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Abstract: Sewage sludge in natura is rich in nutrients, water, and organic matter and is essential for
plant development. However, sewage sludge is diluted with water when composted, which could
hamper plant growth. Therefore, supplementation with chemical fertilization may be necessary. This
study evaluated the performance of composted sewage sludge (CSS) in producing Peltophorum dubium
(Spreng.) Taub. seedlings with and without chemical fertilization via fertigation. The experiment
was completely randomized in a 3 × 4 factorial scheme, with four fertigation (Ca(NO3)2(H2O)x:
0.87; (NH4)(H2PO4): 0.21; KCl: 0.47; (NH4)2SO4: 0.11; CH4N2O: 0.54; MgSO4: 0.52; Fe (13%): 0.03;
B(OH)3: 6.00; CuSO4: 0.60; ZnSO4: 1.40; MnSO4: 6.00; Na2MoO4: 0.16 g L−1) doses: zero, standard,
duplicate, and quadruplicate. In addition, three substrates were used: commercial substrate as the
control, sewage sludge composted with sugarcane bagasse (LBC), and sewage sludge composted
with Eucalyptus bark (LCE). The development of the seedlings was measured through the following
variables: height, stem diameter, shoot/root ratio, leaf dry mass, root dry mass, total dry mass,
green color index, the Dickson Quality Index, and the accumulation of nutrients in plant tissue. The
seedlings produced with LCE that were subjected to the standard dose (1×) and the quadruplicate
dose (4×) had the statistically highest mean values for most variables. Nevertheless, supplementation
with chemical fertilization was necessary. Composted sewage sludge with eucalyptus bark, at the
standard dosage, can be used for the commercial production of P. dubium seedlings, thus preventing
the dangerous disposal of waste and strongly decreasing associated environmental hazards.

Keywords: biosolids; waste recycling; circular economy; forest ecosystems

1. Introduction

Sewage sludge represents the final residue in treating anthropogenic waste, which has
no economic value in standard waste stations in some countries. Hence, sewage sludge
waste requires a proper discard system to prevent environmental damage. However, the
complexity and the high costs of processing sewage sludge have caused anthropogenic
waste to be discarded in local landfills [1], causing significant environmental damage due
to pathogens and high rates of heavy metals in the sewage sludge [2].

The production quantity of sewage sludge is proportional to population develop-
ment, raising the environmental impact concern. However, these impacts encourage the
prospection of sustainable actions to reuse the organic residue [3].

The high concentrations of nutrients, water, and organic matter in sewage sludge are
desirable for producing substrate and fertilizers. Indeed, sewage sludge residue is mainly
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applied as organic fertilizer and/or substrate for seedlings in forestry and agricultural
areas [4].

The CONAMA(Conselho Nacional do Meio Ambiente, National Environmental Coun-
cil) Resolution N◦ 498/2020 [5] regulates the usage of sewage sludge in nature in Brazil
due to its high concentration of heavy metals and pathogens [6,7]. For this reason, the
residue must be processed at high temperatures and compounded with other structuring
materials for use in agricultural and forestry areas [8]. Indeed, composting SS significantly
decreases the pathogenic load, and the organic matter content is stabilized, thus reducing
heavy metal availability for plants and the entire food chain.

Unfortunately, the nutrient content of sewage sludge is decreased during process-
ing [9], and it needs to be supplemented with chemical fertilizers. The fertigation method
consists of the application of a fertilizer via water irrigation [10], which is widely used in
the agricultural and forestry sectors to complement the chemical fertilizers in the substrates,
which results in the rapid absorption of fertilizers by the roots [11].

However, the development and nutritional requirements of the seedlings of native
species via fertigation demand a broad study effort [12]. In addition, the growing concern of
native deforestation requires a program of native forestry restoration and the remedying of
degraded areas [13]. Culturing forestry species with sewage sludge results in an adequate
growth performance of the seedlings since the compound has a high organic matter content,
similar to that in forest soils that undergo litter decomposition [14].

Peltophorum dubium (Spreng.) Taub. (P. dubium hereafter) has economic and commercial
value [15] and is employed in forest restoration programs due to its rapid growth and
robustness [16]. In addition, this species develops in various substrate types. However, the
root and aerial growth of P. dubium is higher when produced with a substrate that contains
organic matter [17]. Additionally, its growth at the seedling stage using composted sewage
sludge compounded with other organic materials as commercial substrate has never been
studied, presenting a total novelty.

The objectives of the present work were to (i) evaluate the production of P. dubium
seedlings with sewage sludge substrate compounded with sugarcane bagasse and eucalyp-
tus bark with different fertilizer levels and (ii) compare these seedlings with those produced
with a peat-based commercial substrate, carbonized rice bark, and vermiculite, which are
widely used in forestry nurseries. We hypothesize that the use of composted sewage sludge
as a commercial substrate improves and enhances the production of P. dubium seedlings.

2. Materials and Methods

The experiment was conducted in the “Pesquisa em Produção de Mudas Florestais”
nursery of the Ciência Florestal Department of the Ciências Agronômicas Faculty, São
Paulo State University (Lat. −22.855, Long −48.433), Botucatu municipality (Brazil). The
experiment lasted nine months. According to the international classification method of
Koppen, the region’s climate is temperate and warm [18,19]. The Sanitation Company of
the State of São Paulo (Sabesp) provided the sewage sludge in natura.

The compost types were sewage sludge with sugarcane bagasse (SSB) and sewage
sludge with eucalyptus bark (SEB), both in a 1:1 proportion (v:v). The composting lasted
45 days, and the compost was later transferred to the forest nursery. Commercial substrate
(CS), which comprised peat (Sphagnum sp.), vermiculite, and carbonized rice bark, was
used as the control.

The substrates were physically and chemically characterized (Table 1) to determine
the total porosity, macro- and microporosity, water retention, pH, and electric conductivity
(EC) [20,21]. The chemical analysis of the substrate followed the “analytical protocol in the
chemical characterization of plant substrates” [20].
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Table 1. Substrate physical–chemical analysis before the experiment started. Physical analysis: macro-
(Macro) and microporosity (Micro), total porosity (TP), water retention capacity (WRC), pH, electric
conductivity (EC). Chemical analysis: macro- and micronutrients.

Substrates CS SSB SEB

TP (%) 79.3 79.2 75.9
Macro (%) 36.2 41.5 24.6
Micro (%) 43.1 37.7 51.2
WRC (mL) 22.4 19.6 26.6

pH 6.7 6.4 6.5
EC (mS−1) 0.164 0.147 0.169

N (g kg−1) 9.0 16.0 44.0
P (g kg−1) 1.8 0.5 0.7
K (g kg−1) 13.8 6.7 7.9
Ca (g kg−1) 2.7 8.4 17.8
Mg (g kg−1) 1.5 1.2 1.6
S (g kg−1) 6.5 13.8 29.3

B (mg kg−1) 0.06 0.06 0.08
Cu (mg kg−1) 0.02 0.02 0.01
Fe (mg kg−1) 0.15 0.29 0.94
Mn (mg kg−1) 0.02 0.05 0.10
Zn (mg kg−1) 0.01 0.05 0.07
Na (mg kg−1) 9.24 9.22 10.09

CS: commercial substrate (CS) constituted of peat (sphagnum), vermiculite, and toasted rice bark; SSB: sewage
sludge composted with sugarcane bagasse; SEB: sewage sludge composted with eucalyptus bark.

Each substrate was subjected to four fertigation doses as follows: zero doses (without
fertilization); standard dose (1×), which is mainly used by commercial forest nurseries [22];
duplicated dose (2×), with doubled quantity of the standard dose; and quadruplicated
dose (4×), with quadruple of the standard dose.

The fertigation was manually applied two times per week, between 16 h and 16:30 h,
through the Venturi system, characterized by a closed system and low pressure. The
fertigation formulation (Table 2) was the same used by Brazilian commercial nurseries and,
for this reason, is at this moment named “standard”.

Table 2. Fertilizing composition of the standard formulation used in the fertigation forest nurseries.

Fertilizers Conc. (g L−1)

Calcium nitrate 0.87
MAP (Monoammonium phosphate) 0.21

Potassium chloride 0.47
Ammonia sulfate 0.11

Urea 0.54
Magnesium sulfate 0.52

Iron 13% 0.03
Boric acid 6.00

Cooper sulfate 0.60
Zinc sulfate 1.40

Manganese sulfate 6.00
Sodium molybdate 0.16

pH 6.22
EC (mS−1) 2.0

The Venturi system dilution factor was used to calculate quantities of the utilized fertilizers.

The experiment was conducted by a factorial arrangement 3 × 4 entirely randomized
outline (i.e., three substrate types × four fertigation doses), totaling 12 treatments. Each
treatment had three repetitions with 20 seedlings, counting 60 seedlings per treatment. The
arboreal native species P. dubium was selected for the present study, which has orthodox
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seeds with tegmental dormancy. The seed dormancy was broken through thermal shock
with 92 ◦C hot water, and seeds were later transferred to cold water for 24 h [23,24]. After
this process, the seeds were planted in tubes with the substrate.

The sewage sludge was sieved through 5.5 mm granulometry to remove larger detritus.
Posteriorly, the biosolid was moisturized with water, homogenized through the concrete
mixer, and later used to fill the plastic tubes. Each tube received two seeds of P. dubium,
posteriorly disposed in trays and stored in a bed with 50% shade for germination. The tubes
remained in the bed for approximately 60 days to germinate the seedlings. Posteriorly, the
seedlings were separated into beds with transparent plastic to receive each treatment. The
irrigation consisted of a 12 mm water blade with a twice-daily frequency [25].

The aerial height and the stem diameter were measured monthly with a centimeter-
graded ruler and a digital pachymeter (0.01 mm), respectively. At the end of the experiment,
the seedlings’ aerial part (stalk and leaf) and root were separated from drying in a stove
at 65 ◦C for 72 h to obtain the aerial dry mass (MSA), root dry mass, and total dry mass.
Posteriorly, the dried material was weighed on an analytical scale (0.001 g precision) for
chemical analysis.

Data Analysis

The total dry mass was calculated by adding the aerial dry mass and root dry mass
values. Accumulation of each plant nutrient was acquired from the nutrient values content
and plant biomass. The Dickson Quality Index (DQI) [26] was calculated to evaluate the
seedling quality by the following Equation (1):

DQI =
Total dry mass

Aerial height
Column diameter +

Aerial dry mass
Root dry mass

(1)

The variance analysis (ANOVA) of seedling growth variables was verified using the
homogeneity variables and the Shapiro–Wilk normality test, and later the ANOVA and
the Scott–Knot (p < 0.05) tests. The levels of one factor within the other were calculated
for all variables with interactions between them. The fertigation doses were analyzed by
polynomial regressions (quantitative factor) with the rising of measured variables. The
statistical analysis was performed using Infostat software v. 2020 [27] and R software
2023.06.1 [28,29].

3. Results

The P. dubium seedlings’ height (Figure 1) was significantly (p < 0.05) correlated with
substrate factors and fertigation doses. Thereby, the seedlings’ height growth was higher
with zero fertigation dose and sewage sludge composted with eucalyptus bark (SEB). With
the standard (1×) and quadruplicated (4×) doses produced with commercial substrate
(CS) and SEB, the seedling heights were similar. The growth of seedlings planted with the
SEB and duplicated (2×) dose was notable. Nonetheless, the seedling’s height in all the
substrates was higher with the 4× and 1× treatments, respectively.

The height vs. fertigation dose relationship is better described by a polynomial
regressions function. In particular, the seedling height reached by plants growing on the
SC (Figure 2a) substrate shows an increasing trend with the increase in fertigation doses.
On the SC substrate, the maximum plant height was reached at a 3.3× dose, with seedlings
of 24 cm. For SSB (Figure 2b) the same dose (3.3×) showed the maximum plant height
(20.5 cm). On the SEB substrate (Figure 2c) the maximum height of 23.5 cm was observed
with the 4× dose.
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The variations in the stem diameter variable (Figure 3) were influenced by both the 
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served a statistically significant (p < 0.05) increase passing from 0 to 1, 2, and 4× doses. 
Looking at the observed differences among investigated substrates, at the 0 dose, the SEB 
substrate showed a significantly higher stem diameter, as well as at all the other investi-
gated doses (1, 2, 4×), but was similar to CS at 1 and 4× doses. SSB usually showed the 
worst performances with the relevant exclusion of the 0 dose. 

Figure 1. Interactions of fertigation doses with substrates in P. dubium seedling heights after 150 days
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sewage sludge composted with eucalyptus bark. Zero: no fertigation; 1: standard dose; 2: duplicated
dose; 4: quadruplicated dose.
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Figure 2. Polynomial height regression of the P. dubium seedlings with different doses of fertigation
and produced with the commercial substrate (a) (SC), sewage sludge with sugarcane bagasse (b) (SSB),
and sewage sludge with eucalyptus bark (c) (SEB).

The variations in the stem diameter variable (Figure 3) were influenced by both the
fertigation doses and the used substrate. At increasing fertigation doses, we usually
observed a statistically significant (p < 0.05) increase passing from 0 to 1, 2, and 4× doses.
Looking at the observed differences among investigated substrates, at the 0 dose, the
SEB substrate showed a significantly higher stem diameter, as well as at all the other
investigated doses (1, 2, 4×), but was similar to CS at 1 and 4× doses. SSB usually showed
the worst performances with the relevant exclusion of the 0 dose.

By investigating stem diameter performance (Figure 4a–c) through regression analyses,
we observed its increase with the increasing fertigation doses. In particular, the stem
diameter of the P. dubium seedlings grown in the SC substrate (Figure 4a) reached its
maximum value of 6.12 mm at the 3.1× dose. The same dose was responsible for the
maximum value (6 mm) reached by P. dubium seedlings in the SEB substrate (Figure 4c).
The maximum value (5.2 mm) in the SSB substrate was observed for a dose ranging from 2
to 2.5×.
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Figure 4. Polynomial regressions of the stem diameter of P. dubium seedlings in different fertigation
doses produced with the commercial substrate (SC), sewage sludge with sugarcane bagasse (SSB),
and sewage sludge with eucalyptus bark (SEB).

The height vs. diameter (H/D) ratio varied according to the fertigation doses (Figure 5)
and the used substrate. In all investigated cases, i.e., regardless of the used substrate, we
clearly observed a significant trend (p < 0.05) as reported: 4× > 2× = 1× > 0. Looking
at comparisons among substrates, they usually showed similar performances, with the
relevant exception of (i) SEB at the 0 dose, showing a statistically higher (p < 0.05) H/D
ratio, and (ii) the 1× dose, where SSB showed the worst performances.

The substrates and fertigation dose factors of the aerial dry mass, root dry mass, and
total dry mass variables did not present interactions (Figure 6A,B). However, there was an
isolated factor influence. The biomass of the seedlings produced with the SEB substrate
(Figure 6A) always showed statistically higher values (p < 0.05) compared to CS and SSB.
Both the aerial dry mass (ADM) and total dry mass (TDM) showed the significantly highest
(p < 0.05) mean values when the 4× fertigation dose was applied (Figure 6B). The root dry
mass presented a statistically similar mean value with all fertigation doses except for the
zero dose, showing the lowest mean values.
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bark. Zero: no fertigation; 1: standard dose; 2: duplicated dose; 4: quadruplicated dose.
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Figure 6. Interactions between substrates (A) and fertigation doses (B) and the influence on biomass,
i.e., aerial dry mass (ADM), root dry mass (RDM), and total dry mass (TDM) (g), of the P. dubium
seedlings after 150 days of seeding. Boxplot mean values followed by the same lowercase (fertigation
doses) did not differ according to the Scott–Knott test (p < 0.05). Treatments: CS: commercial sub-
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eucalyptus bark. Zero: no fertigation; 1: standard dose; 2: duplicated dose; 4: quadruplicated dose.

The polynomial regressions showed that the total dry mass of seedlings produced
with SEB and CS increased with the fertigation doses. In particular, at the 3.0× dose,
the maximum values were observed for both substrates, by reaching 6.83 g and 6.6 g,
respectively (Figure 7a–c). The regression of the SEB substrate showed that the standard
(0×) and 4× doses were more favorable in promoting an increase in seedling height,
nearing the maximum point of the regression series.
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Figure 7. Polynomial regressions of the total mass of P. dubium seedlings per substrate, showing
increasing levels of fertigation with the commercial substrate (SC), sewage sludge with sugarcane
bagasse (SSB), and sewage sludge with eucalyptus bark (SEB).

The total dry mass (Table 3) of the seedlings produced in the SEB substrate usually
showed higher Ca and S macronutrient contents; SEB together with CS also featured
significantly (p < 0.05) higher N, P, K, and Mg content when compared to SSB. The 4×
fertigation dose always corresponded with the significantly highest (N, K, and S), or similar
to 2× (P, Ca, and Mg), macronutrient dry mass accumulation. Also, for B, Cu, Mn, and Na,
the SEB substrate showed the highest or comparable (with CS and SSB for Fe, with SSB for
Zn) micronutrient contents. Looking at the fertigation doses, the observed results are quite
dependent on the applied dose. Indeed, the highest dose (4.0×) corresponds to the highest
B values, while the same dose showed comparable Mn and Zn contents to the 1.0, 2.0×,
and 0–2.0× doses, respectively. Copper and Fe reached their highest at the 2.0× applied
doses, while Na did so at the 1.0× dose.

Table 3. Macro- and micronutrient accumulation in total dry mass of the Peltophorum dubium seedlings
150 days after seeding.

Total Dry Mass: Macronutrient Accumulation (g Plant−1)

Substrates N P K Ca Mg S

CS 163.3 a 16.3 a 107.1 a 47.8 b 23.0 a 15.0 b
SSB 123.0 b 11.3 b 78.6 b 41.0 b 14.8 b 16.1 b
SEB 166.4 a 16.5 a 105.1 a 67.3 a 20.0 a 24.1 a

Fertigation Doses N P K Ca Mg S

Zero 34.0 d 4.5 c 32.2 c 28.0 b 6.1 c 5.8 c
1× 151.1 c 15.9 b 105.0 b 60.4 a 21.0 b 20.3 b
2× 175.8 b 18.6 a 112.0 b 57.7 a 24.6 a 21.3 b
4× 242.9 a 19.7 a 138.8 a 62.0 a 24.8 a 26.3 a

CV 11.9% 21.1% 11.0% 17.2% 19.4% 26.3%

Total Dry Mass: Micronutrient Accumulation (mg Plant−1)

Substrates B Cu Fe Mn Zn Na

CS 298.1 b 50.9 b 2100.1 a 492.7 b 232.5 b 2586.8 b
SSB 236.8 c 51.6 b 7678.4 a 422.8 b 597.2 a 3103.8 b
SEB 362.0 a 69.2 a 7261.8 a 672.7 a 606.2 a 5865.3 a

Fertigation Doses B Cu Fe Mn Zn Na

Zero 135.0 c 23.3 c 780.8 b 335.7 b 365.5 a 2612.0 b
1× 340.5 b 65.0 b 5469.3 b 539.8 a 498.3 a 5170.4 a
2× 329.1 b 76.4 a 13380.1 a 661.0 a 586.3 a 3961.0 b
4× 391.1 a 64.2 b 3090.1 b 581.1 a 464.4 a 3664.4 b

CV 12.7% 20.5% 141.5% 31.5% 31.1% 37.9%
Mean values followed by the same lowercase, and line per stem do not differ according to the Scott–Knott test
(p < 0.05). CS: commercial substrate; SSB: sewage sludge composted with sugarcane bagasse; SEB: sewage sludge
composted with eucalyptus bark. Zero: no fertigation; 1×: standard dose; 2×: duplicated dose; 4×: quadruplicated
dose. Coefficient of variation (CV).
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4. Discussion

The substrate’s physical analysis showed that the SEB biosolid presented the highest
microporosity and water retention. The eucalyptus bark, as it fragmented and decomposed
during the composting process, generated fine particles that increased the density of the sub-
strate. This density directly influences water retention, absorption of macronutrients and
micronutrients, available water, electrical conductivity, and important physical–chemical
features, thus influencing the initial seedlings’ growth [30].

Although CSS, the SSB substrate, presented the highest percentage of macroporosity
and the lowest water retention capacity, the low nutritional value and fibers were not
altered during the composting process, resulting in a porous substrate with a low water
retention capacity, unfavorable for producing P. dubium seedlings.

Except for P, K, and Cu, the amounts of nutrients analyzed in the chemical analysis
of the substrates were consistently higher in the SEB substrate. It is expected that sewage-
sludge-based biosolids have high macro- and micronutrient concentrations [31]. In contrast,
commercial substrates (CSs) tend to be inert [25]. The high P and K amounts observed in
CSs are due to the well-known presence of superphosphate added during its development
process, mixed with carbonized rice husks, i.e., a potassium-rich material [32].

The eucalyptus bark shows adequate Ca, K, Mg, Na, Mn, and Fe concentrations. Gener-
ally, Ca is the element with the highest availability (82–95%), followed by Mg and K (i.e.,
Ca > K > N > Mg > P), respectively [33]. The high concentrations of Ca in the eucalyptus
bark are related to its lower mobility in the phloem and a structural component of the cell
membrane [34]. Organic substrates usually contain more nutrients than commercial sub-
strates [35], providing better use of nutrients and mineral fertilization by plants since [36,37]
(i) they chemically are in organic form, thus (ii) being gradually released, a feature that
(iii) effectively supplies the plant’s nutritional needs during the whole biological cycle.
Additionally, due to their high availability, organic substrates are a low-cost commercial
alternative [38].

The pH and electrical conductivity are pivotal features of every substrate used in
seedling nurseries [39]. The pH of the investigated substrates ranged from 6.1 to 6.8 before
fertigation. As expected (Table 2), the pH slightly increased once fertilization was applied,
ranging from 6.3 to 7.1. According to Cacini et al. [40], the pH of organic substrates should
range from 5.0 to 6.5, a variation favoring both plant growth and nutrient absorption
capacity in the substrate. Our results partially disagree with those observed by the previous
author. As a matter of fact, the investigated substrates had a pH slightly above that “rec-
ommended” by the author before and after fertigation. Despite this, except for zero doses
and the SSB substrate, all treatments produced seedlings with satisfactory development.
This demonstrates that organic substrates made with the reuse of by-products are less
restrictive regarding pH ranges for plant seedling growth, thus being more adaptable for
commercial uses.

The electrical conductivity records the concentration of ionized salts in the solution.
Saline stress can affect water absorption and nutrients, altering plant metabolism [41].
Yet, high electrical conductivity values are generally observed in sewage-sludge-based
substrates due to the high content of nutrients and organic matter [42]. However, in all
investigated substrates, an adequate electrical conductivity for the growth of the plant’s
seedlings (<1.0 mS cm−1) [43] was observed.

Overall, the SEB substrate shows comparable vegetation growths with CS. More
specifically, the height of the seedlings showed higher mean values when produced with
SEB. Yet, the SEB and CS substrates showed similar mean values for the seedlings produced
with the standard and highest doses (4×). Additionally, all the observed height values are
within the range determined by Silva et al. [43], where seedlings of native species showed
a height ranging from 20 to 35 cm. As the fertigation dose increased, the height of the P.
dubium seedlings also increased, which confirmed its nutritional requirement [44].

Regarding the stem diameters, the seedlings produced in SEB presented the highest
growth. With the standard and 4× doses, the CS and the SEB showed similar mean values,
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while they performed better than SSB. According to Gonçalves et al. (2000) [43], seedlings of
native species should present a stem diameter between 5 and 10 mm. Therefore, except for
the zero dose, all substrates produced seedlings with adequate stem diameters, although
the SEB substrate provided the seedlings with the highest mean values.

The seedlings produced with the SEB substrate presented the highest H/D ratio mean
values. The observed H/D ratio values of all treatments gave a mean below 10, regardless of
the substrate, including seedlings produced with zero doses, which is considered adequate
according to Cargnelutti Filho et al. (2018) [45]. The H/D ratio represents the seedling
development capacity. Therefore, lower values characterize superior seedling quality and
survival capacity in the field.

The SEB compost presented the highest nutrient concentration from the beginning of
the experiment, as reflected by both the chemical analysis and seedlings’ growth in terms of
height and diameter. Consequently, this substrate produced a greater biomass of aerial and
root parts, presenting superior development compared to the seedlings planted in all the
other investigated substrates. The total dry mass is an essential morphological variable to
estimate seedlings’ survival and initial growth in the field since a well-developed seedling
is more resistant to edaphic adversities [46]. Furthermore, Alonso et al. (2017) [46] also
observed that seedlings of three native species (i.e., P. dubium (Springer.) Taub. (Dry flour),
Lafoensia pacari A. St.-Hil. (Foxglove) and Ceiba speciosa (A. St.-Hil.) Ravenna (Paineira))
showed a higher amount of aerial and root biomass when produced in sewage sludge
composted with clayey soil and sand compared to the control substrate.

The processed sewage sludge, commonly named biosolid, contains high macronutri-
ent, especially N, P, Ca, and Mg, and organic matter contents [25]. However, seedlings
produced at zero doses did not reach height and diameter growth within the parameters
defined by Gonçalves et al. [43], requiring supplementation with chemical fertilization via
fertigation. Although raw sewage sludge contains high amounts of nutrients, the dilution
effect may occur during composting [42]. According to Rocha et al. (2013) [47], the accumu-
lation of nutrients in composted sewage sludge is insufficient for initial seedling growth,
requiring fertilizers. The height and stem diameter of P. dubium seedlings improved as the
fertigation doses gradually increased. With 150 days of seeding, the highest accumulation
of nutrients was observed in their aerial part. These results corroborate the data obtained
by Gonçalves et al. (1992) [48], where the seedlings of P. dubium at 128 days had higher
concentrations of nutrients in the aerial part. Also, at 150 days, the accumulation of macro-
and micronutrients in the aerial part of the seedlings was within the suitable standards,
according to Malavolta et al. (1997) [49].

The accumulation of N observed in the total mass of seedlings produced with CS
and SEB was more significant than in those made with SSB. According to Trigueiro and
Guerrini [42], N is usually the most abundant nutrient in sewage sludge. It is the most
critical compost required by plants, acting directly in the growth process [50].

Furthermore, the growth of seedlings was reduced with the lower fertigation doses by
the omission of P. According to Souza et al. (2013) [51], P. dubium has growth limitations
in terms of height and diameter in the absence of N, K, S, Ca, Mg, B, and Zn since the
seedlings’ demand for N and P is more significant in the initial seeding stages, which act in
the initial growth of height and diameter [32].

The Dickson Quality Index (DQI) [26] is the most reliable parameter for assessing
seedling quality, which calculates the main morphological variables. The DQI (Table 4)
demonstrated that the seedlings produced with SEB had the best rate compared to those
made with CS and SSB. Although the seedlings subjected to the 4× dose stood out in most
of the variables analyzed, the DQI proved that the standard and 2× doses formed the
best-quality seedlings. Nonetheless, the standard dose is more advantageous regarding the
economy of chemical fertilizers for seedling producers.
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Table 4. Dickson Quality Index (DQI) of the seedlings of P. dubium per treatment, 150 days after
seeding.

Substrates DQI

CS 0.739 b

SSB 0.631 c

SEB 0.856 a

Fertigation Doses DQI

Zero 0.678 b

1× 0.808 a

2× 0.777 a

4× 0.705 b

CV (%) 29.5
Mean values followed by the same lowercase, and line per stem do not differ according to the Scott–Knott test
(p < 0.05). CS: commercial substrate; SSB: sewage sludge composted with sugarcane bagasse; SEB: sewage sludge
composted with eucalyptus bark. Zero: no fertigation; 1×: standard dose; 2×: duplicated dose; 4×: quadruplicated
dose. Coefficient of variation (CV).

Seedling quality is directly associated with the field’s capacity for development and
endurance [51]. Consequently, understanding the nutritional requirements of native forest
species would optimize their management and the availability of nutrients [52].

The obtained outcomes show that the sewage sludge composted with eucalyptus bark
(SEB) performed best in most investigated parameters. From an environmental perspective,
the SEB substrate is the most efficient in P. dubium seedling production, being a promising
alternative for the productive and commercial reuse of this residue instead of its landfill
disposal. Moreover, SEB substrate would assist in the rising demand for seedlings of native
plants to recover degraded areas [53]. As a matter of fact, seedling production represents
an essential cost in soil restoration through reforestation programs [4]. One of the costs
most affecting the overall commercial balance is represented by the use of commercial
substrate [32]. Thus, by using by-products, this significant cost can be strongly reduced,
making soil recovery and reforestation programs more feasible.

5. Conclusions

The seedlings produced with SEB presented better performances for most of the inves-
tigated parameters. Although seedlings planted in the substrate with the 4.0× fertigation
dose showed interesting performances too, the Dickson Quality Index confirmed that the
seedlings produced with SEB substrate, supplemented with a 2.0× dose, presented the
highest quality. Thus, composted sewage sludge with eucalyptus bark at the standard dose
represents the most suitable substrate for P. dubium seedling production. The experiment
demonstrated that sewage sludge combined with natural by-products (eucalyptus bark, in
this case) represents a highly recommendable substrate in commercial seedling production.
More specifically, the seedlings produced with SEB demonstrated similar productivity
performance to those produced with commercial fertilizers. This approach could represent
an efficient alternative to improve nursery forestry, reducing traditional inputs (chemical
fertilizers) and bringing positive socio-economic, environmental, and health effects.
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