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Abstract: Industrial control charts are used in manufacturing to quickly and robustly indicate the
status of production and to prompt any necessary corrective actions. The library of tools available for
these tasks has grown over time and many have been used in other disciplines with similar objectives,
including environmental monitoring. While the utility of control charts in environmental monitoring
has been recognized, and the tools have already been used in many individual studies, they may
be underutilized in some types of programs. For example, control charts may be especially useful
for reporting and evaluating data from regional surveillance monitoring programs, but they are not
yet routinely used. The purpose of this study was to promote the use of control charts in regional
environmental monitoring by surveying the literature for control charting techniques suitable for
the various types of data available from large programs measuring multiple indicators at multiple
locations across various physical environments. Example datasets were obtained for Canada’s Oil
Sands Region, including water quality, air quality, facility production and performance, and bird
communities, and were analyzed using univariate (e.g., x-bar) and multivariate (e.g., Hotelling’s
T2) control charts. The control charts indicated multiple instances of unexpected observations and
highlighted subtle patterns in all of the example data. While control charts are not uniquely able to
identify potentially relevant patterns in data and can be challenging to apply in some monitoring
analyses, this work emphasizes the broad utility of the tools for straightforwardly presenting the
results from standardized and routine surveillance monitoring.
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1. Introduction

Identifying patterns in measurements prompting additional studies are common
tasks for scientists and engineers. While statistical hypothesis testing has been the typical
approach for this work across disciplines, control charts were introduced in the mid- 1900s
in industrial manufacturing to quickly alert process engineers and production managers to
either existing or potential future deficiencies in the desired qualities of finished products,
e.g., [1,2]. The original Shewart chart eventually spread and was later joined by additional
procedures, such as the exponentially weighted moving average (EWMA), the cumulative
sum (CUSUM), and attribute control charts, to address more nuanced questions and to
increase the sensitivity of the techniques to novel sources of variation [2–9]. The suite
of control charting techniques has been further broadened to include multivariate and
non-parametric approaches and various techniques suitable for non-normal, censored, or
auto-correlated data [2].

Since their introduction, control charts have become standard tools in manufacturing
and industrial process control [2,8], but these tools are also applicable in other fields of study
with similar goals and practices. For example, environmental monitoring also measures
indicators to document their current state, applies tools and approaches to detect various
types of changes, including subtle differences, trends, or other relevant differences [10–12],
and uses this information to inform future work [13]. Similar to industrial process control,
varying types of data are also collected in environmental monitoring programs [14–17],
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including censored and/or auto-correlated observations [18–27]. Additionally, the de-
sire to straightforwardly and intuitively present data is shared by practitioners in both
manufacturing and environmental monitoring, e.g., [2,13,28,29].

This overlap has been recognized, and control charts have either been recommended
for or used in environmental monitoring [13,28–30]. However, the tools may not be equally
valuable across all types of environmental monitoring. For example, control charts may
not be well-suited for short-term, small-scale, or mechanistic studies [28–31]. In contrast,
control charts may be especially useful in large-scale programs with long historical data
records of standardized measurements obtained from multiple locations, with plans for
similar data collections in the future, and in which more detailed studies can be instigated
by decision triggers [13,29,32,33]. However, the potential unfamiliarity of control charts,
their statistical limitations, the need to define baseline or reference states, the greater vari-
ability of uncontrolled environments compared to controlled factories, and the overlap
and comfort with existing methods, e.g., [13,28,30], may impede their adoption in envi-
ronmental monitoring. Consequently, the tools may be underutilized in large regional
monitoring programs [14,29,34].

Despite the potential challenges to their use, control charts have valuable benefits
for regional environmental monitoring [28–31]. The purpose of this work is to add to the
existing literature describing the use of control charts in environmental monitoring and
to promote their use in the routine reporting of results in large-scale regional programs.
While not an exhaustive technical treatment of all of the control chart types available,
e.g., [2,26,35,36], the paper briefly reviews some of the more common tools and applies
them to monitoring data from Canada’s Oil Sands Region (OSR). In this paper, example
data from the OSR were obtained from public sources and were analyzed using techniques
suitable for the measured and reported variables, e.g., [15–17]. Section 2 examines envi-
ronmental chemistry data (water quality and air quality) using univariate (x-bar, EWMA,
and CUSUM) charts of raw and residual data and multivariate control charts (standard
multivariate EWMA (MEWMA), multivariate CUSUM (MCUSUM), and Hotelling’s T2).
Section 3 uses industrial performance data using Hotelling’s T2 and decomposition using
principal components analysis, and it examines diagnostics. Section 4 uses a distance-based
multivariate technique for songbird communities [30]. The final section, Section 5, sum-
marizes the analyses and discusses the use of the techniques for regional monitoring. The
review of the techniques, along with the example analyses, demonstrates the widespread
utility of control charting for identifying changes in regional monitoring data and further
supports its broader adoption for routine reporting.

2. Control Charts and Environmental Chemistry Datasets
2.1. Univariate Control Charts

The first control chart developed was the Shewart univariate x-bar chart [1]. The
Shewart chart examines patterns in process means over time and relies on the normality
of sample means despite sampling from a non-normal population [31]. The x-bar chart is
typically used to flag unusually large (or small) means, but it can also be used to examine
individual observations [2]. Commonly, narrow thresholds set at ±2 standard deviations
(SD) are called ‘warning limits’, while wider thresholds, such as ±3 SDs, are called ‘control
limits’, e.g., [37]. Specification limits may also be defined in manufacturing, and probability-
based limits have also been widely used [2]. Other thresholds, such as the probability limits,
may also be used often to extend the sensitivity of the method to additional types of change,
including improbable series or runs of observations [38]. While these typical thresholds are
often used, there are no restrictions beyond the acceptability of the false-positive, or false
negative rates defined by the user.

Other types of univariate charts have also been introduced. For example, cumulative
sum of deviations from a long-term mean (CUSUM) charts have been developed [3,39,40].
Several versions of these charts have evolved, but the tabular type tracks two statistics,
C+

i and C−i , to respectively indicate increases and decreases in deviations from a target
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value over time [2]. CUSUMs are sensitive to small changes [40] and are also favored when
single samples (rather than sample means) are the input variables [2]. CUSUMs can also be
more sensitive than x-bar charts. For example, a CUSUM applied to water availability in
Australia was triggered 21 years before exceedances were identified with an x-bar chart [41].
CUSUM charts are also typically applied prospectively for Phase II control charting after
cleaning the data in a retrospective Phase I analysis [2,42], and in one simulation study, they
were robust for up to 50% fewer data points [43]. Potential challenges with the retrospective
application of the CUSUM in Phase I analyses have prompted the development of additional
techniques, such as the self-starting CUSUM [2,42]. Further details of the CUSUM, including
the calculation of its control limits, are available elsewhere, e.g., [2].

The final univariate example examined here, the EWMA chart, is also used routinely
in manufacturing [4,6,7]. EWMA charts use exponential weighting, denoted by λ (ranging
from 0 to 1), to account for historical measurements [4]. As λ approaches 0, weighting is
spread among all previous observations and resembles that with the CUSUM. In contrast,
as λ approaches 1, less weight is ascribed to historical observations, and the chart resembles
the Shewart chart [4]. The weighting factor λ is typically set between 0.2 and 0.3 [4].
However, a smaller λ can be used to detect smaller shifts, while a larger λ is used to detect
larger shifts [2]. Similar to CUSUM, EWMA charts are also typically applied in Phase II
control charting and are particularly recommended for analyses of individual observations,
including non-normally distributed data [2]. A forecast of a single time-step is, however,
also an inherent quality of the EWMA [4], and this property can be used to examine
historical data (although the opportunities for dynamic (and contemporaneous) process
control [4] will be lost). Since the EWMA is a smoothed and transformed variable, any
detected shifts must also be referenced to the raw data [5]. Further details of the EWMA,
including the calculation of its control limits, are available elsewhere, e.g., [2].

2.1.1. Control Charts with Raw Concentration Data

Among the literature reviewed for this study, water quality, estimated as chemical
concentrations, were commonly examined using control charts [44–48]. The parameters
selected for the univariate analyses were vanadium (V) and arsenic (As) measured between
2004 and 2020 at the Lower Muskeg River (site AB07DA0610; Figure 1). These variables
were selected for several reasons. All measurements were greater than the detection limits;
in bitumen, vanadium is enriched, and arsenic is depleted [49]; and these data are publicly
available [50]. While examining these elements alone cannot provide a complete picture of
any potential industrial influence on watercourses in the OSR, the changes in them over
time and the types of changes present may help to diagnose the causes or highlight the
environmental risks. For example, while other drivers, such as natural erosion, also affect
these elements, a signal indicating greater industrial contamination in streams in the OSR
may be a systematic increase in V over time, coupled with a concurrent decrease in As.

The first (and preliminary analyses) of V and As were performed using an x-bar
chart for individual raw observations, an EWMA, and a CUSUM using the ‘qcc()’ function
in the qcc package for R [51] and using the default settings for calculating the control
limits (Figure S1). The raw concentration data were also plotted over time (Figure S1).
These preliminary and supplemental analyses showed a general decrease in the average
concentration of V over time and an increase in As over time. The plots also highlight
the relative advantages of the chart types. The Shewart charts are most sensitive to large
differences and highlight unusual runs, while both the EWMA and CUSUM charts are
more sensitive to smaller differences. The EWMA and CUSUM charts also more clearly
highlight some of the temporal patterns in the data at shorter durations than the entire set.
For example, patterns suggesting seasonality are present in the EWMA and CUSUM charts
for As in 2008, 2009, 2012, and 2013. These patterns are also present in the raw data and in
the x-bar, but they are more apparent in the EWMA and CUSUM charts.
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areas shown with white hatching (facilities mentioned in the manuscript text are named in the fig-
ure); in situ project areas are shown as white dotted fill; and the Joslyn North mine project area is 
shown in gray cross-hatching. 

Particular challenges with the water quality datasets available for the OSR, including 
the lower Muskeg River, include both autocorrelation and unequal intervals between the 
sampling events. For example, seasonal sampling was performed prior to 2008, monthly 
sampling was performed between 2010 and 2015, and a mixed design (sub-weekly, sub-
monthly, and monthly sampling) was used after 2017 (Figure S2). There is also a two-year 
gap from April 2015 to March 2017 in the water quality dataset examined here (Figure S2). 
Discharge in rivers also affects the concentration of many chemical parameters, e.g., [48]. 
These factors and other limit the potential utility of univariate analyses of these water 
quality data by increasing the false-positive rate [52,53]. 

2.1.2. Residual Control Charts  
While programs can be designed with additional features to address high false-pos-

itive rates [54] or to prospectively plan for other foreseeable challenges [55], statistical 
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Figure 1. Oil Sands Region showing the example data locations in northeastern Alberta, including
water quality (green circle; AB07DA0610), air quality (purple triangles; Horizon, Fort McKay-Bertha
Ganter, and Fort McKay South, bird collection sites (test sites: ELBN and ELBS [red squares]; reference
site: MAKR [blue square]), and river discharge location (07DA008; yellow cross); mine project areas
shown with white hatching (facilities mentioned in the manuscript text are named in the figure); in
situ project areas are shown as white dotted fill; and the Joslyn North mine project area is shown in
gray cross-hatching.

Particular challenges with the water quality datasets available for the OSR, including
the lower Muskeg River, include both autocorrelation and unequal intervals between the
sampling events. For example, seasonal sampling was performed prior to 2008, monthly
sampling was performed between 2010 and 2015, and a mixed design (sub-weekly, sub-
monthly, and monthly sampling) was used after 2017 (Figure S2). There is also a two-year
gap from April 2015 to March 2017 in the water quality dataset examined here (Figure S2).
Discharge in rivers also affects the concentration of many chemical parameters, e.g., [48].
These factors and other limit the potential utility of univariate analyses of these water
quality data by increasing the false-positive rate [52,53].

2.1.2. Residual Control Charts

While programs can be designed with additional features to address high false-positive
rates [54] or to prospectively plan for other foreseeable challenges [55], statistical tools are
also useful for retrospectively addressing some weaknesses. Among some water quality
data, using auto-regressive models for data with equal sampling intervals, e.g., [56], and
applying the control chart procedure to the residuals are common approaches. Residual
control charts are suggested when data are affected by an external and measurable drivers,
or they are auto-correlated [2,57]; they can extend the utility of control charts to additional
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data structures, e.g., [58]; and they may be useful for diagnostics in multivariate analy-
ses [59]. However, residual control charts using the x-bar approach may be insensitive to
small process shifts, and EWMA and CUSUM processes are recommended for these analy-
ses [2] (and references in [2]). In this analysis, the generalized estimating equation (GEE)
was used (appropriate for unequal sampling intervals; [60]) using the AR1 correlation
structure and a Gaussian distribution with the identity link function in the geeglm() func-
tion in the R package geepack [61]. The data were log10-transformed prior to the analysis.
Discharge from the 07DA008 location was also included as a covariate [62], but chemical
observations after 2019 and in the winter (November-February) for data collected before
2013 were omitted because discharge was not available at the time of analysis, highlighting
a potential weakness of this approach for many environmental datasets assembled from
multiple data sources.

Response residuals were used as input variables for x-bar, EWMA, and CUSUM charts
to examine their relative utility (Table S1). The residual control charts used in this analysis
all indicate that neither V nor As is in statistical control after accounting for the effects of
discharge and unequal sampling intervals (Figure 2). Exceedances of the upper control
limits (UCLs) and the lower control limits (LCLs) set at ±3 SD of the three example control
charts are observed for both parameters. Statistically unlikely runs of data either greater
(e.g., As) or less than (e.g., V) mean residual value (>6 sequential observations greater than
less than the mean) were also identified in the x-bar chart (Figure 2). Although EWMA
and CUSUM are typically used in Phase II monitoring, changes are especially apparent
after ~2015 in these two chart types, indicating a lack of statistical control in the data-
generating processes.

While examining these potentially relevant differences can provide some focus for
identifying the sources of the exceedances, the patterns apparent in the control charts
are also consistent with the advantages of each type of chart. The x-bar is sensitive to
discrete exceedances, and EWMA is even more sensitive [2]. CUSUM is also sensitive to
long-term patterns in the data (such as greater-than-average vanadium from 2007 to 2015
and lower than average afterward) but less sensitive to larger step-changes [2]. However,
the susceptibility of CUSUM to inertia are also apparent, as long-run increases followed by
decreases are slow to return to the in-control conditions [63].

Some of these changes in water quality may be associated with industrial activities.
Spikes in V in the lower Muskeg River may be associated with local development in 2008
(beginning of Kearl construction; Figure 1), including mine construction and consequent
groundwater depressurization (depending on the fate of this water), but earlier construction
of the Jackpine mine (started in 2006; Figure 1) is not apparent from the x-bar, EWMA, or
CUSUM charts (Figure 2). However, four of the nine exceedances of the UCL in the V x-bar
chart occur in the month of April, suggesting that the changes may still be associated with
discharge. Relationships between concentration and discharge in rivers may be poorly
defined at extreme values [64], and the performance may also be further diminished when
instantaneous discharge information for the moment and location at which a sample is
collected is not available. For example, previous work in the Athabasca River has also
shown the likely residual influence of discharge despite its inclusion in statistical models
describing total metals, such as V [48]. While discharge was used as an opportunistic
covariate in this other study, e.g., [48], and it did not benefit from planning for co-located
flow adjustments, there are also only weak effects of discharge on both As and V at the
lower Muskeg River station (Figure S3).

Opposite long-term trends (most apparent in the EWMA and CUSUM analyses
(Figure 2) but also shown in the raw concentration data (Figure S1)) were also observed in
V and As. Vanadium was progressively lower than predicted over time, while the concen-
tration of As was progressively greater than predicted over time (Figure 2). The discordant
changes in As and V may suggest an alteration of sources influencing water quality in
the Muskeg River from 2004 to 2019. Changes in groundwater interactions with surface
waters, bedrock or surficial sediment erosion, seasonal groundwater recharge and discharge
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(Figure S4), the fate of mine depressurization water, and activities at individual facilities
may also affect these variables, e.g., [65]. While a lack of a clear correlation between As and
V (Figure S5) also suggests the influence of different drivers or sources, the changes in V
and As may, however, also be associated with study design changes or alterations in the
data-generating process after 2015, despite the continuation of the chemical measurement
methodology. Although specifically and clearly diagnosing the causes of these changes is
beyond the scope of this work, the control charts have demonstrated their value by clearly
highlighting differences after accounting for background sources of variation that may be
worth pursuing in further detailed analyses.
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Figure 2. Univariate control charts (Shewart’s x-bar, EWMA, and CUSUM) for residual concentrations
of example water quality variable (vanadium and arsenic) measurements at the lower Muskeg River
(station AB07DA0610; Figure 1); red symbols indicate exceedances of upper control limits (UCLs);
blue symbols indicate exceedances of lower control limits (LCLs); yellow symbols indicate runs of
>6 serial observations greater or less than the mean (dashed horizontal line) in the x-bar chart.
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2.2. Multivariate Control Charts

While univariate analyses can be performed using individual parameters, single mea-
surements are rarely performed in most monitoring programs. In contrast, multiple and
concurrent measurements are often obtained on various indicators, e.g., [66], and in these
cases, multivariate techniques to evaluate all measurements simultaneously may be pre-
ferred [2]. Hotelling’s T2 was the first multivariate control chart developed and is analogous
to the Shewart x-bar [2]. Other multivariate control charts include the multivariate CUSUM
(MCUSUM; [67,68]) and the multivariate EWMA (MEWMA; [69]). While these charts
have important advantages over examining many univariate charts, including accounting
for correlations among variables, they have weaknesses as well [36]. For example, tools
such as MEWMA indicate only the magnitude (e.g., distance) of a shift but not its actual
direction [36]. The variable(s) driving the change is/are also obscured [2]. Subsequently,
diagnostics are required to determine the origin of the changes and to determine whether
the alterations are driven by unusually large or unusually small deviations in the individual
input variables ([69]; although important to multivariate control charting, diagnostics were
reserved for the next section in this study on industrial performance and production data
(See Section 3)).

Examining PM2.5 at Three Stations Using Multivariate Control Charts

Along with water quality, another commonly measured attribute of the environment is
air quality. Air quality is estimated as chemical concentrations of parameters, such as sulfur
dioxide or size fractions of particulate matter measured routinely near industrial facilities
or in populated areas [16]. The indicators are compared individually, combined into indices,
or compared using multivariate statistics, e.g., [70]. Additionally, although comparisons
to guidelines or calculations of air quality indices are common practices for estimating
potential health effects [71], other objectives, such as estimating downwind influence and
understanding patterns in data, are also common [72–74]. The example analyses here were
focused on the latter.

Air quality parameters are measured routinely in the OSR by the Wood Buffalo En-
vironmental Association (WBEA) [16]. While there can be unavoidable problems with
consistency of a parameter across multiple stations and analyzers going offline occa-
sionally (or data may be otherwise unavailable, such as 24 June–22 September 2016 and
16 September–31 December 2020 at the AMS15 site), the air quality network provides
quality-controlled and publicly available data. Unlike water quality sampling, air quality
data are typically available with equal sampling intervals. However, as outlined above,
unexpected breaks in the dataset may also occur.

In this example analysis, PM2.5 data were obtained from three stations (Horizon
[AMS15], Fort McKay-Bertha Ganter [AMS01], and Fort MacKay South [AMS13]; Figure 1)
in the OSR from 1 January 2010 to 31 December 2020 [75]. Prior to analyses with the control
charts, weekly means were calculated from the 1-h QA/QC’ed data available from WBEA.
The concentrations were used in an autoregressive (AR1) linear model by site for AMS01
and AMS13 with no missing weeks and equal sampling intervals (although some individual
1-h samples were missing). A GEE was used again for the AMS15 station to address the
gaps in the dataset at this site (Table S2). The response residuals from each individual model
were used in multivariate control charts: T2, MEWMA, and MCUSUM. Two MCUSUM
procedures, MCUSUM and MCUSUM2, were used and respectively correspond to the
Crosier [67] and the Pignatiello and Runger [68] techniques. These multivariate control
charts were created using the mult.chart() function in the qcc R package [51] using the
default settings. Two sets of control charts were also created. First, all points were included
in the initial charts, observations likely associated with known fires were removed, and a
second updated analysis was also performed. In the second set of control charts, the GEE
was used to account for unequal gaps in the sampling intervals [60].

Similar to the univariate control charts used for individual parameters of water quality,
the initial multivariate control charts of mean weekly PM2.5 from three air stations in the
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OSR identified some out-of-control conditions (Figure 3). The Hotelling’s T2 control chart
indicated five consecutive out-of-control weeks in 2011 and two in 2016. Additionally, the
two largest single deviations for PM2.5 occurred during these periods. Two well-known
forest fires likely affected these patterns. First, the Richardson fire occurred in the spring
of 2011 and the Horse River fire occurred in the spring of 2016. The impact of these fires,
especially the Horse River fire, have been examined extensively in the peer-reviewed
literature, e.g., [76].
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Figure 3. Multivariate control charts (T2, MEWMA, MCUSUM, MCUSUM2) applied to residual
concentrations of example air quality data (PM2.5) from three stations in the Oil Sands Region:
Horizon, Fort McKay-Bertha Ganter, and Fort McKay South from January 2010 to December 2020; red
horizontal lines show estimated control limits for each chart; red/filled circles indicate exceedances
of control limits; white/open circles indicate no exceedances of control limits; left panes show control
charts using all available data; and right panes show control charts with large forest fire events from
2011 and 2016 removed.
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Other out-of-control (OOC) points were also observed, but they are more apparent
in the MEWMA and the two MCUSUM charts. The first clustering occurs in the weeks
of 25 June and 2 July 2015 and may be associated with two fires in the Birch Mountains
northwest of the Horizon mine (in the Peace basin; Figure S6). A second clustering of
OOC points in both the MEWMA and both MCUSUM charts occurred in 2014 (weeks of
30 July–20 August 2014). This clustering does not appear related to any proximate forest
fires (Figure S6), but as described next (Section 4), the increased T2 may be directly or
indirectly associated with greater flaring/wasting of sulfur at the Horizon mine (Figure 4).
Another anomalous clustering of weeks exceeding the control limits was identified in
August 2018 only in the MCUSUM charts and as a single OOC point in the Hotelling’s T2

chart; a spike was also indicated in the MEWMA chart, but no exceedances of the control
limits were identified. While more specific analyses may be warranted, OOC points in
PM2.5, such as those in 2018, may be associated with distant fires hundreds or thousands
of kilometers away, e.g., [77]. Importantly, the ‘exaggeration’ of patterns associated with
the inclusion of historical measurements in the MCUSUMs highlights the utility of this
approach but also the need for processes to protect against over-interventions. Additionally,
the results from the multivariate charts also emphasize the typical avoidance of MCUSUM
charts for Phase I analyses [2], but they also suggest how the sensitivity can be beneficial
when the tools are used in retrospective analyses. However, the charts can also be used in
a pseudo-Phase II approach to illustrate whether and when OOC points were observed,
potentially to develop hypotheses to explain changes in the chosen indicators, and to
demonstrate opportunities for earlier interventions [41]. A pseudo-Phase II process may
be enhanced by comparing the results of the Hotelling’s T2 and other multivariate charts
to respectively highlight large and small deviations, but it may also emphasize important
distinctions between industrial and ecological control charts. For example, industrial
process control occurs in highly controlled, enclosed, and bounded settings, whereas the
opposite is often true in natural areas.

From these initial charts, identifying events not associated with oil sands industrial
activity suggests that the known fires can be removed from the analyses, and we can
progress into the second tier of preliminary analyses. Removing the observations associated
with the 2011 and 2016 forest fires reveals many additional OOC points (Figure 3), including
three large values in the MEWMA in January 2012, July 2015, and August 2018. The analyses
also suggest greater sensitivity of the MCUSUM compared to the MCUSUM2 when the
forest fire data are removed.

Several additional points apparent from the analyses of the reduced dataset are worth
emphasizing. First, some of these OOC points may still also be associated with other
fires, such as the OOC data in July 2015 (Figure 3 and Figure S6), but a large exceedance
also occurs in the winter (e.g., 2012). While this difference in the winter may be driven
by discrepancies in the PM2.5 measurements among sampling locations, the combination
of unique industrial and weather conditions during these times and any available and
detailed chemical profiles of the particulate matter [78] may assist in future diagnostics.
These results also show the potential difficulties of prematurely or only using tools such as
MCUSUM in Phase I analyses (with ≥68% of observations are OOC (Figure 3)) and suggest
the likely need for other analyses of these data using additional tools. Additionally, like
other control charts, the results are self-referential and may not have any relevance for
objectives, such as implications for human or ecosystem health [30,79] when not calibrated
to do so.
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Figure 4. Example control charts (T2, x-bar (PC1), and T2 (PC1:PC5)) for industrial production and
performance data at the Horizon mine from January 2010 to December 2020 and plots of example
input variables over time scaled to a range of 0:1; red symbols indicate exceedances of upper control
limits (UCLs); blue symbols indicate exceedances of lower control limits (LCLs); yellow symbols
indicate runs of serial observations greater or less than the mean (dashed horizontal line in the
x-bar chart; half red and half yellow symbols indicate both exceedances of UCLs and a run of
>6 observations greater than the mean; half blue and half yellow symbols show exceedances of LCLs
and a run of >6 observations less than the mean; black symbols show input variables when the
original T2 (top pane) indicates an out-of-control condition.
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3. Multivariate Control Charts, High Dimensionality, and Diagnostics: Industrial
Production and Performance Data for the Horizon Mine

Multivariate control charts are useful for examining datasets comprised of multiple
measurements, but two potential issues require special attention. The first is the problem of
high dimensionality. Including too many variables in a multivariate control chart can affect
the calculation of variance-covariance matrices [80] and reduce their efficiency [2]. To rectify
this ISSUE, subsets of variables can be included, or techniques such as Principal Components
Analysis (PCA) can be used to reduce the dimensionality of the original dataset [2].

Although multivariate control charts can indicate changes among multiple variables,
they can also reduce the interpretability of the patterns requiring diagnostics [36]. Many
diagnostic techniques have been proposed, including multiple regression [59], univariate
control charts, and decomposing of the control chart statistic by removing one variable at a
time [2]. However, some diagnostic approaches can be challenging with charts based on
PCA [2] and can erode the straightforwardness typical of control charting. In some cases,
straightforward plots of the individual input variables may reveal the measurements likely
driving the exceedances [36].

Among the example datasets used here, the production and performance data pro-
vided to the Alberta Energy Regulator (AER) by the Horizon mine are closest to the types
of data used in industrial control charts [2]. The performance and production data provide
general information about the status of a facility and include metrics of mining and pri-
mary/secondary separation (e.g., the volume of crude bitumen produced and the mass of
mined oil sand), the performance of upgrading equipment (e.g., volume of synthetic crude
produced and mass of petroleum coke produced), and environmental performance (e.g.,
sulfur production, sulfur flared/wasted). These data are provided to the AER as monthly
sums. For the analysis here, these data were scaled to daily averages per month and were
log10 transformed prior to analysis.

These analyses of the industrial data were performed using three control charts us-
ing the functions and R packages described above. First, Hotelling’s T2 was applied to
15 variables available for the Horizon mine [81]. PCA was also performed to decompose
the Horizon dataset and reduce its dimensionality, and two additional control charts were
created. From the decomposed data, two additional control charts were produced. First,
an x-bar chart was applied to the first PC (capturing ~67% of the variability present in
the raw data; Table 1) describing mining and synthetic crude production at the Horizon
mine (Table 1). A second T2 chart was also used to examine patterns in the first five PCs
(comprising ~95% of the variability; Table 1). The second PC was associated with diluent
naphtha as fuel and plant use of natural gas, while PC3 to PC5 were associated with
flaring/wasting of various substances, such as process gas and sulfur (Table 1). However,
the loss of information from using PCA is also apparent from the factor loadings (Table 1).

Multivariate control charts of the industrial production data from the Horizon mine
highlight relevant patterns (Figure 4). First, the exceedances in the three charts produced
using the production and performance data correspond, but do not match exactly. For
example, the gradual increase in production shown as the exceedances of the LCL and
the runs after ~2016 in the PC1 x-bar chart are not indicated in the T2 or the PC T2 charts
(Figure 4). However, the analyses do show the correspondence between Hotelling’s T2 and
the PCA charts for the largest outliers, such as ~January to July 2011 (Figure 4). Overall,
the multivariate charts indicate general patterns in the status of input variables and can
indicate subtle shifts that are difficult to parse when using multiple univariate charts [2].
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Table 1. Factor loadings of input variables with the first five principal components (PCs) for pro-
duction and performance data from the Horizon mine from January 2010 to December 2020, along
with standard deviation and variance estimates; yellow highlighting shows input variables most
associated with each PC.

Input Variables PC1 PC2 PC3 PC4 PC5
Diluent Naphtha–Flared/Wasted −0.301 0.045 −0.121 −0.070 0.026
Process gas-Flared/Wasted −0.173 −0.175 0.222 0.662 −0.515
Natural gas-Flared/Wasted −0.171 −0.151 0.586 −0.485 −0.449
Sulphur-Flared/Wasted −0.126 0.205 0.703 0.286 0.596
Diluent Naphtha-Fuel −0.177 0.570 −0.132 −0.017 −0.048
Process Gas-Fuel −0.286 −0.197 −0.061 −0.002 0.002
Natural Gas-Fuel −0.213 0.424 0.087 −0.358 −0.081
Oil Sand-Mined −0.291 −0.094 −0.223 0.168 0.165
Natural Gas-Plant Use 0.133 −0.547 0.056 −0.275 0.323
Petroleum Coke-Production −0.309 −0.058 −0.062 −0.011 0.063
Crude Bitumen-Production −0.310 −0.102 −0.028 −0.010 −0.009
Intermediate
Hydrocarbon-Production −0.308 −0.105 −0.044 −0.038 0.117

Process Gas-Production −0.309 −0.115 −0.047 −0.009 −0.025
Sulfur-Production −0.310 −0.046 −0.074 −0.059 0.074
Synthetic Crude Oil-Production −0.308 −0.104 −0.055 −0.041 0.115
Standard deviation 3.161 1.320 0.967 0.916 0.816
Proportion of variance 0.67 0.12 0.06 0.06 0.04
Cumulative proportion of variance 0.67 0.79 0.85 0.91 0.95

Although multivariate options reduce the number of charts needed, they can simulta-
neously reduce the specificity of the analysis requiring diagnostics. Diagnosing the primary
drivers of a multivariate control chart can be performed by viewing plots of the individual
input variables or of univariate control charts (Figure 4, Figure S7, and Figure S8). The
univariate plots of raw data suggest that the periods of potential warnings in December
2010 (near the UCL) and January 2011 (greater than the UCL) in the PC1 x-bar chart, as an
example, are associated with reduced or no production at the facility during the upgrading
shutdown from ~January to July 2011 (Figure 4). However, plots of the raw variables
compared to the multi- or univariate control charts also show how processing the data
alters the sensitivity of a given approach to patterns in the data. For example, the flaring
and wasting of sulfur in August 2014 and June 2015 are among the largest measurements in
the raw data (Figure 4) and are flagged in the Shewart x-bar and EWMA charts (Figure S8),
but the 3 multivariate charts do not all highlight both instances (Figure 4).

While viewing raw data or univariate control charts can easily suggest the variables
driving a multivariate statistic such as Hotelling’s T2, diagnostics can also be more for-
mal. Omitting individual variables and re-running the analysis can reveal the variables
driving the T2 [2]. Among the OOC points identified with the full T2 model, most are
affected by more than one process/performance variable (Table 2). For example, the OOC
point in January 2011 is affected by multiple variables, including the production of sulfur,
crude bitumen, and process gases (Table 2). However, these data may also suggest the
role of upgrading in driving unusual plant conditions, consistent with the technological
sophistication of this process compared to mining and primary/secondary separation [82].



Environments 2023, 10, 78 13 of 21

Table 2. Values of (1 − (T2
reduced/T2

full)) used for diagnosing drivers of Hotelling’s T2 statistic at
the Horizon mine, where exceedances were observed in the original T2 control chart from Figure 4
(February 2010–October 2017); higher values (and greater saturation of green color) within columns
indicate greater influences of the row variable(s) on the full T2 statistic; DN = diluent naphtha;
PG = process gas; NG = natural gas; S = sulfur; OS = oil sand; PC = petroleum coke; CB = crude
bitumen; IH = intermediate hydrocarbon; SCO = synthetic crude oil; F/W = flared/wasted; F = fuel;
M = mined; PU = plant use; P = production.

Industrial
Variable

Feb.
‘10

Jan.
‘11

Feb.
‘11

Mar.
‘11

Apr.
‘11

May
‘11

Jun.
‘11

Jul.
‘11

Nov.
‘11

Feb.
‘12

May
‘13

Aug.
‘14

Jul.
‘16

Oct.
‘17

DN-F/W 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.01 0.00

PG-F/W 0.00 0.03 0.00 0.01 0.02 0.01 0.01 0.01 0.00 0.02 0.00 0.02 0.10 0.00

NG-F/W 0.00 0.07 0.04 0.09 0.13 0.21 0.07 0.41 0.00 0.00 0.00 0.05 0.29 0.00

S-F/W 0.00 0.00 0.02 0.02 0.03 0.01 0.00 0.02 0.00 0.08 0.00 0.31 0.00 0.00

DN-F 0.09 0.08 0.06 0.01 0.24 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.06 0.00

PG-F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.01 0.00

NG-F 0.01 0.08 0.02 0.00 0.17 0.05 0.03 0.09 0.01 0.04 0.00 0.03 0.20 0.00

OS-M 0.00 0.07 0.03 0.06 0.04 0.14 0.20 0.53 0.00 0.00 0.00 0.05 0.23 0.00

NG-PU 0.89 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.01 0.02 0.00 0.00 0.19 0.00

PC-P 0.01 0.17 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.07 0.00 0.43 0.05 0.00

CB-P 0.00 0.31 0.00 0.01 0.10 0.12 0.13 0.10 0.00 0.09 0.00 0.04 0.04 0.01

IH-P 0.00 0.02 0.01 0.02 0.01 0.01 0.02 0.10 0.00 0.07 0.37 0.07 0.11 0.02

PG-P 0.00 0.25 0.02 0.02 0.05 0.02 0.01 0.01 0.01 0.27 0.00 0.00 0.02 0.00

S-P 0.00 0.33 0.32 0.31 0.09 0.00 0.01 0.28 0.00 0.06 0.00 0.02 0.06 0.00

SCO-P 0.00 0.09 0.02 0.01 0.06 0.02 0.03 0.00 0.00 0.22 0.43 0.05 0.21 0.00

Utilizing control charts of industrial production and performance data has important
implications for interpreting the results of regional environmental monitoring. As discussed
in other work [17,83], a production/upgrading shutdown in 2011 may have implications for
the deposition of contaminants of concern in snow during 2011 snowpack studies [84,85].
Later reductions in production at Horizon, including February 2012, May 2013, and October
2017, may also have implications for other studies; another slowdown occurred in July
2016 and may be associated with the Horse River fire. The gradual increase in synthetic
crude production at the Horizon mine after ~2013 and other alterations, such as greater
flaring and wasting of sulfur after ~2016 (Figure 4 and Figure S8), are also apparent from
these analyses, which, along with changes at other facilities e.g., [86], are likely relevant
to interpreting the results of regional monitoring studies. Retrospective analyses, such as
Phase I control charting applied to industrial data and highlighting periods of changes
in production, may focus additional analyses of ambient monitoring using data available
from those periods.

Prospectively, designing opportunistic studies and adjusting any ongoing monitoring
may also be prompted by routinely examining control charts of the industrial performance
data. For example, any observed patterns in the control charts of industrial performance
may be tested using indicators that respond quickly. These indicators may be used to
document the influence of industrial facilities by identifying any responses to unplanned
shutdowns, plant re-starts, or other changes in production.

Longer shutdowns, or slowdowns over a season may also be relevant for design-
ing collections of indicators that respond over longer periods of time, including benthic
communities [87]. Similarly, the occurrence of any observed differences in environmental
indicators during the ‘normal’ operational status of a facility or multiple facilities may be
used to better contextualize any relevant patterns in the ambient data.

However, there are also some challenges with using routinely reported production
and performance data to adjust a monitoring program or contextualize results of field
studies. Currently, only monthly production and performance data are available for these
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facilities. Daily averages (or totals) reported per calendar month are likely not sufficient to
identify acute events. For example, known upset events lasting less than one day (e.g., [88])
were not apparent in the control chart of mean daily (calculated from monthly statistics)
production and performance data for the Horizon mine. Similarly, longer events spanning
the end of one month and the beginning of the next may be obscured by the reporting
schedule of the data. Finally, data provided by the AER are also three months out of date.
Overcoming these challenges may benefit the detection of the acute or chronic effects of oil
sands development and may also improve any state of environment reporting.

4. Control Charts and Biological Monitoring Data

As already discussed briefly, many previous applications of control charts in envi-
ronmental monitoring have examined either chemical or physical endpoints. However,
biological monitoring is also commonplace, and many of these data may not conform
to the assumptions of traditional control charts, e.g., [28]. In these instances, analogs of
control charts can be derived from estimating data distributions and their attributes, in-
cluding gamma, Weibull, lognormal, or other distributions, e.g., [22,24,25]. Others have
also developed generic techniques for multivariate data. For example, Anderson and
Thompson [30] developed a generic distance-based multivariate control chart to examine
benthic communities. The benefit of this approach is its use with any desired dissimilarity
measurements, and there is no limit to the number of variables that can be included [30].
While diagnostics are required to determine which variables may be driving any observed
exceedances and can have challenges for understanding relevance [89], the approach has
been used for community structures in saline lagoons [90] and coastal wetlands [91]. The
distances for an age-structured fish population have also been used as an input variable in
a CUSUM [92], further highlighting the potential versatility of control charts.

Unlike other types of metrics used to calculate a T2 chart, for example, chart types
proposed for some biological data often use simulations/bootstrapping to calculate the
control limits, e.g., [30,93]. The main advantages of using a bootstrapping procedure to
calculate a control limit is its versatility and the many versions available, such as the
smoothed bootstrapping applicable for small sample sizes [94].

Bird Communities in the Ells River Basin

Exploring the utility of control charts for biological data was performed here using
bird community data. The methodology developed by Anderson and Thompson [30] was
adopted here to examine changes in bird community data available from Saracco et al. [95]
and were collected using methods developed for the Monitoring Avian Productivity and
Survivorship (MAPS) program. Data collection for birds occurred in the spring from 2012
to 2019 at the selected example locations. Data for two adjacent sites in the Ells Basin (sites
ELBS and ELBN; Figure 1) designated here at the test sites were compared to data from the
MAKR reference site. The MAKR location is roughly 4–5 km from the ELBS and ELBN test
sites but is the least disturbed from the MAPS data [95]. Relative to the MAKR location,
the physical habitat disturbance within 5 km of the ELBS and ELBN sites were 2.6 and
3.03 times greater in 2018 (the year used to gauge disturbance pressure [95]).

Following Anderson and Thompson [30] multivariate (Euclidean) distances for each
of the test sites were calculated and used to further calculate two test statistics relative to
a two-year baseline period (2012 and 2013; BL; db

t ) and to predict each additional year of
data over time (OT; dt) compared to all previous years [30]. Additionally, following [30],
thresholds to interpret the test statistics used simulations from data from the MAKR site.
Using kernel smoothers of capture rates of each bird species, simulations of 10,000 eight-
year random (and reference) bird communities were generated. The UCL was set to the
90th percentile of the 10,000 iterations. The median was also calculated.

Observed distances compared to the expected range of possible distances for each
location suggested no exceedances of the 90th percentile UCL in the comparisons over
time (e.g., dt; Figure 5). However, a run of four db

t values from 2016 to 2019 at the ELBN
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exceeded the UCL computed for the first two years from the MAKR data (Figures 1 and 5).
These exceedances could be related to the changes in the Ells Basin after development of
the Joslyn North mine was halted in May 2014 [96].
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Figure 5. Multivariate distance-based control charts [30] for adult bird communities at two sites
(ELBN and ELBS) in the Ells basin compared to a fixed 2-year baseline (2012 and 2013) and to all
previous years (t-X rolling baseline); solid red lines show estimated upper control limit (UCL) as 90th
percentile of simulated bird communities for the MAKR reference location; dashed red lines show
the median of simulated bird communities for the MAKR reference location; open symbols show no
exceedances of the UCL; closed symbols show exceedance of the estimated UCL.

The analyses of the bird community data highlight some of the main advantages
for adopting control charts in biological monitoring. The goals of control charting align
closely with the goals of environmental monitoring, including identifying unusual states in
environmental indicators. Another advantage of incorporating control charts into environ-
mental monitoring is the potential for standardizing the presentation and interpretation
of data [28]. However, a standardized and simplified presentation can also obscure the
details embedded in the analyses, including the validity of any assumptions made. The
approach also requires reference data, which may be challenging to obtain, especially in
the OSR, where multiple stressors, such as physical disturbances of habitats, may often be
accompanied by atmospheric deposition of contaminants of concern [96].

5. Discussion

Control charting is well established in manufacturing [2] and has been adopted in
many disciplines, including environmental monitoring, e.g., [97–99]. Control charts have
been used in many environmental studies, including studies of water quality, air quality,
sediment quality, and many others [21,30,37,41,72,100–111]. Control charts have also been
suggested and used as tools in conservation science [31,112], and the concept has been used
in other work, e.g., [96,113].

While often not necessary for identifying some types of differences, including known
spills, for data collected as covariates, or for data not intended for a direct comparison
among treatments, control charts have desirable attributes for further expanding their use
in environmental monitoring [13]. The tools are well suited for quickly identifying subtle
step-changes, gradual trends, or other unusual or non-random patterns in surveillance
data. The tools can be applied to grouped data or can be used to examine individual
observations [2]. Control charts can ingest many different types of data, their versatility
can be expanded by pre-processing, and both stock and custom control charts can be
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used [30,114]. Control charts may also be useful for presenting preliminary results of data
collected from instrumented watersheds [41].

While the tools are broadly useful and the use of control charting in surveillance
monitoring is possible, there are some types of programs that may benefit from the approach.
For example, control charts may be especially useful in large-scale and long-term regional
monitoring programs examining many physical environments, in which study questions
are tiered (e.g., surveillance and investigations of cause), measurements are routinized
and planned, and a filtering mechanism is needed to categorize results [29,54,55]. Control
charts (and the concept) may also be well suited when relatively uniform reporting across
multiple indicators with varying attributes is desired by managers and stakeholders to
assess the state of the environment, e.g., [34]. As practices improve and better programs
are planned and implemented in the future, e.g., [33], control charting may also become a
standard approach to simplify any initial reporting of the routine data. Additionally, regular,
current, and expeditious analyses of industrial performance data with control charts and
the widespread availability of those results may also greatly improve the efficiency and
design of monitoring programs.

Although there are benefits to adopting control charting within regional monitor-
ing, the approach is neither infallible nor universally applicable. For example, some
control charts are susceptible to the directional inertia of serial observations [63], and
the causes of changes can be difficult to diagnose, especially with multivariate charts [2].
Additionally, not all activities considered ‘monitoring’ may require probabilistic control
charts, such as comparisons of chemical concentrations to well-established, robust, and
relevant guidelines. Furthermore, although activities in which conventional statistical
approaches and hypotheses are tested are typically used may be the best targets for gaining
the benefits of control charts, the new tools will likely compete against those established
methods [2,29,112,115–118]. In some or many applications, the conventional tools may
also be sufficient. For example, simple linear regressions identified temporal trends in V
and As (Figure S2). Additionally, control charts and the control limits may have limited or
no inherent ecological or social relevance [89] and cannot be used to make management
decisions, e.g., [41], unless explicitly imbued with these properties [29].

Other challenges are also likely with using control charts. Confidently transitioning
from the Phase I (retrospective) to Phase II (prospective) analyses [2] in uncontrolled,
natural environments can be challenging. However, Phase I retrospective analyses are
intended to eliminate special causes [2] and for instigating deeper studies, including either
initiating new focused collections of data or obtaining and analyzing other existing and
relevant data. As we have seen, accounting for natural background covariation may
simplify these analyses, but complex, arduous, and data-intensive physical models or
pre-processing of data may also eventually be required. Despite these difficulties, planning
for the use of control charts, e.g., [29], and for the eventual transition to Phase II analyses
can greatly improve the utility of environmental monitoring.

Another potential challenge is a discrepancy between the actual and estimated false-
positive rates [9,100,119]. Control charts can also be susceptible to high false-positive rates,
especially if autoregressive models are not used where they are likely useful. Similarly,
breaks in datasets can also complicate analyses. For example, both missing PM2.5 data from
the Horizon air quality station and time delays in releasing data used as covariates, such as
discharge data for the lower Muskeg, can affect the suitability of default control charts for
analyzing data. Expanding analyses to multiple stations (as for air) or to multiple semi-
independent datasets (as for water quality) may be especially challenging. Additionally, the
challenges of combining semi-independent datasets, such as discharge and water quality,
will be further affected when these analyses are not planned. The tools and presentation of
the results can also obscure the technical details of the underlying analyses, and the tools
can require well-defined reference or baseline data [28].

Despite the potential challenges with control charts, the tools have broad applicability
within environmental monitoring. However, as with most approaches, understanding
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their advantages and limitations is necessary. As described above, control charts are well
suited for reporting the results of routine surveillance monitoring obtained from long-term
programs [13] and could be included as one part of a suite of techniques.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/environments10050078/s1. Table S1. Regression table for vanadium
and arsenic. Generalized estimating equations used to calculate response residuals used in Figure 2.
Table S2. Regression results for PM2.5 at three stations in the oil sands regions used to calculate
response residuals for multivariate control charts in Figure 3; AR1 indicates the correlation coefficient
between adjacent observations calculated using the geeglm() function in the geepack R package; Lag1
variable is the lagged PM2.5 for previous week used as an input variable in the full regression models
with no missing weeks. Figure S1. Control charts of raw concentrations of vanadium and arsenic
at the lower Muskeg station, plus the raw concentrations plotted over time with a linear model.
Figure S2. Time intervals between sampling events at the lower Muskeg River site between 2004
and 2021. Figure S3. Relationships of the concentrations of vanadium and arsenic with discharge
in the lower Muskeg River from 2004 to 2019; statistical relationship described with a generalized
additive model (with its 95% confidence interval). Figure S4. Mean daily elevation of groundwater at
the sampling well 07DAG051 in the Muskeg drainage area (57.237790845◦ N, −111.449408386◦ W).
Figure S5. Relationship between the concentrations of vanadium and arsenic (mg/L) at the lower
Muskeg River site between 2004 and 2019. Figure S6. Areas of forest fires from 2010 to 2020 in
northern Alberta showing the oil sands administrative area along with all project areas. Figure S7.
Scaled (0 to 1) performance and production mean daily values (per month) for the Horizon mine; red
symbols show out-of-control measurements using all variables and the T2 chart (see Figure 4 in main
text). Figure S8. Univariate control charts (x-bar, EWMA, CUSUM) for industrial production and
performance measurements for the Horizon mine from January 2010 to December 2020; red symbols
indicate exceedances of upper control limits (UCLs); blue symbols indicate exceedances of lower
control limits (LCLs); yellow symbols indicate runs of >6 serial observations greater or less than the
mean in the x-bar chart.

Funding: This research received no external funding.

Data Availability Statement: All data used in this study are publicly available; websites are provided
in the references.

Acknowledgments: The author acknowledges the efforts of all investigators involved in collecting
the original data used in this study. While the work was conducted under the funding umbrella of
the Oil Sands Monitoring (OSM) program, this work does not represent an official position of OSM
or the sponsoring organizations, including the governments of Alberta and Canada.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Shewart, W.A. Economic Control of Quality of Manufactured Product; Van Nostrand Company, Inc.: New York, NY, USA, 1931.
2. Montgomery, D.C. Introduction to Statistical Quality Control; John Wiley & Sons: Hoboken, NJ, USA, 2020; ISBN 1-119-72309-4.
3. Page, E.S. Continuous Inspection Schemes. Biometrika 1954, 41, 100. [CrossRef]
4. Hunter, J.S. The Exponentially Weighted Moving Average. J. Qual. Technol. 1986, 18, 203–210. [CrossRef]
5. Crowder, S.V. Design of Exponentially Weighted Moving Average Schemes. J. Qual. Technol. 1989, 21, 155–162. [CrossRef]
6. Lucas, J.M.; Saccucci, M.S. Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. Technometrics

1990, 32, 1–12. [CrossRef]
7. Roberts, S.W. Control Chart Tests Based on Geometric Moving Averages. Technometrics 2000, 42, 97–101. [CrossRef]
8. Caulcutt, R. Control Charts in Practice. Significance 2004, 1, 81–84. [CrossRef]
9. Woodall, W.H.; Faltin, F.W. Rethinking Control Chart Design and Evaluation. Qual. Eng. 2019, 31, 596–605. [CrossRef]
10. Greig, L.A.; Duinker, P.N. A Proposal for Further Strengthening Science in Environmental Impact Assessment in Canada. Impact

Assess. Proj. Apprais. 2011, 29, 159–165. [CrossRef]
11. Russell, E.W.B. Discovery of the Subtle. In Humans as Components of Ecosystems; McDonnell, M.J., Pickett, S.T.A., Eds.; Springer:

New York, NY, USA, 1993; pp. 81–90, ISBN 978-0-387-98243-4.
12. Yoccoz, N.G.; Nichols, J.D.; Boulinier, T. Monitoring of Biological Diversity in Space and Time. Trends Ecol. Evol. 2001, 16, 446–453.

[CrossRef]

https://www.mdpi.com/article/10.3390/environments10050078/s1
https://www.mdpi.com/article/10.3390/environments10050078/s1
https://doi.org/10.1093/biomet/41.1-2.100
https://doi.org/10.1080/00224065.1986.11979014
https://doi.org/10.1080/00224065.1989.11979164
https://doi.org/10.1080/00401706.1990.10484583
https://doi.org/10.1080/00401706.2000.10485986
https://doi.org/10.1111/j.1740-9713.2004.024.x
https://doi.org/10.1080/08982112.2019.1582779
https://doi.org/10.3152/146155111X12913679730557
https://doi.org/10.1016/S0169-5347(01)02205-4


Environments 2023, 10, 78 18 of 21

13. Burgman, M.; Lowell, K.; Woodgate, P.; Jones, S.; Richards, G.; Addison, P. An Endpoint Hierarchy and Process Control Charts for
Ecological Monitoring. In Biodiversity Monitoring in Australia; CSIRO: Clayton, Australia, 2012; pp. 71–78.

14. Roberts, D.R.; Hazewinkel, R.O.; Arciszewski, T.J.; Beausoleil, D.; Davidson, C.J.; Horb, E.C.; Sayanda, D.; Wentworth, G.R.;
Wyatt, F.; Dubé, M.G. An Integrated Knowledge Synthesis of Regional Ambient Monitoring in Canada’s Oil Sands. Integr. Environ.
Assess. Manag. 2022, 18, 428–441. [CrossRef]

15. Roberts, D.R.; Bayne, E.M.; Beausoleil, D.; Dennett, J.; Fisher, J.T.; Hazewinkel, R.O.; Sayanda, D.; Wyatt, F.; Dubé, M.G. A
Synthetic Review of Terrestrial Biological Research from the Alberta Oil Sands Region: 10 Years of Published Literature. Integr.
Environ. Assess. Manag. 2022, 18, 388–406. [CrossRef]

16. Horb, E.C.; Wentworth, G.R.; Makar, P.A.; Liggio, J.; Hayden, K.; Boutzis, E.I.; Beausoleil, D.L.; Hazewinkel, R.O.; Mahaffey, A.C.;
Sayanda, D.; et al. A Decadal Synthesis of Atmospheric Emissions, Ambient Air Quality, and Deposition in the Oil Sands Region.
Integr. Environ. Assess. Manag. 2022, 18, 333–360. [CrossRef] [PubMed]

17. Arciszewski, T.J.; Hazewinkel, R.R.O.; Dubé, M.G. A Critical Review of the Ecological Status of Lakes and Rivers from Canada’s
Oil Sands Region. Integr. Environ. Assess. Manag. 2022, 18, 361–387. [CrossRef] [PubMed]

18. Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK;
New York, NY, USA, 2002; ISBN 978-0-521-81128-6.

19. Manly, B.F.J. CUSUM Environmental Monitoring in Time and Space. Environ. Ecol. Stat. 2003, 10, 231–247. [CrossRef]
20. Elevli, S.; Uzgören, N.; Bingöl, D.; Elevli, B. Drinking Water Quality Control: Control Charts for Turbidity and PH. J. Water Sanit.

Hyg. Dev. 2016, 6, 511–518. [CrossRef]
21. Schneider, H.; Hui, Y.; Pruett, J.M. Control Charts for Environmental Data. In Frontiers in Statistical Quality Control 4; Lenz, H.-J.,

Wetherill, G.B., Wilrich, P.-T., Eds.; Physica-Verlag HD: Heidelberg, Germany, 1992; pp. 216–226. ISBN 978-3-7908-0642-7.
22. Aykroyd, R.G.; Leiva, V.; Ruggeri, F. Recent Developments of Control Charts, Identification of Big Data Sources and Future Trends

of Current Research. Technol. Forecast. Soc. Chang. 2019, 144, 221–232. [CrossRef]
23. Aslam, M.; Bantan, R.A.R.; Khan, N. Design of a Control Chart for Gamma Distributed Variables Under the Indeterminate

Environment. IEEE Access 2019, 7, 8858–8864. [CrossRef]
24. de Araujo Lima-Filho, L.M.; Mariano Bayer, F. Kumaraswamy Control Chart for Monitoring Double Bounded Environmental

Data. Commun. Stat.—Simul. Comput. 2021, 50, 2513–2528. [CrossRef]
25. Bayer, F.M.; Tondolo, C.M.; Müller, F.M. Beta Regression Control Chart for Monitoring Fractions and Proportions. Comput. Ind.

Eng. 2018, 119, 416–426. [CrossRef]
26. Bersimis, S.; Psarakis, S.; Panaretos, J. Multivariate Statistical Process Control Charts: An Overview. Qual. Reliab. Engng. Int. 2007,

23, 517–543. [CrossRef]
27. Qiu, P.; Li, W.; Li, J. A New Process Control Chart for Monitoring Short-Range Serially Correlated Data. Technometrics 2020, 62,

71–83. [CrossRef]
28. Morrison, L.W. The Use of Control Charts to Interpret Environmental Monitoring Data. Nat. Areas J. 2008, 28, 66–73. [CrossRef]
29. Cook, C.N.; de Bie, K.; Keith, D.A.; Addison, P.F.E. Decision Triggers Are a Critical Part of Evidence-Based Conservation. Biol.

Conserv. 2016, 195, 46–51. [CrossRef]
30. Anderson, M.J.; Thompson, A.A. Multivariate Control Charts for Ecological and Environmental Monitoring. Ecol. Appl. 2004, 14,

1921–1935. [CrossRef]
31. Burgman, M. Risks and Decisions for Conservation and Environmental Management; Cambridge University Press: Cambridge, UK,

2005; ISBN 0-521-54301-0.
32. Bowles, D.E.; Bolli, J.M.; Clark, M.K. Aquatic Invertebrate Community Trends and Water Quality at Homestead National

Monument of America, Nebraska, 1996–2012. Trans. Kans. Acad. Sci. 2013, 116, 97–112. [CrossRef]
33. Lindenmayer, D.B.; Burns, E.L.; Tennant, P.; Dickman, C.R.; Green, P.T.; Keith, D.A.; Metcalfe, D.J.; Russell-Smith, J.; Wardle, G.M.;

Williams, D. Contemplating the Future: Acting Now on Long-term Monitoring to Answer 2050′s Questions. Austral Ecol. 2015,
40, 213–224. [CrossRef]

34. Culp, J.M.; Cash, K.J.; Wrona, F.J. Cumulative Effects Assessment for the Northern River Basins Study. J. Aquat. Ecosyst. Stress
Recovery 2000, 8, 87–94. [CrossRef]

35. MacCarthy, B.L.; Wasusri, T. A Review of Non-standard Applications of Statistical Process Control (SPC) Charts. Int. J. Qual.
Reliab. Manag. 2002, 19, 295–320. [CrossRef]

36. Oiffer, A.A.L.; Barker, J.F.; Gervais, F.M.; Mayer, K.U.; Ptacek, C.J.; Rudolph, D.L. A Detailed Field-Based Evaluation of Naphthenic
Acid Mobility in Groundwater. J. Contam. Hydrol. 2009, 108, 89–106. [CrossRef]

37. Chapman, P.M.; DeBruyn, A.M.H. A Control Chart Approach to Monitoring and Communicating Trends in Tissue Selenium
Concentrations. Environ. Toxicol. Chem. 2007, 26, 2237–2240. [CrossRef]

38. Nelson, L.S. Technical Aids: Notes on the Shewhart Control Chart. J. Qual. Technol. 1984, 16, 238–239. [CrossRef]
39. Page, E.S. On Problems in Which a Change in a Parameter Occurs at an Unknown Point. Biometrika 1957, 44, 248. [CrossRef]
40. Johnson, N.L. A Simple Theoretical Approach to Cumulative Sum Control Charts. J. Am. Stat. Assoc. 1961, 56, 835–840. [CrossRef]
41. Gove, A.D.; Sadler, R.; Matsuki, M.; Archibald, R.; Pearse, S.; Garkaklis, M. Control Charts for Improved Decisions in Environ-

mental Management: A Case Study of Catchment Water Supply in South-West Western Australia. Ecol. Manag. Restor. 2013, 14,
127–134. [CrossRef]

https://doi.org/10.1002/ieam.4505
https://doi.org/10.1002/ieam.4519
https://doi.org/10.1002/ieam.4539
https://www.ncbi.nlm.nih.gov/pubmed/34676977
https://doi.org/10.1002/ieam.4524
https://www.ncbi.nlm.nih.gov/pubmed/34546629
https://doi.org/10.1023/A:1023682426285
https://doi.org/10.2166/washdev.2016.016
https://doi.org/10.1016/j.techfore.2019.01.005
https://doi.org/10.1109/ACCESS.2019.2891005
https://doi.org/10.1080/03610918.2019.1635159
https://doi.org/10.1016/j.cie.2018.04.006
https://doi.org/10.1002/qre.829
https://doi.org/10.1080/00401706.2018.1562988
https://doi.org/10.3375/0885-8608(2008)28[66:TUOCCT]2.0.CO;2
https://doi.org/10.1016/j.biocon.2015.12.024
https://doi.org/10.1890/03-5379
https://doi.org/10.1660/062.116.0301
https://doi.org/10.1111/aec.12207
https://doi.org/10.1023/A:1011404209392
https://doi.org/10.1108/02656710210415695
https://doi.org/10.1016/j.jconhyd.2009.06.003
https://doi.org/10.1897/07-062R.1
https://doi.org/10.1080/00224065.1984.11978921
https://doi.org/10.1093/biomet/44.1-2.248
https://doi.org/10.1080/01621459.1961.10482129
https://doi.org/10.1111/emr.12040


Environments 2023, 10, 78 19 of 21

42. Hawkins, D.M.; Olwell, D.H. Cumulative Sum Charts and Charting for Quality Improvement; Springer Science & Business Media:
New York, NY, USA, 1998; ISBN 0-387-98365-1.

43. Regier, P.; Briceño, H.; Boyer, J.N. Analyzing and Comparing Complex Environmental Time Series Using a Cumulative Sums
Approach. MethodsX 2019, 6, 779–787. [CrossRef] [PubMed]

44. Mac Nally, R.; Hart, B.T. Use of CUSUM Methods for Water-Quality Monitoring in Storages. Environ. Sci. Technol. 1997, 31,
2114–2119. [CrossRef]

45. Manly, B.F.J.; Mackenzie, D. A Cumulative Sum Type of Method for Environmental Monitoring. Environmetrics 2000, 11, 151–166.
[CrossRef]

46. Zimmerman, S.M.; Dardeau, M.R.; Crozier, G.F.; Wagstaff, B. The Second Battle of Mobile Bay—Using SPC to Control the Quality
of Water Monitoring. Comput. Ind. Eng. 1996, 31, 257–260. [CrossRef]

47. Follador, F.A.C.; Boas, M.A.V.; Schoenhals, M.; Hermes, E.; Rech, C. Tabular Cusum Control Charts of Chemical Variables Applied
to the Control of Surface Water Quality. Eng. Agríc. 2012, 32, 951–960. [CrossRef]

48. Arciszewski, T.J.; Hazewinkel, R.R.; Munkittrick, K.R.; Kilgour, B.W. Developing and Applying Control Charts to Detect Changes
in Water Chemistry Parameters Measured in the Athabasca River near the Oil Sands: A Tool for Surveillance Monitoring. Environ.
Toxicol. Chem. 2018, 37, 2296–2311. [CrossRef]

49. Bicalho, B.; Grant-Weaver, I.; Sinn, C.; Donner, M.W.; Woodland, S.; Pearson, G.; Larter, S.; Duke, J.; Shotyk, W. Determination of
Ultratrace (\textless0.1 Mg/Kg) Elements in Athabasca Bituminous Sands Mineral and Bitumen Fractions Using Inductively
Coupled Plasma Sector Field Mass Spectrometry (ICP-SFMS). Fuel 2017, 206, 248–257. [CrossRef]

50. Alberta Environment and Protected Areas. Available online: http://osmdatacatalog.alberta.ca/dataset/surface-water-quality-
discrete (accessed on 21 August 2022).

51. Scrucca, L. Qcc: An R Package for Quality Control Charting and Statistical Process Control. R News 2004, 4, 11–17.
52. Noorossana, R.; Vaghefi, S.J.M. Effect of Autocorrelation on Performance of the MCUSUM Control Chart. Qual. Reliab. Eng. Int.

2006, 22, 191–197. [CrossRef]
53. Smeti, E.M.; Koronakis, D.E.; Golfinopoulos, S.K. Control Charts for the Toxicity of Finished Water—Modeling the Structure of

Toxicity. Water Res. 2007, 41, 2679–2689. [CrossRef]
54. Arciszewski, T.J.; Munkittrick, K.R.; Scrimgeour, G.J.; Dubé, M.G.; Wrona, F.J.; Hazewinkel, R.R. Using Adaptive Processes

and Adverse Outcome Pathways to Develop Meaningful, Robust, and Actionable Environmental Monitoring Programs. Integr.
Environ. Assess. Manag. 2017, 13, 877–891. [CrossRef]

55. Nita, A.; Fineran, S.; Rozylowicz, L. Researchers’ Perspective on the Main Strengths and Weaknesses of Environmental Impact
Assessment (EIA) Procedures. Environ. Impact Assess. Rev. 2022, 92, 106690. [CrossRef]

56. Guarnieri, J.P.; Souza, A.M.; Jacobi, L.F.; Reichert, B.; da Veiga, C.P. Control Chart Based on Residues: Is a Good Methodology to
Detect Outliers? J. Ind. Eng. Int. 2019, 15, 119–130. [CrossRef]

57. Mandel, B.J. The Regression Control Chart. J. Qual. Technol. 1969, 1, 1–9. [CrossRef]
58. Trexler, J.C.; Goss, C.W. Aquatic Fauna as Indicators for Everglades Restoration: Applying Dynamic Targets in Assessments. Ecol.

Indic. 2009, 9, S108–S119. [CrossRef]
59. Hawkins, D.M. Multivariate Quality Control Based on Regression-Adiusted Variables. Technometrics 1991, 33, 61–75. [CrossRef]
60. Hardin, J.W.; Hilbe, J.M. Generalized Estimating Equations; CRC Press (Taylor & Francis Group): London, UK, 2013.
61. Halekoh, U.; Højsgaard, S.; Yan, J. The R Package Geepack for Generalized Estimating Equations. J. Stat. Softw. 2006, 15, 1–11.

[CrossRef]
62. Environment and Climate Change Canada. Available online: https://wateroffice.ec.gc.ca/report/historical_e.html?stn=07DA008

(accessed on 10 November 2022).
63. Yashchin, E. Some Aspects of the Theory of Statistical Control Schemes. IBM J. Res. Dev. 1987, 31, 199–205. [CrossRef]
64. Towler, E.; Rajagopalan, B.; Gilleland, E.; Summers, R.S.; Yates, D.; Katz, R.W. Modeling Hydrologic and Water Quality Extremes

in a Changing Climate: A Statistical Approach Based on Extreme Value Theory: Hydrological Extremes under Climate Change.
Water Resour. Res. 2010, 46, W11504. [CrossRef]

65. Alexander, A.C.C.; Chambers, P.A.A. Assessment of Seven Canadian Rivers in Relation to Stages in Oil Sands Industrial
Development, 1972–2010. Environ. Rev. 2016, 24, 484–494. [CrossRef]

66. Azhar, S.C.; Aris, A.Z.; Yusoff, M.K.; Ramli, M.F.; Juahir, H. Classification of River Water Quality Using Multivariate Analysis.
Procedia Environ. Sci. 2015, 30, 79–84. [CrossRef]

67. Crosier, R.B. Multivariate Generalizations of Cumulative Sum Quality-Control Schemes. Technometrics 1988, 30, 291–303. [Cross-
Ref]

68. Pignatiello, J.J.; Runger, G.C. Comparisons of Multivariate CUSUM Charts. J. Qual. Technol. 1990, 22, 173–186. [CrossRef]
69. Lowry, C.A.; Woodall, W.H.; Champ, C.W.; Rigdon, S.E. A Multivariate Exponentially Weighted Moving Average Control Chart.

Technometrics 1992, 34, 46–53. [CrossRef]
70. Brody, S.D.; Peck, B.M.; Highfield, W.E. Examining Localized Patterns of Air Quality Perception in Texas: A Spatial and Statistical

Analysis. Risk Anal. 2004, 24, 1561–1574. [CrossRef]
71. Plaia, A.; Ruggieri, M. Air Quality Indices: A Review. Rev. Environ. Sci. Biotechnol. 2011, 10, 165–179. [CrossRef]
72. Marchant, C.; Leiva, V.; Cysneiros, F.J.A.; Liu, S. Robust Multivariate Control Charts Based on Birnbaum–Saunders Distributions.

J. Stat. Comput. Simul. 2018, 88, 182–202. [CrossRef]

https://doi.org/10.1016/j.mex.2019.03.014
https://www.ncbi.nlm.nih.gov/pubmed/31016141
https://doi.org/10.1021/es9609516
https://doi.org/10.1002/(SICI)1099-095X(200003/04)11:2&lt;151::AID-ENV394&gt;3.0.CO;2-B
https://doi.org/10.1016/0360-8352(96)00125-8
https://doi.org/10.1590/S0100-69162012000500014
https://doi.org/10.1002/etc.4168
https://doi.org/10.1016/j.fuel.2017.05.095
http://osmdatacatalog.alberta.ca/dataset/surface-water-quality-discrete
http://osmdatacatalog.alberta.ca/dataset/surface-water-quality-discrete
https://doi.org/10.1002/qre.695
https://doi.org/10.1016/j.watres.2007.02.036
https://doi.org/10.1002/ieam.1938
https://doi.org/10.1016/j.eiar.2021.106690
https://doi.org/10.1007/s40092-019-00324-0
https://doi.org/10.1080/00224065.1969.11980341
https://doi.org/10.1016/j.ecolind.2008.11.001
https://doi.org/10.1080/00401706.1991.10484770
https://doi.org/10.18637/jss.v015.i02
https://wateroffice.ec.gc.ca/report/historical_e.html?stn=07DA008
https://doi.org/10.1147/rd.312.0199
https://doi.org/10.1029/2009WR008876
https://doi.org/10.1139/er-2016-0033
https://doi.org/10.1016/j.proenv.2015.10.014
https://doi.org/10.1080/00401706.1988.10488402
https://doi.org/10.1080/00401706.1988.10488402
https://doi.org/10.1080/00224065.1990.11979237
https://doi.org/10.2307/1269551
https://doi.org/10.1111/j.0272-4332.2004.00550.x
https://doi.org/10.1007/s11157-010-9227-2
https://doi.org/10.1080/00949655.2017.1381699


Environments 2023, 10, 78 20 of 21

73. Marchant, C.; Leiva, V.; Christakos, G.; Cavieres, M.F. Monitoring Urban Environmental Pollution by Bivariate Control Charts:
New Methodology and Case Study in Santiago, Chile. Environmetrics 2019, 30, e2551. [CrossRef]

74. Lu, H.; Zhen, J. EWMA Control Chart of NOx Atmospheric Environmental Monitoring System. In Proceedings of the 21st
International Conference on Industrial Engineering and Engineering Management 2014; Qi, E., Shen, J., Dou, R., Eds.; Atlantis Press:
Paris, France, 2015; pp. 403–406, ISBN 978-94-6239-101-7.

75. Wood Buffalo Environmental Association. Available online: https://wbea.org/historical-monitoring-data/ (accessed on
15 November 2022).

76. Wentworth, G.R.; Aklilu, Y.; Landis, M.S.; Hsu, Y.-M. Impacts of a Large Boreal Wildfire on Ground Level Atmospheric
Concentrations of PAHs, VOCs and Ozone. Atmos. Environ. 2018, 178, 19–30. [CrossRef]

77. Matz, C.J.; Egyed, M.; Xi, G.; Racine, J.; Pavlovic, R.; Rittmaster, R.; Henderson, S.B.; Stieb, D.M. Health Impact Analysis of PM2.5
from Wildfire Smoke in Canada (2013–2015, 2017–2018). Sci. Total Environ. 2020, 725, 138506. [CrossRef] [PubMed]

78. Bari, M.A.; Kindzierski, W.B. Ambient Fine Particulate Matter (PM 2.5) in Canadian Oil Sands Communities: Levels, Sources and
Potential Human Health Risk. Sci. Total Environ. 2017, 595, 828–838. [CrossRef]

79. Allen, D.; Edwards, D.; Feller, R.; Hutchinson, S.; Ogburnmatthews, V. Detection and Analysis of Unusual Events in Long-Term
Zooplankton and Nekton Data Sets from North Inlet Estuary, South Carolina, USA. Ocean. Acta 1997, 20, 165–175.

80. Bodnar, R.; Bodnar, T.; Schmid, W. Sequential Monitoring of High-dimensional Time Series. Scand. J Stat. 2022, early view.
[CrossRef]

81. Alberta Energy Regulator. Available online: https://www.aer.ca/providing-information/data-and-reports/statistical-reports/
st39 (accessed on 3 May 2022).

82. Gray, M.R. Upgrading Oilsands Bitumen and Heavy Oil; University of Alberta: Edmonton, AB, Canada, 2015.
83. Arciszewski, T.J. A Re-Analysis and Review of Elemental and Polycyclic Aromatic Compound Deposition in Snow and Lake

Sediments from Canada’s Oil Sands Region Integrating Industrial Performance and Climatic Variables. Sci. Total Environ. 2022,
820, 153254. [CrossRef]

84. Gopalapillai, Y.; Kirk, J.L.; Landis, M.S.; Muir, D.C.G.; Cooke, C.A.; Gleason, A.; Ho, A.; Kelly, E.; Schindler, D.; Wang, X.; et al.
Source Analysis of Pollutant Elements in Winter Air Deposition in the Athabasca Oil Sands Region: A Temporal and Spatial
Study. ACS Earth Space Chem. 2019, 3, 1656–1668. [CrossRef]

85. Chibwe, L.; Muir, D.C.G.; Gopalapillai, Y.; Shang, D.; Kirk, J.L.; Manzano, C.A.; Atkinson, B.; Wang, X.; Teixeira, C. Long-Term
Spatial and Temporal Trends, and Source Apportionment of Polycyclic Aromatic Compounds in the Athabasca Oil Sands Region.
Environ. Pollut. 2021, 268, 115351. [CrossRef]

86. Arciszewski, T.J.; Roberts, D.R. Analyzing Relationships of Conductivity and Alkalinity Using Historical Datasets from Streams
in Northern Alberta, Canada. Water 2022, 14, 2503. [CrossRef]

87. Arciszewski, T.J. Exploring the Influence of Industrial and Climatic Variables on Communities of Benthic Macroinvertebrates
Collected in Streams and Lakes in Canada’s Oil Sands Region. Environments 2021, 8, 123. [CrossRef]

88. Gordon, M.; Li, S.-M.; Staebler, R.; Darlington, A.; Hayden, K.; O’Brien, J.; Wolde, M. Determining Air Pollutant Emission Rates
Based on Mass Balance Using Airborne Measurement Data over the Alberta Oil Sands Operations. Atmos. Meas. Tech. 2015, 8,
3745–3765. [CrossRef]

89. Munkittrick, K.R.; Arens, C.J.; Lowell, R.B.; Kaminski, G.P. A Review of Potential Methods of Determining Critical Effect Size for
Designing Environmental Monitoring Programs. Environ. Toxicol. Chem. 2009, 28, 1361–1371. [CrossRef] [PubMed]

90. Stringell, T.B.; Bamber, R.N.; Burton, M.; Lindenbaum, C.; Skates, L.R.; Sanderson, W.G. A Tool for Protected Area Management:
Multivariate Control Charts ‘Cope’ with Rare Variable Communities. Ecol. Evol. 2013, 3, 1667–1676. [CrossRef]

91. Parker, S.R.; Harpur, C.; Murphy, S.D. Monitoring for Resilience within the Coastal Wetland Fish Assemblages of Fathom Five
National Marine Park, Lake Huron, Canada. Nat. Areas J. 2015, 35, 378–391. [CrossRef]

92. Petitgas, P.; Poulard, J.-C. A Multivariate Indicator to Monitor Changes in Spatial Patterns of Age-Structured Fish Populations.
Aquat. Living Resour. 2009, 22, 165–171. [CrossRef]

93. Leiva, V.; dos Santos, R.A.; Saulo, H.; Marchant, C.; Lio, Y. Bootstrap Control Charts for Quantiles Based on Log-symmetric
Distributions with Applications to the Monitoring of Reliability Data. Qual. Reliab. Eng 2023, 39, 1–24. [CrossRef]

94. Silverman, B.W.; Young, G.A. The Bootstrap: To Smooth or Not to Smooth? Biometrika 1987, 74, 469–479. [CrossRef]
95. Saracco, J.F.; Pyle, P.; Kaschube, D.R.; Kohler, M.; Godwin, C.M.; Foster, K.R. Demographic Declines over Time and Variable

Responses of Breeding Bird Populations to Human Footprint in the Athabasca Oil Sands Region, Alberta, Canada. Ornithol. Appl.
2022, 124, duac037. [CrossRef]

96. Arciszewski, T.J.; Ussery, E.J.; McMaster, M.E. Incorporating Industrial and Climatic Covariates into Analyses of Fish Health
Indicators Measured in a Stream in Canada’s Oil Sands Region. Environments 2022, 9, 73. [CrossRef]

97. Chaloupka, M.; Pendoley, K.; Moro, D. Control Charts—A Robust Approach for Monitoring Endangered Species Exposure to a
Major Construction Project. In Proceedings of the International Conference on Health, Safety and Environment in Oil and Gas
Exploration and Production, Perth, Australia, 11–13 September 2012. [CrossRef]

98. Lund, R.; Seymour, L. Assessing Temperature Anomalies for a Geographical Region: A Control Chart Approach. Environmetrics
1999, 10, 163–177. [CrossRef]

https://doi.org/10.1002/env.2551
https://wbea.org/historical-monitoring-data/
https://doi.org/10.1016/j.atmosenv.2018.01.013
https://doi.org/10.1016/j.scitotenv.2020.138506
https://www.ncbi.nlm.nih.gov/pubmed/32302851
https://doi.org/10.1016/j.scitotenv.2017.04.023
https://doi.org/10.1111/sjos.12607
https://www.aer.ca/providing-information/data-and-reports/statistical-reports/st39
https://www.aer.ca/providing-information/data-and-reports/statistical-reports/st39
https://doi.org/10.1016/j.scitotenv.2022.153254
https://doi.org/10.1021/acsearthspacechem.9b00150
https://doi.org/10.1016/j.envpol.2020.115351
https://doi.org/10.3390/w14162503
https://doi.org/10.3390/environments8110123
https://doi.org/10.5194/amt-8-3745-2015
https://doi.org/10.1897/08-376.1
https://www.ncbi.nlm.nih.gov/pubmed/19199371
https://doi.org/10.1002/ece3.585
https://doi.org/10.3375/043.035.0302
https://doi.org/10.1051/alr/2009018
https://doi.org/10.1002/qre.3072
https://doi.org/10.1093/biomet/74.3.469
https://doi.org/10.1093/ornithapp/duac037
https://doi.org/10.3390/environments9060073
https://doi.org/10.2118/156747-MS
https://doi.org/10.1002/(SICI)1099-095X(199903/04)10:2&lt;163::AID-ENV345&gt;3.0.CO;2-L


Environments 2023, 10, 78 21 of 21

99. Saulo, H.; Leiva, V.; Ruggeri, F. Monitoring Environmental Risk by a Methodology Based on Control Charts. In Theory and
Practice of Risk Assessment; Kitsos, C.P., Oliveira, T.A., Rigas, A., Gulati, S., Eds.; Springer Proceedings in Mathematics & Statistics;
Springer International Publishing: Cham, Switzerland, 2015; Volume 136, pp. 177–197, ISBN 978-3-319-18028-1.

100. Zhou, W.; Beck, B.F.; Pettit, A.J.; Wang, J. Application of Water Quality Control Charts to Spring Monitoring in Karst Terranes.
Environ. Geol. 2008, 53, 1311–1321. [CrossRef]

101. Greenberg, A.E.; Navone, R. Use of the Control Chart in Checking Anion-Cation Balances in Water. Am. Water Work. Assoc. 1958,
50, 1365–1370. [CrossRef]

102. Vogelgesang, J. The Quality Control Chart Principle: Application to the Routine Analysis of Pesticide Residues in Water. Fresenius’
J. Anal. Chem. 1991, 340, 384–388. [CrossRef]

103. Maurer, D.; Mengel, M.; Robertson, G.; Gerlinger, T.; Lissner, A. Statistical Process Control in Sediment Pollutant Analysis.
Environ. Pollut. 1999, 104, 21–29. [CrossRef]

104. Thomann, M.; Rieger, L.; Frommhold, S.; Siegrist, H.; Gujer, W. An Efficient Monitoring Concept with Control Charts for On-Line
Sensors. Water Sci. Technol. 2002, 46, 107–116. [CrossRef]

105. Chèvre, N.; Gagné, F.; Blaise, C. Development of a Biomarker-Based Index for Assessing the Ecotoxic Potential of Aquatic Sites.
Biomarkers 2003, 8, 287–298. [CrossRef]

106. Scandol, J.P. Use of Cumulative Sum (CUSUM) Control Charts of Landed Catch in the Management of Fisheries. Fish. Res. 2003,
64, 19–36. [CrossRef]

107. Petitgas, P. The CUSUM Out-of-Control Table to Monitor Changes in Fish Stock Status Using Many Indicators. Aquat. Living
Resour. 2009, 22, 201–206. [CrossRef]

108. Lee, P.-H.; Huang, Y.-H.; Kuo, T.-I.; Wang, C.-C. The Effect of the Individual Chart with Variable Control Limits on the River
Pollution Monitoring. Qual. Quant. 2013, 47, 1803–1812. [CrossRef]

109. Iglesias, C.; Sancho, J.; Piñeiro, J.I.; Martínez, J.; Pastor, J.J.; Taboada, J. Shewhart-Type Control Charts and Functional Data
Analysis for Water Quality Analysis Based on a Global Indicator. Desalination Water Treat. 2016, 57, 2669–2684. [CrossRef]

110. Mashuri, M.; Khusna, H.; Wibawati; Putri, F.D. Mixed Multivariate EWMA-CUSUM (MEC) Chart Based on MLS-SVR Model for
Monitoring Drinking Water Quality. J. Phys. Conf. Ser. 2021, 2123, 012019. [CrossRef]

111. Marais, H.L.; Zaccaria, V.; Odlare, M. Comparing Statistical Process Control Charts for Fault Detection in Wastewater Treatment.
Water Sci. Technol. 2022, 85, 1250–1262. [CrossRef]

112. Addison, P.F.E.; Cook, C.N.; de Bie, K. Conservation Practitioners’ Perspectives on Decision Triggers for Evidence-Based
Management. J. Appl. Ecol. 2016, 53, 1351–1357. [CrossRef]

113. Wiklund, J.A.; Hall, R.I.; Wolfe, B.B.; Edwards, T.W.D.; Farwell, A.J.; Dixon, D.G. Use of Pre-Industrial Floodplain Lake Sediments
to Establish Baseline River Metal Concentrations Downstream of Alberta Oil Sands: A New Approach for Detecting Pollution of
Rivers. Environ. Res. Lett. 2014, 9, 124019. [CrossRef]

114. Harvey, R.; Lye, L.; Khan, A. Recent Advances in the Analysis of Real-Time Water Quality Data Collected in Newfoundland and
Labrador. Can. Water Resour. J. / Rev. Can. Des Ressour. Hydr. 2011, 36, 349–361. [CrossRef]

115. Addison, P.F.E.; Rumpff, L.; Bau, S.S.; Carey, J.M.; Chee, Y.E.; Jarrad, F.C.; McBride, M.F.; Burgman, M.A. Practical Solutions for
Making Models Indispensable in Conservation Decision-Making. Divers. Distrib. 2013, 19, 490–502. [CrossRef]

116. Foster, C.N.; O’Loughlin, L.S.; Sato, C.F.; Westgate, M.J.; Barton, P.S.; Pierson, J.C.; Balmer, J.M.; Catt, G.; Chapman, J.; Detto, T.;
et al. How Practitioners Integrate Decision Triggers with Existing Metrics in Conservation Monitoring. J. Environ. Manag. 2019,
230, 94–101. [CrossRef]

117. Bal, P.; Rhodes, J.R.; Carwardine, J.; Legge, S.; Tulloch, A.; Game, E.; Martin, T.G.; Possingham, H.P.; McDonald-Madden, E. How
to Choose a Cost-effective Indicator to Trigger Conservation Decisions? Methods Ecol. Evol. 2021, 12, 520–529. [CrossRef]

118. Hilton, M.; Walsh, J.C.; Liddell, E.; Cook, C.N. Lessons from Other Disciplines for Setting Management Thresholds for Biodiversity
Conservation. Conserv. Biol. 2022, 36, e13865. [CrossRef] [PubMed]

119. Mesnil, B.; Petitgas, P. Detection of Changes in Time-Series of Indicators Using CUSUM Control Charts. Aquat. Living Resour.
2009, 22, 187–192. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00254-007-0739-1
https://doi.org/10.1002/j.1551-8833.1958.tb20695.x
https://doi.org/10.1007/BF00321587
https://doi.org/10.1016/S0269-7491(98)00162-6
https://doi.org/10.2166/wst.2002.0563
https://doi.org/10.1080/1354750031000120134
https://doi.org/10.1016/S0165-7836(03)00104-8
https://doi.org/10.1051/alr/2009021
https://doi.org/10.1007/s11135-011-9627-6
https://doi.org/10.1080/19443994.2015.1029533
https://doi.org/10.1088/1742-6596/2123/1/012019
https://doi.org/10.2166/wst.2022.037
https://doi.org/10.1111/1365-2664.12734
https://doi.org/10.1088/1748-9326/9/12/124019
https://doi.org/10.4296/cwrj3604879
https://doi.org/10.1111/ddi.12054
https://doi.org/10.1016/j.jenvman.2018.09.067
https://doi.org/10.1111/2041-210X.13532
https://doi.org/10.1111/cobi.13865
https://www.ncbi.nlm.nih.gov/pubmed/34811813
https://doi.org/10.1051/alr/2008058

	Introduction 
	Control Charts and Environmental Chemistry Datasets 
	Univariate Control Charts 
	Control Charts with Raw Concentration Data 
	Residual Control Charts 

	Multivariate Control Charts 

	Multivariate Control Charts, High Dimensionality, and Diagnostics: Industrial Production and Performance Data for the Horizon Mine 
	Control Charts and Biological Monitoring Data 
	Discussion 
	References

