will increase the
pressure on the tungsten mining sector in the next years. However, as mining progresses,
environmental impacts such as soil pollution can also increase. Soil contamination can
occur at any stage of the life cycle of W compounds: mineral processing, production,
distribution, and final disposal [2]. Therefore, W is considered as one of the emerging
environmental contaminants [5].

In general, exposure to tungsten is considered very low, and to date, there are neither
consistent European Union regulatory values for W in soil, nor specific reference levels in
food and drinking water. Occupational exposure at higher-than-normal levels is considered
only for people involved in the extraction and processing of tungsten with inhalation and
dermal contact as the main exposure routes [6].

Concern regarding the health effects of tungsten first started in the USA at sites
where W was suspected of being the potential cause of childhood leukemia clusters [7–10]
due to the substitution of W instead of Pb in ammunition. Research on W toxicity and
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environmental hazards thus increased after the classification of tungsten as an emerging
contaminant by the US Environmental Protection Agency in 2008 [11], with the awareness
that the increasing use of W in many materials would lead to higher diffusion of tungsten
in the environment, including soil. Moreover, the International Agency for Research on
Cancer [12] has classified tungsten carbide, a compound used in industrial applications, as
“possibly carcinogenic to humans” (Group 2B). Evidence supporting this classification is
mainly based on animal studies, and the relevance to human health is not entirely clear.

In soils, tungsten occurs naturally with concentrations ranging from 0.1 to
5 mg kg−1 [13]; however, in certain areas, such as those adjacent to mining sites, con-
centrations above 1000 mg kg−1 have been found. In these soils, tungsten can be taken up
by plants with a negative impact on the food chain [14]. Even higher concentrations of up
to about 3000 mg kg−1 have been found in conflict zones and military firing ranges [15–17].

Only recently has there been significant interest in the behavior of tungsten in the soil,
as previously it was believed to be substantially inert [15]. However, under uncertain pH
conditions, soluble tungsten compounds can form in the soil [18,19]. It is thus of primary
importance to establish any health risk pathways derived from its presence in the soil. Its
exposure route can be indirect, from the soil to the plant and therefore to the food chain, and
also direct, by ingestion of the soil. It is thus essential to consider both the environmental
availability, which simulates the potential bioavailability (BAV), and the bioaccessibility
(BAC) of W in soil.

Environmental availability describes the concentration of a metal in the liquid phase
of the soil, and it is essential to identify the transfer of the metal from soil to plant, and thus
the human exposure derived from food [20].

Bioaccessibility describes the fraction of a contaminant that is soluble in the gastroin-
testinal tract and which becomes available for absorption into the body [21]. Bioaccessibility
needs to be considered in order to evaluate the exposure from soil ingestion which is partic-
ularly important in children deriving from the hand-to-mouth process [21].

The environmental availability of a metallic element in the soil can be determined
by chemical extractions which identify the soluble or solubilizable portion [21], while
bioaccessibility can be determined by in vitro tests which have replaced in vivo tests [22].
In vitro tests are based on extractions from the soil with solutions that simulate what
happens in the human gastrointestinal tract. The aim is to identify how much contaminant
is potentially releasable from the soil once ingested [23].

The main objective of this study was to investigate the relations between W environ-
mental availability, bioaccessibility, and soil characteristics. The findings could provide
useful preliminary information, even if there is no in vivo validation for this element for
health risk assessments in W-contaminated soils in light of its increasing use in daily
life. Tungsten pollution is often considered in sites with very high concentrations such as
mining sites [24]. However, its increasing use in many products for daily use means that
the possible environmental effects of much lower concentrations than those found in the
vicinity of mining sites need to be assessed, particularly as the levels are much higher than
the current background values of non-contaminated soils.

For this purpose, following an approach frequently tested with other metallic elements,
such as Hg [25], Mo [26], Cd, and As [27,28], soils of different origins were spiked to
simulate a high soil concentration of 50 mg kg−1. This value is very high for natural soils,
but much lower than concentrations found in, or nearby, mines [14,29,30].

2. Materials and Methods
2.1. Soil Characterization and Spiking

We collected four surface soils in Italy which are characteristic of the Mediterranean
area. According to the FAO classification, the soils were defined as Entisol, Cambisol,
Vertisol, and Histosol, respectively. Soils were air-dried, sieved to 2 mm, and spiked
with tungstate (sodium tungstate, Sigma-Aldrich, St. Louis, Mo, USA) which is the main
chemical form in the soil under oxidizing conditions. The spiked soils were maintained at
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70% water holding capacity and incubated for 12 months at 25 ◦C. The soils were mixed
by hand and, if necessary, the moisture content was adjusted every month during the
incubation period [31]. The experiments were carried out in triplicate.

The soils were spiked to obtain a final concentration of 50 mg kg−1 of tungsten in
each of the soil samples. This concentration, which is very high for unpolluted soils, was
selected on the basis of the Igeo index [32–34].

Igeo = Log2

(
Cm

1.5 × Rm

)
, (1)

where Cm represents the concentration of W in spiked soil and Rm is the original value in
soils which is considered the reference value for tungsten, and the constant 1.5 is applied to
eliminate lithological fluctuations [35].

Considering the original W concentration in the soils (about 0.30 mg kg−1) as the
background value, we selected a final concentration of tungsten that would lead to an Igeo
value of around 7, which is characteristic of highly contaminated soils [36].

2.2. Tungsten Environmental Availability and Bioaccessibility Evaluation

Analyses of soil properties (pH, organic matter, cation exchange capacity, clay, silt,
and sand) and W environmental availability were performed on the 2 mm air-dried soil
fraction by standard methods [37]. To evaluate W environmental availability (BAV) the
Wenzel sequential extraction procedure (SEP) [38] was used as it is considered the most
appropriate for tungsten speciation [39].

The five fractions of the Wenzel SEP were determined using the following extractions:
F1: 0.05 M (NH4)2SO4, 4 h, 25 ◦C ratio soil/extractant 1:25; F2: 0.05 M NH4H2PO4, 16 h,
25 ◦C ratio soil/extractant 1:25; F3: 0.2 M NH4-oxalate buffer in the dark (pH = 3.25), 4 h,
25 ◦C ratio soil/extractant 1:25; F4: 0.2 M NH4-oxalate buffer + 0.1 M ascorbic (pH = 3.25),
0.5 h, 96 ◦C ratio soil/extractant 1:25; and F5: HNO3–HClO4, 180 ◦C ratio soil/extractant
1:50 [39]. Tungsten recovery by this method ranged from 98.8% to 101%.

W bioaccessibility was determined in the soil fraction <250 nm particle size according
to the unified BARGE method (UBM) prepared and validated by the Bio Accessibility
Research Group of Europe (BARGE) [40]. Bioaccessibility is evaluated in the soil fraction
of <250 mm, since this is the one that tends to adhere to children’s hands and can be
ingested through the subsequent passage from the hands to the mouth [27,41–43]. The
UBM method, which is also the basis of the ISO 17924:2018 method [44] to test soil quality,
has been validated in vivo for the bioaccessibility of arsenic, cadmium, and lead in soils [45].
In vitro testing avoids using animal experiments, is rapid, and has a low cost. The UBM
method differentiates between a gastric phase (GP) and a gastrointestinal phase (IP). In
the GP, the sample is exposed to a simulated gastric fluid that mimics the acidic and
enzyme-rich environment of the stomach at a pH of the solution adjusted to 1.2 ± 0.05.
This stage identifies the gastric bioaccessibility (BACg). In the IP, the sample is exposed
to a simulated intestinal fluid that replicates the alkaline and enzyme-rich environment
of the small intestine at a pH ranging from 5.8 to 6.8. This stage identifies the intestinal
bioaccessibility (BACi).

The quantitative health risk assessment of exposure to W In soils due to oral ingestion
for adults and children was evaluated by the USEPA procedure [46,47]. The daily intake
(CDI, mg kg−1 day−1) of W through incidental ingestion of soil was calculated using the
following Formula (2):

CDI =
C × IR × EF × ED × 10−6

BW × AT
(2)

where C is the W total concentration in soil (mg kg−1), IR is the soil ingestion (mg day−1, 100 for
adult and 200 for children), EF is the exposure frequency (day year−1, 250), ED is the exposure
duration (25 years for adults and 6 years for children), BW is the body weight (80 kg for adults
and 15 kg for children), and AT is the average time of exposure (AT = ED × 365 days) [46].
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The non-cancer risks can be derived by the hazard quotients (HQ) defined by the
equation [47]:

HQ =
CDI
RfD

× BAC (3)

where RfD is the oral reference dose corresponding to W and is 0.0008 mg kg−1 day−1 [24],
and BAC is the bioaccessibility expressed as a percentage of the total concentration [48]. It
must be underlined that the Equation (3) should be considered approximate. The true equa-
tion should take into account the relative bioavailability instead of absolute bioaccessibility.

2.3. Tungsten Analysis

Tungsten concentrations in the supernatants of the sequential extraction (SEP), BACg,
and BACi phases were measured by inductively coupled plasma optical emission spec-
troscopy (ICPOES Varian AX Liberty Varian, Milan, Italy). Operating parameters: wave-
length 239.709 nm, plasma flow = 16.5 L·min−1, auxiliary flow = 2.25 L·min−1. The original
W concentration in the soils was determined including the standard enrichment procedure
by the USEPA method 3050B using the specific digestion procedure with the addition of
phosphoric acid to nitric acid established by Dermatas et al. [49] and reported by Bednar
et al. [50]. All chemicals used were of reagent grade.

2.4. Quality Assurance and Quality Control

Quality assurance and quality control were performed using a certified reference soil
material (NIST SRM 2710), testing a standard solution every 10 samples as well as at the
end of the analytical sequences. The W limit of quantification (LOQ) was 0.05 mg·L−1. The
recovery of spiked samples ranged from 95% to 102%, with an RSD of 1.86 of the mean. All
experiments were performed in triplicate.

2.5. Statistical Analysis

Data are reported as the mean of three replicates ± standard deviation (±SD). Statisti-
cal analysis was executed by STATISTICA v. 6.0 (Statsoft, Inc., Tulsa, OK, USA).

3. Results and Discussion

The characteristics of the four soils are reported in Table 1. Soil pH ranged from acid (4.7)
to strong alkaline (8.1). Soil textures varied from loamy to sandy loam and organic matter
ranged from 1.08 to 5.32%. The characteristics of the soils remained unchanged after spiking.

Table 1. Selected properties, means (n = 3), and standard deviations (SD, in brackets) of the soils used.

Soil Classification Entisol Cambisol Vertisol Histosol

Textural class Sandy loam Loamy Loamy Sandy loam
pH 6.2 (0.02) 7.3 (0.04) 8.1 (0.03) 4.7 (0.03)

Organic matter% 3.1 (0.33) 1.08 (0.22) 1.1 (0.27) 5.32 (0.48)
C.E.C (cmol (+) kg−1) 21.4 (1.4) 10,6 (0.7) 16.2 (0.8) 25.6 (1.1)

Clay% 15.6 (0.4) 13.3 (0.7) 23 (1.1) 10.4 (1.0)
Silt% 26.6 (0.5) 46.4 (0.9) 42 (0.7) 23.6 (0.9)

Sand% 57.8 (0.5) 40.3 (1.2) 35 (1.0) 66.0 (1.4)
Total W mg kg−1 0.25 (0.4) 0.36 (0.4) 0.29 (0.4) 0.32 (0.4)

Fe% 2.8 (0.17) 3.1 (0.11) 2.4 (0.16) 4.2 (0.15)

3.1. Environmental Availability

Wenzel sequential extraction is a widely used procedure for determining the distribu-
tion of anions such as arsenate in various environmental samples [38], and it has also been
recommended for tungstate in soils [39]. The selective chemical extractions that mimic
different environmental conditions operationally separate specific forms of tungsten. The
purpose of this SEP was to assess the potential mobility and environmental availability of
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W in the soil environment. The extractability of W assessed by the Wenzel SEP is reported
in Table 2.

Table 2. W concentrations in the fractions of Wenzel SEP in the four soils investigated. The data
means (n = 3) and standard deviations (SD, in brackets) are expressed as mg kg−1 on a dry weight
basis for each fraction.

Fractions Entisol Cambisol Vertisol Histosol

F1 0.25 (0.05) 0.55 (0.04) 0.75 (0.05) 0.15 (0.04)
F2 1.60 (0.4) 2.42 (0.6) 2.53 (0.5) 1.05 (0.1)
F3 7.51 (0.5) 6.53 (0.3) 5.52 (0.3) 4.51 (0.2)
F4 16.0 (1.2) 14.0 (1.1) 11.5 (1.2) 8.50 (1.0)
F5 24.6 (1.8) 26.5 (1.7) 29.7 (1.8) 35.9 (1.9)

According to the Wenzel scheme, the following fractions were operationally defined
as follows:

F1, non-specifically sorbed (easily mobilizable, outer-sphere complexes); F2, specifically-
sorbed (readily mobilizable, inner-sphere complexes); F3, bound to amorphous and poorly-
crystalline oxides; F4, bound to well-crystallized hydrous oxides; and F5, residual. The first
step (F1) involved the extraction of tungsten that was loosely bound to the sample’s surface
through ion exchange or non-specific adsorption processes, since a weak electrolyte, such
as ammonium sulfate, was used. Tungsten in this fraction was considered relatively mobile
and in bioavailable chemical forms, which can be easily released into the environment. This
fraction is thus very important in determining environmental risks. In this specific case, in the
four soils examined, the fraction F1 ranged from 0.3 (Histosol) to 1.5% (Vertisol).

As regards fraction F2, the extraction was performed using phosphate ion. The
exchange between phosphate and tungstate thus suggests that tungstate can form inner-
sphere complexes with inorganic soil colloids [51]. The percentage obtained varied from
2.1% (Histosol) to 5.0% (Vertisol).

Fraction F3 contained tungsten linked mainly with iron oxides/hydroxides. This frac-
tion was extracted using ammonium oxalate buffer, which is a stronger reagent extracting
the metal associated with amorphous oxides. Tungsten associated with oxides is considered
to have low mobility under most environmental conditions. The percentages of tungsten
in this fraction were significant and higher than the sum of F1 and F2, ranging from 9%
(Histosol) to 15% (Entisol).

The tungsten determined in fraction F4 was linked to the crystalline oxides/hydroxides
of iron. The addition of ascorbic acid in the buffer solution increased the reductive potential
of the extractant to efficiently target the crystalline oxides. The percentages of tungsten in
this fraction ranged from 17% (Histosol) to 32% (Entisol) of the total content in the soil.

Fraction F5, in which W was in residual tightly bound forms, reached quite high
percentages from approximately 50% to 70%. The residual fraction F5 was generally the
highest in aged W-contaminated soils [39], and also in the case of W-spiked soils [31]. In
the latter case, and also in our experiments, the high W concentrations in this fraction can
be ascribed to the strong linkage of W with soil solid phases, notwithstanding the lack of
immobilization in soils during aging [31].

The distribution of tungsten in the soil was in the following order: residue (F5) > crys-
talline iron and aluminum oxides/hydroxides (F4) > iron and aluminum oxides/hydroxides
(F3) > specifically adsorbed tungsten (F2) > exchangeable chemical forms (F1). These results,
which can be ascribed to the affinity of W for more stable soil phases, are similar to those
found for other oxyanions such as arsenic [39].

The Wenzel SEP can be used to evaluate the risk linked with soil contamination.
Anions, such as arsenic, have been defined by the so-called mobility factor (MF%) which
takes into account only the concentration of an element in the F1 fraction with respect to
the total concentration in soil [52–54]. However, a better evaluation of the most mobile
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amount of W can be obtained by defining a potential environmental availability (BAVp%)
according to Equation (4).

BAVp% =
F1 + F2

Wtot
× 100 (4)

This parameter (BAVp%) takes into account the fact that the bioavailable amount
of W with respect to the total (Wtot) is not only defined by fraction F1 characterized by
non-specific adsorption, but also by fraction F2 in which NH4H2PO4, an extractant that
solubilizes W forms involved in specific adsorption, is used [55]. Especially in agricultural
soils, where phosphatic fertilizers are very commonly used, the presence of phosphate can
promote the release of W compounds from the solid phase, due to the phosphate–tungstate
exchange competition [56]. Figure 1 compares the index MF% and BAVp%.
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Figure 1. Environmental availability determined by mobility factor (MF%) and potential environ-
mental availability (BAVp%). Values are the means of three replicates and the error bars show the
standard deviations.

The results obtained showed that the mean BAVp% ranged from 2.4% (Histosol) to
6.5% (Vertisol), suggesting the not negligible environmental availability of W in the studied
soils. This is in agreement with the findings of previous works in which a significant
transfer of W from the soil to the plants has been reported [31,57,58]. The use of the BAVp%
can be considered more precautionary than MF% in assessing the risk derived from the
transfer of tungsten from the soil to the plant and therefore to the food chain.

Potential environmental availability is linked to the characteristics of the soils used
and is generally positively correlated with the pH of the soils (R2 = 0.977) and inversely
with the organic matter content (R2 = 0.956). On the other hand, the Fe content seems to
have less influence on this quantity, as can be seen from the correlation (R2 = 0.649). The
correlation with clay is even lower (R2 = 0.553). Data are reported in Table 3.

Table 3. The linear regressions of tungsten potential environmental availability (BAVp) against
soil characteristics.

Soil Properties Equation R2

pH BAVp = 1.441 pH + 3.26 0.977
OM BAVp = −1.950 OM + 7.13 0.955
Clay BAVp = 3.962 Clay + 6.46 0.552

Fe BAVp = −0.615 Fe + 4.53 0.649



Environments 2024, 11, 26 7 of 14

3.2. Bioaccessibility

Considering the quantity of a metallic contaminant as totally bioaccessible is too
conservative and can lead to the incorrect assessment of the risk derived from the ingestion
of soil [59]. The UBM method mimics the release of W from soil subsequently to the
passage through the mouth, stomach, and small intestine [44,45,60–62]. The method has
also been successfully used for different metals and also to investigate the bioaccessibility of
molybdenum, the companion element of tungsten [26]. Table 4 reports the concentrations
of bioaccessible W in simulated gastric (BACg) and intestinal (BACi) phases for all the
soils investigated in the present study. The values obtained are very high probably due to
spiking of soils.

Table 4. Tungsten concentrations in BACg and BACi in the four investigated soils. Data (mg kg−1)
are reported as means (n = 3) and standard deviations (SD, in brackets).

Soil BACg BACi

Entisol 19.1 (0.21) 20.1 (0.51)
Cambisol 15.6 (0.11) 19.3 (0.32)
Vertisol 14.8 (0.09) 20.8 (0.50)
Histosol 13.2 (0.09) 14.0 (0.10)

Bioaccessibility is commonly expressed as a percentage, considering the ratio be-
tween the bioaccessible concentration of the contaminant BACg or BACi and the total W
concentration in the soil sample.

Bioaccessibility expressed as a percentage is reported in Figure 2. BACg% was higher
in Entisol with a percentage value of 38.1%. The lowest value was found in Histosol with
an extractability percentage of 26.4%. The BACi% was still the lowest in the case of Histosol
(28.1%), but the highest for Vertisol, reaching 41.6%. However, this value is very similar to
the percentage in Entisol (40.2%) and Cambisol (38.6%). A significant amount of the total W
content was not available for absorption in the gastrointestinal tract following soil ingestion.
This is in agreement with results on tungsten in ore-processing residue (TOPR) [63] and for
other anions such as Mo and As, in different soils [26,64].
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The figure shows that there are no large differences between the two fractions BACg
and BACi, although the BACg fraction is slightly higher than the BACi. The results of
the soils investigated in this study are in agreement with findings in a recent article on
the bioaccessibility of W, determined on TOPR, a very different environmental matrix
from soil [63]. However, the data do not reflect the findings obtained regarding the
bioaccessibility of molybdenum in other soils of a different nature [26].

We observed different correlations between W bioaccessibility and soil properties such
as pH, clay content, OM, and Fe content in soils. Considering these soil characteristics,
BACg was not found to be correlated with soil properties such as pH (R2 = 0.034), OM
(R2 = 0.061), and clay (R2 = 0.026), and also the correlation with Fe content (R2 = 0.298)
was very low. The very acidic value of the extractant used in the UBM method for the
gastric phase probably drastically lowered the effects derived from the characteristics of
the four different soils because it solubilizes a considerable quantity of W. In addition, the
W adsorbed on the iron oxides is released because the oxides are solubilized at acidic pH.

In contrast, BACi appeared to be related to the soil characteristics: pH (R2 = 0.764),
OM (R2 = 0.742), clay (R2 = 0.603), and Fe (R2 = 0.969). Data are reported in Table 5.

Table 5. The linear regressions of tungsten bioaccessibility (BACg and BACi) against soil characteristics.

Soil Properties Equation R2

pH BACg = 0.311 pH + 13.63 0.0344
BACi = 1.830 pH + 6.54 0.7644

OM
BACg = −0.303 OM + 16.48 0.0612
BACi = −1.317 OM + 22.06 0.742

Clay BACg = 0.0741 Clay + 14.52 0.0261
BACi = 0.444 Clay + 11.65 0.603

Fe
BACg = −1.747 Fe + 21.13 0.298
BACi = −3.931 Fe + 30.86 0.969

In the test to assess the gastro-intestinal phase, the increase in pH from very acidic
values to those characteristics of the soil environment (pH about 6.0) caused the amount
of W extracted to be related to the soil properties. Similar results were obtained for other
oxyanions, such as arsenate [65] and molybdate [26]. The key role of soil pH in metal
bioaccessibility found in our study is in agreement with results obtained with different soils
and different metals [34,36], also due to its influence on the surface charge Fe oxides [66].

Soil organic matter has been reported to influence the bioaccessibility of anions by
complex and simultaneous reactions involved in the adsorption processes [23,26]. Organic
matter is considered one of the most important factors also in W adsorption in soil as it
reduces the amount of the metal in the soil solution [2,67,68]. In fact, our data confirm
that the Histosol characterized by the highest OM content showed the lowest BACi, in
accordance with results obtained for other oxyanions [27,28,69].

Clay showed the lowest influence on bioaccessibility, in line with data reported on
arsenate [27,70,71], and probably due to the relatively lower influence of clay on the W
adsorption capacity of soils [2,67].

The high correlation between BACi and Fe content in soils could be due to the ad-
sorption processes of W on Fe oxides/hydroxides. Fe oxides/hydroxides, which are
characterized by a high specific surface area and high porosity, may retain W in the in-
ternal pore network, thus reducing W solubility. Histosol, with the highest Fe content,
thus showed the lowest bioaccessibility. Similar results have been reported for arsenate
bioaccessibility [72].

Recent studies on the assessment of human health risks due to soil metal pollution have
begun to develop models incorporating bioaccessibility [48,73–76]. It has been recognized
that total content-based assessment leads to an inaccurate identification and overestimation
of the health risk [74].



Environments 2024, 11, 26 9 of 14

The health risk assessment of the four tungsten-spiked soils was performed according
to the US EPA method [47] regarding contaminated sites. The quantitative risk assessment
from oral ingestion was determined by calculating hazard quotients (HQ) considering
50 mg kg−1 soil as the exposure concentration. Taking into consideration that the soil
ingestion pathway is particularly important for children, the HQ was calculated both for
adults and children. The data are reported in Figure 3.
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Figure 3. Hazard quotient (HQ) for adults and children based on total W content (TOT) or considering
W bioaccessibility (BAC) of investigated soils. Values are the means of three replicates and the error
bars show the standard deviations. Comparison of HQ is among bars with the same colours. Values
with different letters are significantly different at the 5% probability level (Tukey’s test).

The results showed that the bioaccessibility was not very different between the four
soils investigated. All the soils were below the acceptable risk level (HQ < 1); thus, the level
of concentration used can be considered as safe. In addition, if we consider the bioaccessible
W instead of the total, the HQ value decreases further. However, these data should not lead
to underestimating the possible dangers derived from high concentrations of tungsten in the
soil. In fact, the toxicity of some compounds of W is being investigated by the International
Agency for Research on Cancer [12]. Several studies have also shown the link between
W and some human diseases and a potential association with leukemia [19]. Figure 3
also shows that the value of HQ is much higher considering children. This highlights the
importance of the intended use of the soil, because, in the case of public parks, children are
the most exposed category. Note that in this study, the focus was exclusively on tungsten;
however, tungsten can often amplify the effects of other co-exposures, which could cause
greater toxicity or more severe disease [77].

Food ingestion also influences W bioaccessibility, due to the presence of compounds
such as proteins and low-molecular-weight organic acids, which can increase or decrease
the solubility of the element in the gastrointestinal phases [63,78,79].

3.3. Environmental Availability and Bioaccessibility

Environmental availability and bioaccessibility which identify two different risk path-
ways provide important information for evaluating the potential transfer of W from soil to
humans. The results obtained show that these two parameters may be to a greater or lesser
extent influenced by soil characteristics.

Considering the environmental availability of tungsten expressed by the tungsten
potential environmental availability BAVp% and the bioaccessibility defined by BACg%
and BACi%, a notable difference can be seen between the three quantities (Figure 4).
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Figure 4. Environmental availability and bioaccessibility, expressed as percentages (BAVp%, BACg%,
and BACi%) of the total W concentration in the investigated soils. Values are the means of three repli-
cates and the error bars show the standard deviations. Values with different letters are significantly
different at the 5% probability level (Tukey’s test).

Figure 4 highlights how the quantity of environmentally available tungsten is much
lower than that of bioaccessible tungsten. Furthermore, no correlation was detected be-
tween the concentration of available W determined by the Wenzel extraction and the
bioaccessible W in the gastric phase (BACg). A similar lack of correlation was also reported
by Luo et al. [73]. However, considering the intestinal phase, BACi appears to be linked
to the properties of the soil, which also determine the environmental availability of the
tungsten. The different trends in environmental availability and bioaccessibility in the soils
could be explained by the different chemical compositions and thus be due to the different
actions of the extractants used to determine BAVp, BACg, and BACi. A comprehensive
human health risk assessment is therefore necessary, combining bioaccessibility and envi-
ronmental availability, with careful attention paid both to the kind of extractant solutions
and the characteristics of the compounds investigated.

The association between environmental availability and bioaccessibility in a moni-
toring strategy should include the aspect of time, and further work is needed to provide
estimates of both the immediate and potentially available or accessible fractions. Both
the environmental availability and bioaccessibility of tungsten can change over time due
to modifications in soil parameters such as pH, organic matter content, and changes in
land use. In fact, soil spiked experiments have some limitations due to the lack of aging
processes, which also influence the chemical form of the contaminants [80,81].

4. Conclusions

There is a growing concern regarding the possible adverse effects on human health
caused by increasing levels of tungsten in the environment. An assessment of the en-
vironmental availability and bioaccessibility is thus essential to determine whether the
W concentration that is present in the soil could have negative effects on humans and
the environment.

Although our study on four soils cannot be generalized to all soils, the results highlight
that soil characteristics are critical in determining the environmental availability of tungsten,
while bioaccessibility is less influenced by the soil properties as shown by the BACg values.
The fact that bioaccessibility does not strictly depend on the characteristics of the soils
studied suggests that increasing the concentration in the soil could correspond to an
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increase in the bioaccessible fraction, as some soil characteristics seem unable to effectively
retain the metal in the solid phase. This is particularly significant for the assessment of
risks to the health of children because of the hand-to-mouth pathway. The combination of
environmentally available fractions of soil, which influence the transfer of the metal to the
food chain, and bioaccessible fractions involved in the oral ingestion pathway could also
be used to define the limits to tungsten in regulations concerning soil, which currently do
not account for tungsten.
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