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Abstract: In the current context of increasing costs of production factors, it is essential to optimize
the management of available resources, seeking to incorporate technologies that improve knowledge
of the variables involved in the agronomic production process. The aim of this study is to define and
validate management zones (MZ) in a 3.3 ha vineyard located near Évora, in the South of Portugal. A
contact sensor (“Veris 2000 XA”) was used to map soil apparent electrical conductivity (ECa) and a pre-
cision altimetric survey of the field was carried out with a global navigation satellite system receiver
(GNSS). The results of these surveys were submitted to geostatistical treatments that allowed the defi-
nition of three MZ (less, intermediate, and more productive potential). The validation of such MZ was
carried out by laboratory analysis of soil samples (texture, pH, organic matter—OM, moisture content,
phosphorous, potassium, exchange bases, and cation exchange capacity—CEC), measurements of soil
compaction (cone index—CI) with an electronic cone penetrometer, and through indices (Normalized
Difference Vegetation Index—NDVI, and Normalized Difference Water Index—NDWI) obtained by
remote sensing (RS) using Sentinel-2 satellite images. All these parameters (soil parameters and
RS indices) proved the validity of the MZ (of less, intermediate, and more productive potential)
defined from the ECa and altimetric survey. This validation attests to the interest of expeditious
technological tools for monitoring ECa as a fundamental step in implementing smart agronomic
decision-making processes.

Keywords: precision viticulture; spatial variability; sensors; site-specific management

1. Introduction

One of the main challenges for the agricultural sector, and in particular, viticulture, is to
adapt to climate change while ensuring the quality of production and its sustainability [1].
Within this context, compounded by rising input costs, it is essential to optimize the
management of available resources, by incorporating technologies that provide information
on the variables involved in the agronomic production process. This perspective is within
the framework of Precision Agriculture (PA), which has expanded in the last decade to
practically all crops.

The main goal of Precision Viticulture (PV) is to assess the spatial variability of physio-
logical needs of the vines belonging to different areas of the vineyard in order to implement
the management techniques in a more site- and time-specific manner, reducing the use of
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production factors and, consequently, the environmental impact and maximizing the yield
and quality of production [2].

The spatial variability of grapevine (Vitis vinifera L.) within a single vineyard is a rele-
vant issue for growers and winemakers [3], essential for making management decisions [4,5].
A very diverse set of management decisions are required in this crop, ranging from input
management (irrigation, fertilizing, spraying) up to cultural practices (pruning, shoot and
cluster thinning, canopy management, inter-row cover, or segmented harvesting) [3].

Within-field variability of vine development and, consequently, grape yield and com-
position, is the result of both spatial and temporal variation of many factors, including
edaphic, biological, climatic, topographic, and anthropogenic [4]. Many studies have shown
and quantified the existence of significant variability within the vineyards [6]. Knowing the
spatial variability of soil characteristics allows a better understanding of the variability of
the physiological response of the vines [2]. This variability can be surveyed using a regular
sampling grid [6], however, given the cost and time required for this type of sampling and
the necessity of many soil samples to achieve an effective spatial representation of any soil
property, it cannot be considered a viable and practical process at farm level [7,8]. The use
of sensors is becoming the norm for mapping the relevant soil properties, thus reducing
the number of soil samples needed to describe field variability [9].

Some factors responsible for variability in a vineyard remain stable over time, such as
topography and some soil properties; therefore, the knowledge of their spatial variability
can provide a better understanding of this complex decision-making scenario [3] and the
definition of management zones (MZ). These represent subfield areas with homogeneous
characteristics, such as texture, topography, or nutrient levels [7], and may be used to
adapt viticulture practices [5]. The ability to map the spatial variability in vine and soil
characteristics allows grape growers to move from a random sampling approach to a smart
sampling methodology based on sampling zones of uniform vine characteristics [10]. This
can be considered the first step in the application of site-specific crop management [7].
Understanding the spatial variability of factors that influence crop yield is essential to the
application of site-specific management [11].

This new possibility of considering perspective of spatial variability is a consequence of
the technological means made available by PV to the farm manager [2,10]. These spatially
enabled digital technologies provide the possibility of gathering georeferenced spatial
datasets [2], information with high spatial resolution (small areas within the field) and great
flexibility in the timing of data acquisition, and managing these areas differentially [4,10].
The importance of remote and proximal sensing as tools for smart viticulture application
has been evidenced in several reviews published in the last two decades [10].

Variation in soil and topography is likely to have a large impact on vineyard variabil-
ity [10]. The proximal monitoring of soil variability includes the use of a wide range of
sensors [2]. The apparent soil electrical conductivity (ECa) sensing technology, mounted on
mobile platforms and coupled with GNSS receivers, are highly relevant when designing
new vineyards and redeveloping existing vineyards [10], but also for the definition of MZ
and site-specific management [7]. There are two types of sensors currently on the market to
measure soil ECa based on the method of measurement: contact or non-contact. The first
type (e.g., Veris sensor) is invasive and uses electrodes, usually in the shape of coulters
that make contact with the soil, generating electrical currents in the soil with an electrode
and then measuring the potential difference thanks to a second receiver electrode, which
measures the electrical resistivity (i.e., the inverse of conductivity). The second type (e.g.,
Dualem or EM38 sensors) is non-invasive and is composed of a transmitter and a receiver
coil usually installed at opposite ends of a non-conductive bar. This sensor type works on
the principle of electromagnetic induction: it generates a magnetic field that induces an
electric current in the soil, which in turn creates a second magnetic field proportional to its
conductivity, which is measured by the sensor [2,7]. The ECa is usually related to various
soil physical and chemical properties across a wide range of soils [12], such as texture
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and depth, water retention capacity, organic matter content, salinity [2], cation exchange
capacity (CEC), pH, exchangeable magnesium, and other soil nutrients [9].

Another electronic sensor that can help to characterize soil spatial variability and,
consequently, its productive potential is the cone penetrometer [13,14]. This measures the
cone index (CI, in kPa), which reflects soil compaction and is considered an important tool
for the diagnosis of the most restrictive soil layers for root growth at depth [15]. For these
reasons, it can be a very interesting parameter in terms of validating MZ.

Other new technologies have made it possible to characterize the crop vegetative vigor.
In the last years, several works have shown the potential of remote sensing (RS) in crop
monitoring, in particular the vineyard [9,10,16]. The significant impact of soil on vine
nutrition and development has led researchers to associate the ECa maps with vegetation
indexes maps to assess the field spatial variability [9,17]. For example, the normalized
difference vegetation index (NDVI) can be used to evaluate plant photosynthetic activity and,
therefore, its canopy vigor, as well as crop yield and grape quality characteristics [8,10,16].
On the other hand, the normalized difference water index (NDWI) can be used to evaluate
plant water stress and leaf water content during growth phases [16]. These vegetation
indices have been successfully used by several teams to delineate areas with homogeneous
vigor within vineyards for the purpose of site-specific management [3,9,17,18].

This study aims (i) to assess the soil spatial variability of a vineyard through ECa
survey with a contact sensor; (ii) to evaluate the temporal stability of ECa measurements;
(iii) to define MZ based on geostatistical treatment of ECa and topographic survey; and
(iv) to validate MZ by several approaches (soil laboratory analysis, CI and RS indices).

2. Materials and Methods

Figure 1 summarizes, schematically and chronologically, the methodology used in
this study to monitor the spatial variability of a vineyard and define and validate MZ. The
study was conducted between May 2022 and April 2023.
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Figure 1. Schematic and chronological representation of methodology used in this study. 
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planted with three varieties: “Aragonez”, “Trincadeira”, and “Castelão”). Despite this 
variability, the information available on the vineyard management history indicates 
uniform cultural operations (pruning, fertilization, irrigation, phytosanitary treatments, 
etc.). 

Figure 1. Schematic and chronological representation of methodology used in this study.

2.1. Study Area

The study field is a 3.3 ha vineyard, located at the “Mitra” farm of “University of
Évora” (38.532◦ N; 8.015◦ W). The aerial image of the Mitra vineyard (Figure 2) shows two
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areas: (i) white grapes (1.30 ha, about 85% of which is planted with three varieties: “Arinto”,
“Síria”, and “AntãoVaz”) and (ii) red grapes (2.0 ha, about 82% of which is planted with
three varieties: “Aragonez”, “Trincadeira”, and “Castelão”). Despite this variability, the
information available on the vineyard management history indicates uniform cultural
operations (pruning, fertilization, irrigation, phytosanitary treatments, etc.).
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Figure 2. Aerial image of the Mitra vineyard. The main white and red grape varieties are indicated.

A precision altimetric survey of the field was carried out during October 2022 using
a real-time kinematic (RTK) GPS instrument (Trimble RTK/PP-4700 GPS manufactured
by TRIMBLE Navigation Limited, USA). The altimetric map (Figure 3) was generated
using the triangulated irregular network interpolation tool, converted into a grid surface
with a 1 m grid resolution using the Spatial Analyst Tools of ArcGIS (version 10.5, ESRI,
Inc., Redlands, California, USA). The two sub-fields (“white”, “W” and “red”, R) show a
gradual gradient (from South to North in the “W” area and from North to South in the “R”
area), and slopes that converge to a flow line, which represents the lowest elevation of the
study area.

The dominating soil type of the study area is Cambisol with a granite origin [19],
characterized by little or no profile differentiation, slight or moderate weathering of parent
material, and by absence of appreciable quantities of illuviated clay and organic matter.
Acid Cambisols are not very fertile and are mainly dedicated to mixed agro-silvo-pastoral
systems. Cambisols in undulating or hilly terrain (mainly colluvial) are planted to a variety
of annual and perennial crops or are used as grazing land. The study area also includes
hydromorphic soils and Luvisols. In the Mediterranean region, the often-eroded hills are
used for extensive grazing or planted to tree crops [19].

The climate of this Mediterranean region is classified as Csa (Köppen–Geiger classifica-
tion) [20] and is characterized by high inter-annual irregularity and low rainfall (<600 mm).
The thermo-pluviometric diagram of the Évora meteorological station in the year under
study (between May 2022 and April 2023; Figure 4) shows an accumulated precipitation of
526 mm, concentrated mainly (98%) in six months (September–January, and March), and
the remaining six months with practically no precipitation (February and April–August).
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In this period without precipitation, particularly between May and August, the average
temperature is around 20–30 ◦C.
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Figure 4. Thermo-pluviometric diagram of Mitra (Évora, Portugal) between May 2022 and April 2023.



Environments 2023, 10, 117 6 of 22

2.2. Soil Apparent Electrical Conductivity (ECa) Surveys and Processing

The Veris 2000 XA contact-type sensor (Veris Technologies, Salina, KS, USA; Figure 5)
equipped with a GNSS antenna was used to measure the soil ECa of the experimental
field on 29 September 2022 (only white grapes area) and on 24 October 2022 (whole field).
This sensor is mounted on a chassis supported on two wheels and is formed by two pairs
of coulter-electrodes (adjustable rotating discs): one pair injects a current into the soil
(outermost discs), while the other pair (innermost discs) measures the voltage drop. The
adjustment of the discs generated one set of topsoil data (from 0 to 0.30 m depths). The
sensor was pulled by a four-wheel drive vehicle in the vineyard rows at an average speed
of 5 km·h−1 and was programmed to register the measurements each second.
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Figure 5. General view of the Mitra vineyard and detail of the soil apparent electrical conductivity 
sensor (Veris 2000 XA). 
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Figure 5. General view of the Mitra vineyard and detail of the soil apparent electrical conductivity
sensor (Veris 2000 XA).

On both dates (29 September and 24 October 2022), twenty random soil samples
(0–0.30 m depth) were collected in the white grapes area to calculate the mean soil moisture
content (SMC).

Estimating ECa at unsampled locations was conducted with the ordinary point kriging
algorithm, integrating the spatial correlation structure described with the variograms. The
kriged maps showing the spatial distribution of ECa in the experimental field were obtained
from the estimated values. Finally, the kriged maps of ECa were produced with the ArcMap
module of the ArcGIS.

2.3. Definition of Management Zones (MZ)

The results of ECa and altimetric surveys were used as input for the geostatistical
analyses that allowed the definition of management zones (MZ). These homogeneous
subfields were delineated using a fuzzy cluster algorithm [21]. The MZ Analyst (MZA) soft-
ware (Microsoft Corp., Redmond, WA, USA) was utilized in this study. Fridgen et al. [22]
described the procedures for delineating and evaluating the number of MZ used in this
software. The fuzzy c-means, an unsupervised continuous classification procedure, which
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is implemented in the MZA program, was used to divide the fields into different cluster
classes. The ISO Cluster approach in ArcGIS was used to perform the classification. This
algorithm organizes the data in the input raster into a user-defined number of groups to
produce signatures which are utilized to classify the data using the “Maximum Likelihood
Classifier” (MLC) function. The fuzziness exponent was set at the conventional value of
1.3 and the “Mahalanobis” measure of similarity was selected since it is the most suitable
for multivariate data classification [23]. From a practical perspective, three management
zones with different productive potential (less, intermediate, and more potential) were
considered in each vineyard area (white grapes, MZ: W−, Wint, and W+, respectively;
and red grapes, MZ: R−, Rint, and R+, respectively). Both indices, the fuzziness perfor-
mance index (FPI) and the normalized classification entropy (NCE) [22], confirmed that
the number was adequate because their values were at minimum. FPI is a measure of
the degree of membership sharing among classes: 0 indicates different classes with no
membership sharing and 1 reflects a strong sharing of membership. NCE is an estimate of
the amount of disorganization created by several classes: 0 indicates high organization and
1 represents a strong disorganization. When each index is at minimum, which indicates the
least membership sharing (FPI) and greatest amount of organization (NCE) as a result of
the clustering process, the optimum number of classes is achieved.

2.4. Validation of Management Zones (MZ)s

The validation of MZ was carried out by laboratory analysis of soil samples, measure-
ments of soil compaction (CI) with an electronic cone penetrometer, and through indices
(NDVI and NDWI) obtained by RS using Sentinel-2 satellite images.

2.4.1. Soil Sampling Collection and Reference Analysis

After the definition of the MZs (with less, intermediate, and more productive potential),
in the validation process (Figure 1), soil parameters (moisture content—SMC, CI, texture,
pH, organic matter—OM, P2O5, K2O, degree of base saturation–DBS, sum of the exchange
bases—SEB, and cation exchange capacity—CEC), and crop vegetation indices (NDVI and
NDWI) at sampling locations were employed to check their differences.

Four sampling areas were randomly GNSS georeferenced in each MZ and in each
field (white and red grapes areas). The soil georeferenced samples were collected on
25 January 2023 using a gouge auger and a hammer, at a depth range of 0–0.30 m. Each
composite sample was the result of five sub-samples collected within a radius of 1 m, one
taken from the center of the sampling area, and the other four taken according to diagram
presented in Figure 6. In the laboratory, the soil samples were weighed, dried at 105 ◦C until
constant weight, and then weighed again to establish the SMC. Afterwards, the samples
were processed for particle-size distribution (texture: sand, silt, and clay content) using a
sedimentographer (Sedigraph 5100, manufactured by Micromeritics). The fine components
of the soil (fraction with diameter < 2 mm) were subjected to chemical analyses using the
following standard reference laboratory methods [24]: pH (in 1:2.5, soil: water suspension)
was determined using the potentiometric method; organic matter (OM) was measured by
combustion and CO2 measurement, using an infrared detection cell; phosphorous (P2O5)
and potassium (K2O) were extracted by Egner–Riehm method, P2O5 was measured using
colorimetric method, and K2O was measured with a flame photometer; degree of base
saturation (DBS), sum of the exchange bases (SEB; calcium—Ca2+, magnesium—Mg2+,
sodium—Na+ and potassium—K+) and cation exchange capacity (CEC) were extracted
with ammonium acetate.
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Figure 6. Soil sampling diagram: georeferentiation with global navigation satellite system (GNSS),
soil sampling collection and cone index (CI) measurement.

2.4.2. Cone Index (CI) Measurements

Simultaneously with the collection of soil samples, and as part of the validation process
(Figure 1), the soil resistance to penetration (Cone Index, CI, in kPa) was measured with a
manual electronic cone penetrometer “FieldScout SC 900” (Spectrum Technologies, Aurora,
IL, USA). In each sampling point, three CI measurements were carried out between 0–45 cm
depth, one in the central point of the sampling area, and one in each side next to each row of
plants (Figure 6). To minimize possible errors resulting from the uncertainty of maintaining
a constant penetration rate during the determination, measurements were always carried
out by the same experienced operator. Readings for all treatments were taken on the same
day to avoid soil moisture variability, which can affect the resistance measurements [13,14].

After the field measurements, the following data processing was implemented: (i) a
preliminary analysis was conducted to remove outliers from the data set; (ii) the mean CI
value of measurements of each sampling area of each MZ was calculated for each depth of
determination (range of 2.5 cm); (iii) the graphic representation of mean CI as a function of
soil depth (0–45 cm) for each MZ was generated; (iv) the mean CI values of measurements
of each sampling area of each MZ was calculated for the following depth ranges: 0–15 cm,
15–30, and 30–45 cm.

2.4.3. Multispectral Measurements by Remote Sensing

With the aim of monitoring the spatial variability of crop vegetative vigor, satellite
images of the vegetative cycle of this vineyard in 2022 were retrieved (Figure 1). Sentinel-2
optical images (freely available from the European Space Agency, ESA), were used through
the electronic platform “http://agromap.agroinsider360.com”. For this work, Sentinel-2
band 4 (B4; 10 m spatial resolution; 665 nm), band 8 (B8; 10 m spatial resolution; 842 nm),
band 8A (B8A; 20 m spatial resolution; 865 nm), and band 11 (B11; 20 m spatial resolution;

http://agromap.agroinsider360.com
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1610 nm), atmospherically corrected imagery, were extracted from the Copernicus data
hub and used to calculate NDVI (Equation (1)) and NDWI (Equation (2)). Images were
processed with open-source ORG/GDAL Python libraries. These data were obtained for
NDVI pixels (10 m resolution) and NDWI pixels (20 m resolution). A preliminary processing
was carried out on these records to remove outliers due to the presence of clouds.

NDVI =
B8 − B4
B8 + B4

(1)

NDWI =
B8A − B11
B8A + B11

(2)

In the period of the vineyard’s greatest vegetative vigor (May–August) due to the
favorable temperature and precipitation (Figure 4), four evaluation moments were con-
sidered, one at the end of each month (24 May, 28 June, 28 July, and 27 August), all from
cloud-free satellite images. Figure 7 illustrates the vineyard in May 2022, where the contrast
between the strong vigor of the canopy and the dry vegetation between the rows is visible.
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In addition to the NDVI and NDWI maps for the referred dates, for the purposes of
MZ validation, the average values of these indices in each MZ were calculated based in
twenty sampling points used to soil collection.

2.5. Statistical Analysis of the Data

To assess the soil and crop spatial variability, descriptive statistical analysis (mean,
standard variation, and range) was performed for the measured parameters.

The data of ECa obtained by Veris sensor in September and in October were synchro-
nized using the geographic co-ordinates of each point to evaluate the temporal stability of
ECa measurements. A combined data set was created in each date: each Veris data point
obtained in September was combined with the nearest data point obtained in October based
on GNSS co-ordinates. If a match in spatial co-ordinates was not found within a 2 m radius,
that point was removed from the data set, a procedure like that used by Sudduth et al. [12].
A total of 1377 points were found to have common geographic co-ordinates in both surveys.
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These sets of data were subjected to linear correlation analysis, carried out in the IBM
SPSS statistical package (version 24, IBM Corp, Armonk, NY, USA) to obtain the Pearson
correlation coefficients (r) using the method of minimum squares (p < 0.05).

With the aim of evaluating if three MZ were significantly different, with a 95% signifi-
cance level (p < 0.05), since the normality in the data cannot be assumed, the Kruskal–Wallis
nonparametric test and the Dunn post hoc test were used. Thus, the differences in the mean
values of both soil properties and crop indices were considered.

3. Results
3.1. From Spatial Variability to the Definition of Management Zones (MZ)

The soil variability associated with the topography (Figure 3) and consequent solar
exposure and microclimate, the variety of vine cultivars (Figure 2), and the seasonality
of temperature and precipitation (Figure 4) are factors that induce spatial variability. The
vine responds accordingly, highlighting different physiological expressions [2]. The NDVI
(Figure 8) and NDWI (Figure 9) maps referring to the previous year’s vegetative cycle (2022)
show the evolution of the crop’s vegetative vigor and demonstrate this spatial variability.
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Figure 8. Normalized difference vegetation index (NDVI) maps over the vegetative cycle of 2022
(May, June, July, and August).

This study aims to assess whether the expeditious monitoring of ECa allows capturing,
in a temporally stable way, the soil spatial variability. The maps of Figure 10 show important
ECa spatial variability in the white grapes field. Nevertheless, both maps indicate a
stable pattern of ECa, with a decreasing gradient from east to west (Figure 10a,b) and,
simultaneously, a lower expression of low ECa (<1.5 mS·m−1) and a higher expression
of high ECa (>9.5 mS·m−1) in the September map (Figure 10a), relative to the October
map (Figure 10b). This temporal stability of ECa pattern is evidenced by the significant
correlation between the measurements of September and the measurements of October
(Figure 11; R2 = 0.7134), after synchronization of the geographical coordinates of the
two surveys (n = 1377).
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September and October measurements.

The ECa spatial variability is common to the entire vineyard (Table 1), with a CV of
around 65% in the white grapes field and 56% in the red grapes field. The SMC, however,
shows less spatial variability, with a CV of around 29% in white grapes field and 8% in red
grapes field (Table 1).

Table 1. Soil apparent electrical conductivity (ECa) and soil moisture content (SMC) of vineyard in
September and October 2022.

Parameter Vineyard “W” (White Grapes) Vineyard “R” (Red Grapes)

Date Mean ± SD CV (%) Range Mean ± SD CV (%) Range

ECa (mS·m−1)
29 September 3.6 ± 2.4 67.6 0.1–13.2 – – –

24 October 5.3 ± 3.4 64.9 0.8–17.8 4.6 ± 2.6 55.8 0.3–17.1

SMC (%)
29 September 14.6 ±4.1 28.1 10.3–19.5 – – –

24 October 17.7 ± 5.2 29.2 14.5–38.8 16.2 ± 1.3 8.1 14.0–18.7
SD—Standard deviation; CV—Coefficient of variation; ECa—Soil apparent electrical conductivity; SMC—Soil
moisture content.

The transformation of the ECa (based on the October measurement) and altimetric
maps into a MZ map by applying a geostatistical algorithm is presented in Figure 12. Three
MZ were defined in white grapes field (less, intermediate, and more productive potential)
and, based on the lower ECa spatial variability and, especially on the SMC, only two MZ
were defined in red grapes field (less and more productive potential).
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Figure 12. Soil apparent electrical conductivity (ECa; (a)) and management zones (MZ; (b)) maps of
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3.2. Validation of Management Zones (MZ)

The results of soil sampling (Table 2) show that it is a coarse to medium textured
soil (clay content of about 15%; textural classification between sandy loam and sandy
clay loam) [19], with low OM content (especially in red grapes field, with 1%), pH close
to neutral, with strong contrast between the two subfields in terms of phosphorus and
potassium availability (extremely high in white grapes field and low in red grapes field).
The spatial variability is very pronounced, with CV greater that 20–30% in practically all
soil evaluated parameters, except for pH (CV of 7–9%) and sand content (CV of 11%).

Table 2. Characteristics of soil vineyard (0–0.30 m) in January 2023.

Soil Parameter Vineyard “W” (White Grapes) Vineyard “R” (Red Grapes)

(25 January 2023) Mean ± SD CV (%) Range Mean ± SD CV (%) Range

Clay (%) 14.9 ± 4.8 32.2 10.4–23.9 14.6 ± 6.0 41.2 7.4–26.5
Silt (%) 13.6 ± 3.0 22.4 10.6–19.0 11.3 ± 2.4 20.9 7.8–15.4
Sand (%) 71.5 ± 7.6 10.7 58.4–78.7 74.0 ± 7.9 10.7 61.1–84.9
SMC (%) 17.6± 4.4 25.0 11.2–27.5 14.6 ± 3.7 25.2 7.2–18.5
OM (%) 1.7 ± 0.5 30.7 1.0–2.5 1.0 ± 0.2 23.6 0.7–1.5
pH 6.5 ± 0.5 7.0 5.8–7.1 6.1 ± 0.5 8.8 5.6–7.0
P2O5 (mg.kg−1) 350.7 ± 209.1 59.6 101.4–722.6 28.9 ± 12.4 42.9 16.3–53.1
K2O (mg.kg−1) 118.7 ± 44.5 37.5 44.0–201.0 40.0 ± 24.7 61.8 10.0–78.2
DBS (%) 61.1 ± 33.6 55.0 13.5–121.9 61.4 ± 42.3 69.0 15.5–118.0
SEB (cmol.kg−1) 8.2 ± 5.4 65.0 3.3–18.0 8.7 ± 7.1 81.1 2.0–19.7
CEC (cmol.kg−1) 14.9 ± 5.9 39.5 8.2–28.0 18.2 ± 11.1 61.0 8.3–41.8

SD—Standard deviation; CV—Coefficient of variation; SMC—Soil moisture content; OM—Organic matter;
P2O5—Assimilable phosphorous; K2O—Assimilable potassium; DBS—Degree of base saturation; SEB—Sum of
the exchange bases; CEC—Cation exchange capacity (CEC).

The validation of the MZ defined in each field (white and red grapes areas) based on
the differences in the mean values of soil properties (Table 3) confirmed significantly higher
values of clay, silt, SMC, OM, pH, DBS, SEB, and CEC and significantly lower values of
sand in MZ with greater productive potential (“More”).
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Table 3. Validation of management zones (MZ): mean values of each soil property for MZ (less
productive zone, “Less”; intermediate zone, “Inter.”; and more productive zone, “More”).

MZ Clay
(%)

Silt
(%)

Sand
(%)

SMC
(%)

OM
(%) pH P2O5

(mg·kg−1)
K2O

(mg·kg−1)
DBS
(%)

SEB
(cmol·kg−1)

CEC
(cmol·kg−1)

“White”
Less 12.2 a 11.3 a 76.5 a 14.7 a 1.2 a 6.0 a 204.7 a 113.8 a 34.0 a 3.7 a 14.2 a
Inter. 11.7 a 12.2 a 76.2 a 18.2 b 1.6 b 6.6 b 341.2 b 134.5 b 46.4 b 5.9 b 16.7 b
More 20.9 b 17.4 b 61.8 b 19.8 c 2.2 c 7.0 c 506.1 c 107.8 a 103.0 c 15.1 c 18.0 c

“Red”
Less 10.8 a 9.6 a 79.6 a 12.1 a 0.9 a 5.7 a 38.0 a 47.8 a 23.2 a 2.5 a 15.1 a
More 18.5 b 13.1 b 68.5 b 17.0 b 1.2 b 6.6 b 19.9 b 33.0 b 99.5 b 15.0 b 21.3 b

MZ—Management zones; SMC—Soil moisture content; OM—Organic matter; P2O5—Assimilable phosphorous;
K2O—Assimilable potassium; DBS—Degree of base saturation; SEB—Sum of the exchange bases; CEC—Cation
exchange capacity (CEC); Different letters indicate significant differences (p < 0.05) according to the Dunn test.

In terms of CI (Table 4; Figure 13; Figure 14), the results show a tendency for (i) higher
values in the red grapes field than in the white grapes field; (ii) higher values in MZ with
lower productive potential; (iii) higher values as depth increases; (iv) higher CV (25–70%)
in the topsoil layer (0–15 cm). The graphical representation of the average CI in the topsoil
layer (0–30 cm), in each MZ, as a function of mean SMC (Figure 15) confirms the inverse
relationship between CI and SMC.

Table 4. Cone index (CI) of soil vineyard in three depths (0–15, 15–30, and 30–45 cm) in January 2023.

CI (kPa) Vineyard “W” (White Grapes) Vineyard “R” (Red Grapes)

MZ—Depth (cm) Mean ± SD Range Mean ± SD Range

Less potential
0–15 1278 ± 632 440–2091 1872 ± 511 1169–2467
15–30 2502 ± 184 2256–2673 2513 ± 183 2283–2730
30–45 2550 ± 308 2078–2928 3316 ± 340 2973–3967

Intermediate
0–15 916 ± 639 172–1768 – –
15–30 2072 ± 151 1941–2355 – –
30–45 1698 ± 338 1265–2070 – –

More potential
0–15 902 ± 281 405–1143 1081 ± 274 677–1393
15–30 1139 ± 98 1030–1298 1802 ± 224 1587–2199
30–45 1122 ± 92 970–1220 2240 ± 302 1759–2557

SD—Standard deviation; CI—Cone index.

Environments 2023, 10, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 13. Average cone index (CI) profile as a function of soil depth (0–45 cm), for each MZ (“−”, 
less, “int”, intermediate, and “+”, more productive potential) within each grape field (“W”—white; 
“R”—red). 

 
Figure 14. Average cone index (CI): mean values in each MZ (“−”, less, “int”, intermediate, and “+”, 
more productive potential) and depth range (0–15, 15–30, and 30–45 cm), in white (a) and red grapes 
field (b). Different letters next to the mean values indicate significant differences (p < 0.05) according 
to the Dunn test. 

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500 4000

CI (kPa)

De
pt

h 
(c

m
)

W - 
W int
W + 

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500 4000

CI (kPa)

De
pt

h 
(c

m
)

R - 
R + 

(a) (b)

Figure 13. Average cone index (CI) profile as a function of soil depth (0–45 cm), for each MZ (“−”,
less, “int”, intermediate, and “+”, more productive potential) within each grape field (“W”—white;
“R”—red).
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Figure 14. Average cone index (CI): mean values in each MZ (“−”, less, “int”, intermediate, and “+”,
more productive potential) and depth range (0–15, 15–30, and 30–45 cm), in white (a) and red grapes
field (b). Different letters next to the mean values indicate significant differences (p < 0.05) according
to the Dunn test.
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Figure 15. Average cone index (CI) in the 0–30 cm topsoil layer, in each MZ (“−”, less, “int”,
intermediate, and “+”, more productive potential) for each grape field ((“W”—white; “R”—red), as a
function of mean soil moisture content (SMC).

In terms of validating the MZ based on the vineyard vegetative vigor measured by
RS indices, NDVI (Table 5; Figure 16) and NDWI (Table 6; Figure 17) in the vegetative
cycle of 2022, the results show (i) a gradual decrease in NDVI and NDWI as the vegetative
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cycle progresses; (ii) higher values in the white grapes field than in the red grapes field;
(iii) higher values in MZ with more productive potential.

Table 5. Normalized difference vegetation index (NDVI) of vineyard (white and red grapes fields) in
each MZ, on four dates in 2022 (24 May, 28 June, 28 July, and 27 August).

NDVI Vineyard “W” (White Grapes) Vineyard “R” (Red Grapes)

MZ—Date (2022) Mean ± SD Range Mean ± SD Range

Less potential
24 May 0.499 ± 0.030 0.469–0.538 0.446 ± 0.019 0.432–0.460
28 June 0.467 ± 0.022 0.447–0.498 0.378 ± 0.037 0.352–0.404
28 July 0.351 ± 0.015 0.343–0.374 0.306 ± 0.029 0.286–0.326
27 August 0.353 ± 0.003 0.350–0.357 0.320 ± 0.027 0.300–0.339

Intermediate
24 May 0.539 ± 0.018 0.527–0.559 – –
28 June 0.581 ± 0.047 0.527–0.613 – –
28 July 0.452 ± 0.046 0.400–0.485 – –
27 August 0.396 ± 0.010 0.384–0.402 – –

More potential
24 May 0.514 ± 0.022 0.488–0.526 0.483 ± 0.031 0.450–0.525
28 June 0.521 ± 0.004 0.519–0.526 0.426 ± 0.042 0.381–0.474
28 July 0.404 ± 0.003 0.400–0.405 0.331 ± 0.026 0.301–0.364
27 August 0.395 ± 0.010 0.384–0.401 0.338 ± 0.023 0.311–0.362

SD—Standard deviation; NDVI—Normalized difference vegetation index.
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Figure 16. Average normalized difference vegetation index (NDVI) of vineyard: mean values in each
MZ (“−”, less, “int”, intermediate, and “+”, more productive potential) and date (24 May, 28 June,
28 July, and 27 August), in white (a) and red grapes field (b). Different letters next to the mean values
indicate significant differences (p < 0.05) according to the Dunn test.
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Table 6. Normalized difference water index (NDWI) of vineyard (white and red grapes fields) in each
MZ, on four dates in 2022 (24 May, 28 June, 28 July, and 27 August).

NDWI Vineyard “W” (White Grapes) Vineyard “R” (Red Grapes)

MZ—Date (2022) Mean ± SD Range Mean ± SD Range

Less potential
24 May 0.126 ± 0.013 0.113–0.139 0.087 ± 0.013 0.078–0.097
28 June 0.061 ± 0.018 0.038–0.082 0.012 ± 0.003 0.010–0.014
28 July 0.016 ± 0.007 0.006–0.022 −0.010 ± 0.002 −0.012–(−0.009)
27 August 0.006 ± 0.005 0.000–0.013 −0.008 ± 0.006 −0.012–(−0.003)

Intermediate
24 May 0.108 ± 0.015 0.095–0.126 – –
28 June 0.117 ± 0.041 0.059–0.149 – –
28 July 0.063 ± 0.031 0.022–0.097 – –
27 August 0.029 ± 0.021 −0.002–0.041 – –

More potential
24 May 0.131 ± 0.008 0.121–0.137 0.101 ± 0.019 0.073–0.115
28 June 0.145 ± 0.014 0.137–0.165 0.041 ± 0.028 0.006–0.065
28 July 0.088 ± 0.001 0.087–0.089 0.005 ± 0.017 −0.017–0.020
27 August 0.054 ± 0.003 0.051–0.056 −0.003 ± 0.016 −0.020–0.011

SD—Standard deviation; NDWI—Normalized difference water index.
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other parameters, namely crop vegetative vigor. Esteves et al. [9], for example, associated 
the NDVI measurement, obtained from the Sentinel-2 satellite images, with ECa to define 
three zones of differentiated vine management. Serrano et al. [28] also associated the ECa 
with NDVI and NDWI to define three MZ, but in pasture management. 

Figure 17. Average normalized difference water index (NDWI) of vineyard: mean values in each
MZ (“−”, less, “int”, intermediate, and “+”, more productive potential) and date (24 May, 28 June,
28 July, and 27 August), in white (a) and red grapes field (b). Different letters next to the mean values
indicate significant differences (p < 0.05) according to the Dunn test.

4. Discussion

The interest in PV has been highlighted in several reviews published in recent
years [2,10,25,26]. Research of PV have focused on four main areas: (i) evaluation of spatial
variability; (ii) delimitation of MZ; (iii) development of variable rate technologies (VRT);
and (iv) implementation of site-specific vineyard management [2]. This study focuses on
the first two areas: to assess the soil spatial variability in a vineyard, and to define and
validate MZ.
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4.1. Spatial Variability

Spatial variability is the starting point that justifies the implementation of the PA
concept [2]. The MZ represent the link between spatial variability and potential differenti-
ated management [4,7].

Mobile soil ECa measurements constitute one of the most efficient ways to quickly
map soil spatial variability [7,17]. According to Ammoniaci et al. [2] and Rodriguez-
Pérez et al. [27], ECa could save time and resources during the planning and establishment
of new vineyards and, also, during monitoring and management of established vineyards.
The CV of ECa obtained in this study (about 60%) classifies this parameter as having high
spatial variability [5] and, therefore, is a potential indicator of the soil characteristics, which
suggest the convenience of defining different MZ [7]. In this study, terrain elevation was
also used in MZ delineation due to its impact on water flow and accumulation, as well
as redistribution of soil mineral particles and OM, and, therefore, on crop growth and
development [4,6]. Other works have sought to complement the ECa information with
other parameters, namely crop vegetative vigor. Esteves et al. [9], for example, associated
the NDVI measurement, obtained from the Sentinel-2 satellite images, with ECa to define
three zones of differentiated vine management. Serrano et al. [28] also associated the ECa
with NDVI and NDWI to define three MZ, but in pasture management.

Although several factors may contribute to the variability of vineyard development
(soil, topography, grape varieties, etc.) [3], the NDVI (Table 5) showed a relatively low CV
(<10%) on all assessment dates, which may reflect, on the one hand, the uniform cultural
operations carried out throughout the vineyard (e.g., pruning, shoot and grape thinning
and, especially, canopy management) [18], but mainly the sampling procedure used in
the MZ validation, based only on 20 sampling points and not on the whole vineyard area
(contrary to what happened in the ECa measurement, carried out practically continuously).
In contrast, the NDVI and NDWI maps (Figure 8; Figure 9, respectively), represent the
entire area of the vineyard and attest to the expression of the variability identified by the
ECa measurement.

In addition to spatial variability, another important characteristic that should be
assessed in a PV process is the within-field temporal stability of spatial patterns [29]. Mea-
suring ECa is frequently conducted to reveal this spatial soil heterogeneity. Various studies
have demonstrated the possibilities for significant changes in the measured quantities over
time with relatively stable spatial structure representations [30]. One of the great advan-
tages of ECa measurement is its temporal stability, maintaining the spatial pattern over time,
so it only needs to be measured once in the medium term [31]. In this study, the ECa surveys
of September and October led to similar ECa maps (Figure 10), with a strong R2 (0.7134;
Figure 11). The positive effect of SMC (higher in October that in September, which reflects
an accumulated precipitation of 75 mm in the week preceding the measurement in October,
while in the week preceding the measurement in September the accumulated precipitation
was only 18 mm) in ECa is reported in several works [2,26]. This temporal stability allows
decision making in post-processing, which avoids the technological complexity of real-time
variable application systems.

4.2. Validation of Management Zones (MZ)

The ECa can help to guide the sampling for the purpose of characterizing the spatial
variability [11]. The validation of the defined MZ was carried out by smart sampling of
(i) soil parameters (texture, SMC, pH, OM, phosphorous, potassium, DBS, SEB, CEC, and
CI); and (ii) normalized indices (NDVI and NDWI) obtained by RS.

Areas with higher ECa led to MZ with more productive potential, and vice-versa
(Figure 12). The validation showed that the zones with more productive potential present
a soil profile (0–30 cm depth) with higher clay, moisture, OM, pH, DBS, SEB, and CEC
contents, and lower sand content and CI values (this last parameter in all the depth
classes that were considered: 0–15, 15–30, and 30–45 cm), which is reflected in higher
vine vegetative vigor (higher NDVI and NDWI). The relationship between ECa and soil
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texture has been documented in several studies [2,7,9,11,17,32], positively correlated with
the finer texture component, clay, and negatively correlated with the coarser textures such
as coarse and fine sands [7,17,25], even leading to the indication of specific reference values
of ECa for certain soil characteristics (rocky substrate, sand, clay, water, etc.) [2]. Mean ECa
of 3–6 mS·m−1 (Table 1) classify the soil of this vineyard as coarse-textured and dryland
soils [14], typical of this region of South of Portugal. The relationship between ECa and
others soil physical and chemical properties, namely OM content [2], SMC [17,27,29], CEC,
pH, exchangeable magnesium, and other soil nutrients [9], has been demonstrated across a
wide range of soils [12]. In arid or semiarid regions, for example, moisture availability is the
primary factor that controls land productivity; therefore, SMC should be considered as one
of the most important factors to delimit management zones, which is very dependent on the
topography of the field [33]. In this study, however, the main macronutrients phosphorus
and potassium (P2O5 and K2O, respectively) did not follow the trend defined by the MZ in
white grapes area, with mean contents very high in intermediate MZ (Table 3). This result
makes it difficult to transpose these MZ maps to fertilization prescription maps. Since these
abnormally high values of P and K occur only in the white grapes area (Table 2), where
the OM values are also much higher (mean of 1.7% versus 1.0% in red grapes area), the
proximity of a pigsty (upstream of the white grape vineyard and of a water flow line) could
be the origin of this unexpected pattern, which may have led the geostatistical algorithm to
set an intermediate MZ in this field. In this case, the intermediate MZ can be an indicator
of this external effect (drainage of effluents from intensive livestock production) on topsoil
spatial variability. If fertilization was based on a composite sample of the entire vineyard
area of 3.3 ha, as is common practice in traditional agriculture in the region, the average
values of P and K would be adequate (more than 100 mg·kg−1) and therefore would not
justify fertilization, however, spatial analysis shows, for example, that the red grapes area
has low P and K values (around 30–40 mg·kg−1), which requires P and K fertilization.

The inverse correlation between ECa and soil compaction (zones with more pro-
ductive potential present systematically lower CI values) is in line with several other
works [13,14,27,34,35], some of them even suggesting the potential of ECa as a rapid
alternative for assessing soil compaction [34,35].

Relatively to validation of MZ through of RS indices, the results of Ferrer et al. [3]
suggest that NDVI could be a useful tool for defining and categorizing zones (high, medium,
and low) within the vineyards in order to establish site-specific management practices
according to the grapevine needs. Tardaguilla et al. [10], in a review paper about the use of
smart technologies in viticulture, reinforces the relevance of vine vigor maps from previous
years in designing site-specific management strategies for the upcoming year. Comparetti
and Silva [16], on the other hand, demonstrated the usefulness of NDVI and NDWI obtained
from the Sentinel-2 satellite images to identify the same three levels of vegetative vigor
(high, medium, and low) and support decision making for vintage segmentation, which
makes it possible process different quality grapes to produce different wines, differentiating
the grapes on the basis of their potentiality and typicality, highlighting the “terroir effect”
over the years [2]. Comparetti and Silva [16] also foresee the use of NDVI and NDWI in
variable rate fertilizer application, however, point out the challenge to be overcome in
PV in terms of establishing correlations between plant vegetative vigor, crop yield, wine
quality, and soil parameters in order to produce spatially variable input application maps
that can increase crop yields. The successful results documented by Hubbard et al. [17] in a
vineyard, using pixel-by-pixel as well as block-by-block comparisons lay the groundwork
for future research directions; for example, the significant correlation between soil texture,
ECa, and NDVI suggest that vegetation properties during the growing season could be
estimated, and possibly predicted, through soil texture or ECa information.
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4.3. Study Limitations and Perspectives

Given that this is an exploratory study, carried out in a relatively restricted area of
vineyard (3.3 ha), under specific soil and climatic conditions, further studies, in different
soil types and different regions should be conducted.

An important note should be considered: several studies showed a direct correlation
between NDVI and crop yield components, suggesting that the zones with the highest vigor
are also the highest yielding. However, in the vineyard the issue is complex, with zones
of low vigor (NDVI) tending to produce higher quality wine in some instances [36]. Since
the main aim of modern oenology is to produce wines of recognized quality and typically,
which can then be differentiated in the market, it is essential to consider that the potential
quality of wine is established in the vineyard [5]. Therefore, it will be interesting in the
next campaign to evaluate the impact of this topsoil spatial variability on productivity
(yield maps) and, especially, on grape quality and, consequently, on wine quality, using a
segmented harvest to clarify the practical impact and the agronomic significance of this
MZ delineation.

It is also fundamental to develop algorithms to evaluate the agronomic significance of
this classification (MZ) and establish more general methods of mapping and quantifying
variable input prescriptions based in ECa.

The closing of the PA cycle by agricultural machinery (namely fertilizer distributors or
sprayers), based on prescription maps (built from MZ), or other means, provides a rigorous
variable rate application [37]. Despite the existence of this technologies to improve and
maximize efficiency of inputs and profitability of individual fields [38], the scattered and
interlaced MZ delineation can be challenging for the farmer, and in some cases, it might be
advisable to unify the MZ to larger working units in order to simplify the operationalization
of the process.

5. Conclusions

The results of this study showed that the use of fast and easy tools for measuring
and mapping ECa and altimetry allows capturing, in a temporally stable way, the spatial
variability of physical (texture, compaction, moisture) and chemical (pH, OM, degree of base
saturation, exchange bases, and cation exchange capacity) topsoil (0–30 cm) characteristics,
leading to the definition and validation of zones (MZ) of high and low productive potential.
These MZ may be relevant when designing new vineyards or replanting existing vineyards,
e.g., for the selection of the most adapted cultivars, or for field orientation (sun exposure,
drainage, etc.) for a given “terroir”. This approach can also be useful for a more-informed
decision-making process for site-specific management of inputs and guide viticultural
practices. The ability to map the soil spatial variability allows grape growers to move from
a random soil sampling to an optimized methodology based on MZ (smart soil sampling).

It will be important to validate these results in other conditions, with different soil
types or in different regions, extending the database and so, improve the process for
prescribing spatially differentiated inputs.

Author Contributions: Conceptualization, J.S. and V.M.; methodology, J.S., V.M., R.R., L.P., S.S.,
J.M.d.S., L.L.P. and F.J.M.; software, J.S. and F.J.M.; validation, J.S.; formal analysis, J.S., L.L.P. and
F.J.M.; investigation, J.S., V.M. and R.R.; data curation, J.S. and J.M.d.S.; writing—original draft prepa-
ration, J.S.; writing—review and editing, J.S., S.S. and F.J.M.; visualization, J.S. and S.S.; supervision,
J.S.; project administration, J.S.; funding acquisition, J.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by National Funds through FCT (Foundation for Science and
Technology) under the Project UIDB/05183/2020.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available because they are part of a dissertation
project that is ongoing (not completed).

Conflicts of Interest: The authors declare no conflict of interest.



Environments 2023, 10, 117 21 of 22

References
1. Casson, A.; Ortuani, B.; Giovenzana, V.; Brancadoro, L.; Corsi, S.; Gharsallah, O.; Guidetti, R.; Facchi, A. A multidisciplinary

approach to assess environmental and economic impact of conventional and innovative vineyards management systems in
Northern Italy. Sci. Total Environ. 2022, 838, 156181. [CrossRef]

2. Ammoniaci, M.; Kartsiotis, S.-P.; Perria, R.; Storchi, P. State of the art of monitoring technologies and data processing for Precision
Viticulture. Agriculture 2021, 11, 201. [CrossRef]

3. Ferrer, M.; Echeverría, G.; Pereyra, G.; Gonzalez-Neves, G.; Pan, D.; Mirás-Avalos, J.M. Mapping vineyard vigor using airborne
remote sensing: Relations with yield, berry composition and sanitary status under humid climate conditions. Prec. Agric. 2020,
21, 178–197. [CrossRef]

4. Córdoba, M.; Bruno, C.; Costa, J.; Balzarini, M. Subfield management class delineation using cluster analysis from spatial principal
components of soil variables. Comput. Electron. Agric. 2013, 97, 6–14. [CrossRef]

5. Unamunzaga, O.; Besga, G.; Castellón, A.; Usón, M.A.; Chéry, P.; Gallejones, P.; Aizpurua, A. Spatial and vertical analysis of soil
properties in a Mediterranean vineyard soil. Soil Use Manag. 2014, 30, 285–296. [CrossRef]

6. Verdugo-Vásquez, N.; Acevedo-Opazo, C.; Valdés-Gómez, H.; Pañitrur-De la Fuente, C.; Ingram, B.; García de Cortázar-Atauri, I.;
Tisseyre, B. Identification of main factors affecting the within-field spatial variability of grapevine phenology and total soluble
solids accumulation: Towards the vineyard zoning using auxiliary information. Precis. Agric. 2022, 23, 253–277. [CrossRef]

7. Moral, F.; Terrón, J.; Silva, J.M. Delineation of management zones using mobile measurements of soil apparent electrical
conductivity and multivariate geostatistical techniques. Soil Tillage Res. 2010, 106, 335–343. [CrossRef]

8. Sams, B.; Bramley, R.G.V.; Sanchez, L.; Dokoozlian, N.; Ford, C.; Pagay, V. Remote sensing, yield, physical characteristics, and
fruit composition variability in Cabernet Sauvignon vineyards. Am. J. Enol. Vitic. 2022, 73, 93–105. [CrossRef]

9. Esteves, C.; Fangueiro, D.; Braga, R.P.; Martins, M.; Botelho, M.; Ribeiro, H. Assessing the contribution of ECa and NDVI in the
delineation of management zones in a vineyard. Agronomy 2022, 12, 1331. [CrossRef]

10. Tardaguila, J.; Stoll, M.; Gutiérrez, S.; Proffitt, T.; Diago, M.P. Smart applications and digital technologies in viticulture: A review.
Smart Agric. Technol. 2021, 1, 100005. [CrossRef]

11. Bottega, E.L.; Marin, C.K.; Oliveira, Z.B.d.; Lamb, C.D.C.; Amado, T.J.C. Soil density characterization in management zones
based on apparent soil electrical conductivity in two field systems: Rainfeed and center-pivot irrigation. AgriEngineering 2023,
5, 460–472. [CrossRef]

12. Sudduth, K.A.; Kitchen, N.R.; Bollero, G.A.; Bullock, D.G.; Wiebold, W.J. Comparison of electromagnetic induction and direct
sensing of soil electrical conductivity. Agron. J. 2003, 95, 472–482. [CrossRef]

13. Serrano, J.; Marques, J.; Shahidian, S.; Carreira, E.; Marques da Silva, J.; Paixão, L.; Paniagua, L.L.; Moral, F.; Ferraz de Oliveira, I.;
Sales-Baptista, E. Sensing and mapping the effects of cow trampling on the soil compaction of the montado Mediterranean
ecosystem. Sensors 2023, 23, 888. [CrossRef] [PubMed]

14. Serrano, J.; Carreira, E.; Shahidian, S.; de Carvalho, M.; Marques da Silva, J.; Paniagua, L.L.; Moral, F.; Pereira, A. Impact of
deferred versus continuous sheep grazing on soil compaction in the Mediterranean Montado ecosystem. AgriEngineering 2023,
5, 761–776. [CrossRef]

15. Pias, O.H.C.; Cherubin, M.R.; Basso, C.J.; Santi, A.L.; Molin, J.P.; Bayer, C. Soil penetration resistance mapping quality: Effect of
the number of subsamples. Acta Sci. 2018, 40, e34989. [CrossRef]

16. Comparetti, A.; Marques da Silva, J.R. Use of Sentinel-2 satellite for spatially variable rate fertiliser management in a Sicilian
vineyard. Sustainability 2022, 14, 1688. [CrossRef]

17. Hubbard, S.S.; Schmutz, M.; Balde, A.; Falco, N.; Peruzzo, L.; Dafon, B.; Léger, E.; Wu, Y. Estimation of soil classes and their
relationship to grapevine vigor in a Bordeaux vineyard: Advancing the practical joint use of electromagnetic induction (EMI) and
NDVI datasets for precision viticulture. Precis. Agric. 2021, 22, 1353–1376. [CrossRef]

18. Gatti, M.; Garavani, A.; Squeri, C.; Diti, I.; Monte, A.; Scotti, C.; Poni, S. Effects of intra-vineyard variability and soil heterogeneity
on vine performance, dry matter and nutrient partitioning. Precis. Agric. 2022, 23, 150–177. [CrossRef]

19. FAO. World Reference Base for Soil Resources; Food and Agriculture Organization of the United Nations, World Soil Resources
Reports N 103; FAO: Rome, Italy, 2006.

20. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst.
Sci. 2007, 11, 1633–1644. [CrossRef]

21. Höppner, F.; Klawonn, F.; Kruse, R.; Runkler, T.A. Fuzzy Cluster Analysis; Wiley: Chichester, UK, 1999.
22. Fridgen, J.J.; Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.; Wiebold, W.J.; Fraisse, C.W. Management Zone Analyst (MZA):

Software for subfield management zone delineation. Agron. J. 2004, 96, 100–108. [CrossRef]
23. Tagarakis, A.; Liakos, V.; Fountas, S.; Koundouras, S.; Gemtos, T.A. Management zones delineation using fuzzy clustering

techniques in grapevines. Precis. Agric. 2013, 14, 18–39. [CrossRef]
24. AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Arlington, VA, USA, 2005.
25. Barriguinha, A.; de Castro Neto, M.; Gil, A. Vineyard yield estimation, prediction, and forecasting: A systematic literature review.

Agronomy 2021, 11, 1789. [CrossRef]
26. Cataldo, E.; Fucile, M.; Mattii, G.B. A review: Soil management, sustainable strategies and approaches to improve the quality of

modern viticulture. Agronomy 2021, 11, 2359. [CrossRef]

https://doi.org/10.1016/j.scitotenv.2022.156181
https://doi.org/10.3390/agriculture11030201
https://doi.org/10.1007/s11119-019-09663-9
https://doi.org/10.1016/j.compag.2013.05.009
https://doi.org/10.1111/sum.12110
https://doi.org/10.1007/s11119-021-09836-5
https://doi.org/10.1016/j.still.2009.12.002
https://doi.org/10.5344/ajev.2021.21038
https://doi.org/10.3390/agronomy12061331
https://doi.org/10.1016/j.atech.2021.100005
https://doi.org/10.3390/agriengineering5010030
https://doi.org/10.2134/agronj2003.4720
https://doi.org/10.3390/s23020888
https://www.ncbi.nlm.nih.gov/pubmed/36679683
https://doi.org/10.3390/agriengineering5020047
https://doi.org/10.4025/actasciagron.v40i1.34989
https://doi.org/10.3390/su14031688
https://doi.org/10.1007/s11119-021-09788-w
https://doi.org/10.1007/s11119-021-09831-w
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.2134/agronj2004.1000
https://doi.org/10.1007/s11119-012-9275-4
https://doi.org/10.3390/agronomy11091789
https://doi.org/10.3390/agronomy11112359


Environments 2023, 10, 117 22 of 22

27. Rodríguez-Pérez, J.R.; Plant, R.E.; Lambert, J.-J.; Smart, D.R. Using apparent soil electrical conductivity (ECa) to characterize
vineyard soils of high clay content. Precis. Agric. 2011, 12, 775–794. [CrossRef]

28. Serrano, J.; Shahidian, S.; Da Silva, J.M.; Paixão, L.; Calado, J.; De Carvalho, M. Integration of soil electrical conductivity and
indices obtained through satellite imagery for differential management of pasture fertilization. AgriEngineering 2019, 1, 567–585.
[CrossRef]

29. Serrano, J.; Shahidian, S.; Marques da Silva, J. Apparent electrical conductivity in dry versus wet soil conditions in a shallow soil.
Precis. Agric. 2013, 14, 99–114. [CrossRef]

30. Su, A.S.M.; Adamchuk, V.I. Temporal and operation-induced instability of apparent soil electrical conductivity measurements.
Front. Soil Sci. 2023, 3, 1137731.

31. Serrano, J.; Shahidian, S.; Paixão, L.; Marques da Silva, J.; Moral, F. Management zones in pastures based on soil apparent
electrical conductivity and altitude: NDVI, soil and biomass sampling validation. Agronomy 2022, 12, 778. [CrossRef]

32. Corwin, D.; Lesch, S. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43.
[CrossRef]

33. Farrel, M.; Leizica, E.; Gili, A.; Noellemeyer, E. Identification of management zones with different potential moisture availability
for sustainable intensification of dryland agriculture. Precis. Agric. 2023, 24, 1116–1131. [CrossRef]

34. Krajco, J. Detection of Soil Compaction Using Soil Electrical Conductivity. Master’s Thesis, Cranfield University, Silsoe, UK,
2007; pp. 3–92.

35. Pentos, K.; Pieczarka, K.; Serwata, K. The relationship between soil electrical parameters and compaction of sandy clay loam soil.
Agriculture 2021, 11, 114. [CrossRef]

36. Kasimati, A.; Psiroukis, V.; Darra, N.; Kalogrias, A.; Kalivas, D.; Taylor, J.A.; Fountas, S. Investigation of the similarities between
NDVI maps from different proximal and remote sensing platforms in explaining vineyard variability. Precis. Agric. 2023,
24, 1220–1240. [CrossRef]

37. Katz, L.; Ben-Gal, A.; Litaor, M.I.; Naor, A.; Peres, M.; Bahat, I.; Netzer, Y.; Peeters, A.; Alchanatis, V.; Cohen, Y. Spatiotemporal
normalized ratio methodology to evaluate the impact of field-scale variable rate application. Precis. Agric. 2022, 23, 1125–1152.
[CrossRef]

38. Fabiani, S.; Vanino, S.; Napoli, R.; Zajicek, A.; Duffkova, R.; Evangelou, E.; Nino, P. Assessment of the economic and environmental
sustainability of Variable Rate Technology (VRT) application in different wheat intensive European agricultural areas. A Water
energy food nexus approach. Environ. Sci. Policy 2020, 114, 366–376. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11119-011-9220-y
https://doi.org/10.3390/agriengineering1040041
https://doi.org/10.1007/s11119-012-9281-6
https://doi.org/10.3390/agronomy12040778
https://doi.org/10.1016/j.compag.2004.10.005
https://doi.org/10.1007/s11119-023-10002-2
https://doi.org/10.3390/agriculture11020114
https://doi.org/10.1007/s11119-022-09984-2
https://doi.org/10.1007/s11119-022-09877-4
https://doi.org/10.1016/j.envsci.2020.08.019

	Introduction 
	Materials and Methods 
	Study Area 
	Soil Apparent Electrical Conductivity (ECa) Surveys and Processing 
	Definition of Management Zones (MZ) 
	Validation of Management Zones (MZ)s 
	Soil Sampling Collection and Reference Analysis 
	Cone Index (CI) Measurements 
	Multispectral Measurements by Remote Sensing 

	Statistical Analysis of the Data 

	Results 
	From Spatial Variability to the Definition of Management Zones (MZ) 
	Validation of Management Zones (MZ) 

	Discussion 
	Spatial Variability 
	Validation of Management Zones (MZ) 
	Study Limitations and Perspectives 

	Conclusions 
	References

