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Abstract

In cognitive science and education research, learning has been described to occur at surface
and deep levels. Learners are thought to orient more toward one of these approaches
to learning versus the other. In cognitive science, this has been assessed with a concept-
building framework using objective function learning tasks to classify students as exemplar
(surface) or abstraction (deep) learners. In education, the student approach to learning
(SAL) framework has used self-report survey measures to classify learners as relying on
surface approaches or deep approaches to learning. In two studies, we directly compared
these two frameworks using self-report data from the Modified Approaches and Study
Skills Inventory (M-ASSIST) and the Revised Study Process Questionnaire (R-SPQ-2F)
along with objectively determined concept-building classifications from a computer-based
function learning task. Potential links between exemplar learning and surface approaches
and between abstraction learning and deep approaches were not found. We discuss
possible explanations for the absence of empirical links, including inaccuracies in students’
metacognitions regarding their learning, the measures, and possible differences between
learning-content-dependencies of the survey responses versus content neutrality of the
concept-building task. We conclude by suggesting directions for future work in assessing
and comparing surface and deep learning across frameworks.

Keywords: student approaches to learning; concept-building; function learning; deep
approach; surface approach; abstraction learner; exemplar learner; Modified Approaches
and Study Skills Inventory (M-ASSIST); Revised Study Process Questionnaire (R-SPQ-2F)

1. Background

A central idea that spans theory and research in education and cognitive science is that
learning occurs at multiple levels. One common distinction is between learning at a surface
level versus learning at a deep level. In general, a surface level approach involves memorization
of provided examples, whereas a deep level approach pushes for understanding of underlying
concepts. This distinction can be seen in education within the widely used student approaches
to learning (SAL) framework (Biggs, 1993; Entwistle & McCune, 2004). In cognitive science,
levels of understanding can be described as varying from focusing on surface, literal features to
deep understanding involving formation of mental models (Johnson-Laird, 1983; Kintsch, 1988;
Mayer & Gallini, 1990). Similarly, in terms of conceptual representations, such representations
can rely solely on memory of the training examples or on abstractions generated to capture the
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relations of the training examples (e.g., Bourne, 1974; Koh & Meyer, 1991; D. R. Little et al., 2011;
Medin & Schaffer, 1978; Nosofsky & Kruschke, 1992). Extending from this distinction is the
idea that learners differ in their approaches to learning, with some learners adopting a
relatively surface approach and others adopting a deeper approach. In this article, we
review two frameworks that have attempted to establish and more completely characterize
this posited individual difference in learners. The two frameworks have emerged in
different spheres, one in the cognitive science domain and the other in the education
domain, and with virtually no connections between the two made in the research literature.
Yet, these frameworks share apparent similarities, prompting the question of whether they
converge on the same individual difference, or at least have significant overlap. After
describing the two frameworks, we report several novel studies to address this question.

1.1. Individual Differences in Learning Examples Versus Abstractions

Basic theoretical and empirical work from cognitive science has established that learn-
ing and understanding concepts can involve two fundamentally different representations.
One kind of representation is based on learning the individual training examples (exemplar
approach); the learned examples are then referenced when encountering new examples to cate-
gorize and draw inferences about the new examples (or problems) (e.g., Medin & Schaffer, 1978;
Nosofsky & Kruschke, 1992). For instance, when learning about Lewis structure problems
in general chemistry, a student could focus on memorizing the presented examples and
solutions. These learned example problems and solutions are then relied upon to solve
subsequent Lewis structure problems (e.g., when presented on a test). An example in biology
could be when students learn about the concept of form follows function (which refers to
the idea that the structure of a biological component (form) is adapted to perform a specific
function). One could memorize different shape-function pairings of biological components
and functions such as red blood cells providing oxygen or nerve cells (neurons) transmitting
electrical-chemical signals. These relations could then be reproduced on a test.

Another kind of representation is based on an abstraction(s) from the trained examples
that captures the critical features or basic principles that underlie the examples (Bourne, 1974;
Koh & Meyer, 1991; D. R. Little et al., 2011). In this case, when learning about Lewis
structure problems, a student would extract an understanding of the features and principles
that underlie the particular solutions from the presented examples (e.g., that all non-
hydrogen atoms would like a full shell of electrons, which is an octet, and that they obtain
this octet by sharing electrons with another atom, either by forming a bond or by having
lone pairs). These underlying principles are then applied to solve new Lewis structure
problems (Frey et al., 2020). For the biology example, the student would use the illustrative
examples—such as red blood cells—to abstract the concept of ‘form follows function,’
explaining why particular structures exist as they do and how those structures facilitate the
functions they perform. For example, the biconcave shape of the red blood cells enables
them to efficiently transport oxygen through narrow capillaries.

The key assumption of this framework is that individual learners can differ in terms
of which approach they adopt when confronted with a learning challenge. In a range
of conceptual tasks—category learning (J. L. Little & McDaniel, 2015), function learning
(McDaniel et al., 2014), multiple-cue prediction learning (Hoffmann et al., 2014; Juslin et al., 2003),
and skill learning (Bourne et al., 2010)—recent evidence supports this major tenet that an
individual learner relies predominantly on either an exemplar or an abstraction approach
to learn a particular conceptual task. Further, in a laboratory study, learners completed
function-learning tasks and unrelated categorization tasks over the course of several weeks
(McDaniel et al., 2014). Based on their extrapolation performance in the function-learning
task, learners were identified as having oriented toward memorizing the particular training
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pairs (each input value/output value pair) or as attempting to abstract the underlying
functional relations between inputs and outputs (a bilinear “V-shape”). Importantly, learners’
approaches on the function-learning task significantly predicted learners’ performances on
subsequent category-learning tasks, such that those who displayed exemplar learning on
the function-learning task showed example-driven behavior (on categorization transfer tests)
consistent with an exemplar representation, whereas those learners who displayed abstraction
concept-building also showed abstraction-driven categorization behavior. Thus, individual
differences in concept-building tendencies tended to persist across very different learning
tasks, even with those tasks presented several weeks apart. Converging with these findings,
Herzog and Goldwater (in press) found that participants consistently displayed either an
exemplar-learning approach or an abstraction approach across five distinct laboratory tasks
(drawn from function learning, category learning, associative learning, and analogy).

Most critically for the present project, and for science learning in general, we have recently
shown in several studies that the individual differences in concept-building tendencies, as
indexed by the laboratory learning task from McDaniel et al. (2014), extend to the learning
challenges in complex STEM topics (Frey et al., 2017, 2020; McDaniel et al., 2022, 2018). Stu-
dents in chemistry classes and biology classes who displayed exemplar concept-building
tendencies on the function-learning task (exemplar learners) tended to focus on learning
particular example problems and solutions that are presented in class and homework (e.g.,
for Lewis structure problems, as mentioned above (Frey et al., 2020)). By contrast, students
who abstracted in the function-learning task (abstraction learners) attempted to abstract
the principles and concepts that underlie the class and homework problems (e.g., for Lewis
structure problems). In terms of exam performances, the exemplar learners and abstraction
learners, as identified on the basic function-learning task, performed equally well on course-
exam problems that were similar to those presented in class (reproduction questions), but
the exemplar learners performed poorly relative to the abstraction learners on exam items
that were not similar to class problems, i.e., those that required generalization of the topic
(transfer questions) (McDaniel et al., 2018, 2022). Critically, based on assessments of general
ability, we were able to conclude that this divergence across students on transfer exam
items did not simply reflect a difference in general ability or intelligence.

1.2. The Student Approaches to Learning Framework

A complementary framework often used in educational spheres is the student ap-
proaches to learning, SAL (Biggs, 1993; Biggs et al., 2001; Entwistle & McCune, 2004). The
central idea is that some students adopt a deep approach to learning with the intention
to understand the content, whereas other students adopt a surface learning approach
with the intention to reproduce the content (Marton & Saljo, 1976). In this framework,
this distinction emphasizes that students have different intentions when confronting a
learning task (such as studying), and that these intentions in turn influence the strategies
they use (see (Google et al., 2023), for applications of this framework to STEM learning).
This categorical combination of intention and strategies (deep vs. surface) was termed
“approaches to learning” (Marton & Siljo, 1997). For example, a key observation was
that when students were given the same learning task (i.e., reading an academic article
to prepare for answering questions about it), students varied in their descriptions of how
they went about accomplishing the task (Marton & Siljo, 1997). The descriptions revealed
a surface approach for some and a deep approach for others.

A student’s approach to learning is measured using a Likert-scale survey. These surveys
were initially developed by a two-step methodology: qualitative analyses of students” descrip-
tions about their study processes followed by quantitative item creation. Many surveys were
designed for generic learning contexts such as the Approaches and Study Skills Inventory for
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Students (ASSIST) (Tait et al., 1997), the Study Process Questionnaire (SPQ) (Biggs, 1987a, 1987b),
and the Motivated Strategies for Learning Questionnaire (MSLQ) (Pintrich et al., 1991). Other
surveys were developed from these original surveys, such as the revised two-factor Study
Process Questionnaire (R-SPQ-2F) (Biggs et al., 2001), or modified for discipline-specific learn-
ing contexts, such as the Modified Approaches and Study Skills Inventory (M-ASSIST) in
chemistry (Bunce et al., 2017; Malinakova, 2024). Findings on the relationship between
learning approaches and student outcomes are mixed. Some studies show a positive
correlation between a deep learning approach and student outcomes (e.g., Zeegers, 2001;
May et al., 2012; Bunce et al., 2017), whereas others report no significant correlation between a
deep-learning approach and outcomes (e.g., dos Santos Rodrigues & Gomes, 2020; Rowe, 2002;
Maciejewski & Merchant, 2016).

1.3. The Present Studies

In considering the concept-building tendency and SAL frameworks that have been
developed from different theoretical bases, research, and disciplines, a natural question
is whether the two are converging on a similar idea to characterize individual differences
in learning (cf. Goldwater et al., 2018, Experiment 4). Favoring this possibility is the
theoretical premise that pushing for understanding (a deep approach in SAL) is a process
that can involve abstracting the underlying principles or regularities of the target content
(abstraction learners in the concept-building framework). By the same token, adopting a
surface approach emphasizes reproduction of the target content (the SAL view); reproduc-
tion, at least in part, requires committing to memory the specific examples provided in the
target content (exemplar learners in the concept-building framework).

To investigate the possible overlap between these two fundamental approaches con-
cerning individual differences in learning, we conducted two related, novel studies. The
studies adopted the same methodology of requiring a group of college students to complete
both the self-report surveys used in the education literature based on the SAL framework
and the function-learning task developed in the cognitive science learning literature. It
warrants mention that the SAL instruments provide two indices for each respondent, a
score reflecting their tendency toward a deep approach to learning and a score reflecting
their tendency toward a surface learning approach; in contrast, the laboratory (function)
learning task provides a categorical index indicating whether the respondent tends to use
an abstraction approach or an exemplar approach to learning.

In these studies, we used correlational analyses and inferential statistics to test
two competing hypotheses. Because the literature (to our knowledge) has not directly
compared the SAL and concept-building frameworks, we did not have clear expectations
for how they might be related. We thought it equally plausible that there may be positive
associations between deep and abstraction learning and surface and exemplar learning, as
described above, or that these approaches might not be related at all. Given this, we tested
the following two hypotheses:

Hypothesis 1. Learners who adopt an abstraction approach to concept learning will report more
extensive reliance on a deep approach to their learning than will learners who adopt an exemplar
approach. On the other hand, learners who adopt an exemplar approach to concept learning will
report more extensive reliance on a surface approach to their learning than will learners who adopt
an abstraction approach.

This hypothesis originates from the possible theoretical linkages that hinge on the
idea that there is a close correspondence between learning processes and the consequent
representations of what is learned. Surface learning processes (per SAL, committing items
to memory) can be tied to literal representations that capture the items in the instructional
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material (e.g., for an instructional text, the representation would contain the words and
sentences as presented in the text (Kintsch, 1988; Kintsch & van Dijk, 1978)). Similarly,
when viewing a sample of values capturing a functional relation between two variables
(e.g., amount of precipitation and crop growth), the representation would be those specific
example values (DeLosh et al., 1997; McDaniel et al., 2014). Deep learning processes (per
SAL, trying to gain understanding) are theoretically tied to representations that capture
relations and abstractions among items. For instance, in an instructional text, it would be a
mental model of what the text conveys (Kintsch, 1988; Mayer & Gallini, 1990); whereas, for
presentation of function values, it would be an abstraction of the functional relationship
conveyed by the training values (McDaniel et al., 2014).

Based on this hypothesis (and noting that our analyses coded an abstraction learner
as “0” and an exemplar learner as “1”), there should be a significant negative correlation
between concept-building tendency and the magnitude of endorsing a deep approach to
learning, and there should be a significant positive correlation between concept-building
tendency and the magnitude of endorsing a surface approach to learning. A related
pattern that would solidify the merit of this hypothesis is that in a two-factor analysis of
variance (ANOVA) with concept-building tendency and reported approaches to learning
as the independent variables, there should be a significant cross-over interaction such
that abstraction learners display a higher deep-approach to learning score than exemplar
learners, whereas exemplar learners display a higher surface-approach to learning score
than abstraction learners.

Hypothesis 2. The particular concept-building approach adopted by a learner has no discernible
relationship to the self-reported approaches to learning endorsed by a learner.

This possibility may be equally plausible and stems from important distinctions
between the two frameworks. For example, SAL emphasizes a student’s intention in
approaching a learning task (Marton & Siljo, 1976). Learners may not be able to
achieve their intentions, however, especially in terms of trying to achieve understanding
(e.g., Gouravajhala & McDaniel, 2025). For instance, in approaching a category learning
task, some learners initially reported attempting to learn a rule (abstraction) that captured
the range of training examples within a category (Gouravajhala et al., 2020). Despite their
intention to learn a rule, by the end of training, a subset of these learners displayed an
exemplar representation; i.e., their learned representations (for the categories) did not
support a rule-based pattern of classifying novel category examples. The concept-building
framework emphasizes, by contrast, the cognitive representations that learners actually
acquire during learning—underlying abstractions (principles) that capture a concept or
surface representations based on memorizing examples; it is these representations that
ultimately reflect what the student is learning and index the degree to which individual
learners achieve relatively deep learning.

Moreover, the SAL framework has relied on student self-reports of their learning
approaches, thereby depending on the accuracy of students’ metacognitive awareness of
their learning. Yet, the basic cognitive science literature has shown that students’ judgments
of learning and of comprehension can be remarkably poor (Dunlosky & Metcalfe, 2008).
Similarly, in a classroom chemistry study, a number of students judged that they had a good
understanding of the principle even though think-aloud protocols revealed they did not
(Frey et al., 2020). Therefore, poor metacognition—for instance when students self-report
taking a deep approach to learning—may cloud the validity of classifications of learning
approaches as deep or surface. For this reason or for the reason noted in the preceding
paragraph (or both), there may be a negligible association between gauging students’
approaches to learning using common instruments inspired by SAL (introduced in the
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studies reported below) and the objective learning task inspired by the concept-building
approach framework.

Repeatedly observing correlations that do not differ from “0” and finding no significant
cross-over interaction in the ANOVAs (in each study) would be strongly consistent with
this hypothesis.

2. Studies 1a and 1b

The SAL framework encompasses several complexities. One group of theorists assumes
that students adapt their approaches to learning depending on the learning context, influenced
by individual factors (e.g., student perceptions of the learning environment that are shaped
by prior experience) and course-related factors (i.e., course design, the teaching and learning
environment, and assessment procedures). For example, students are more likely to utilize
surface approaches when faced with a learning environment that rewards rote memorization of
facts. Further, the SAL framework has been developed in different discipline-specific learning
contexts such as biology (dos Santos Rodrigues & Gomes, 2020; Nelson Laird et al., 2008;
Lee et al.,, 2016), chemistry (Li et al., 2013; Sinapuelas & Stacy, 2015; Bunce et al., 2017;
Atieh et al., 2020), mathematics (Maciejewski & Merchant, 2016; Lahdenperi et al., 2019),
physics (Prosser et al., 2000; Selcuk, 2010), and engineering (Rowe, 2002; Zakariya et al., 2023).
Consequently, the specific study strategies defined as deep and surface approaches to learning
are assumed by some SAL proponents to vary across disciplines and learning environments
(e.g., Sinapuelas & Stacy, 2015; Case & Marshall, 2004).

To capture the context dependency of the learning environment for determining in
part a student’s approach to learning, Study 1a included an examination of the relationship
between a student’s concept-building approach and their student-learning approach in a
general chemistry classroom. Students in this class completed both the concept-building
task and the Modified Approaches and Study Skills Inventory (M-ASSIST) survey, thereby
enabling a direct classroom comparison of whether the deep and surface approaches in the
SAL framework capture a similar characterization of individual learning differences based
on the cognitive representations students construct during a learning task (measured by
the concept-building task). The M-ASSIST is a shorter adaptation of the ASSIST survey'
developed specifically for chemistry and has been used in both general chemistry and
organic chemistry (Bunce et al., 2017; Malinakova, 2022, 2024). The M-ASSIST consists
of 12 items focusing on the deep approach (6 items) and the surface approach (6 items).
The M-ASSIST was selected for the present studies because of its adaptation for chemistry
courses and its focus on deep and surface approaches of the SAL framework.

Study 1b was motivated by an additional complexity in the SAL literature. Some
theorists suggest that the two learning approaches—deep and surface—reflect overarch-
ing characteristics that transcend the particular learning context (Entwistle et al., 1979;
Entwistle & McCune, 2004). With the deep approach, students are intrinsically motivated to
understand the intentions of the educational tasks, to connect the task to their own real-world
experiences, to integrate aspects of the tasks with prior knowledge, and to ask questions about
the tasks. By contrast, with the surface approach, the students are driven by extrinsic factors,
such as fear of failure, which lead to low-level cognitive activities like rote learning or selective
memorizing without understanding. Additionally, they invest minimal effort to understand
the task’s purpose, even when high-level cognitive engagement is required.

To the extent that the SAL deep and surface approaches to learning are overarching
characteristics of the learner, then those characteristics might best be evidenced outside
of a particular classroom context. To test this possibility, in Study 1b, we administered
the M-ASSIST to students in a laboratory setting and compared these responses to their
concept-building tendencies (determined in the same laboratory setting).
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Hypothesis 1 (from the general introduction) would be strongly supported if at least
one of these two studies (Study 1a or Study 1b) demonstrated significant associations
between the M-ASSIST deep scale and a learners’ tendency toward an abstraction concept-
building approach and between the M-ASSIST surface scale and learners’ tendency toward
an exemplar-based concept-building approach. The absence of associations between the
M-ASSIST survey responses and learners’ concept-building tendencies in both Studies 1a
(reflecting the possibility of an assumption of course specific influences of students” deep
vs. surface approaches to learning) and 1b (reflecting an overarching tendency outside the
context of a specific course) would support Hypothesis 2.

2.1. Method
2.1.1. Participants

Study 1la examined students enrolled in a first-semester general chemistry course at a
small health professions school in the midwestern United States in fall 2017. Note that the
concept-building data for this study were partially reported in previous work (Frey et al., 2020),
but the data related to the M-ASSIST was not analyzed and is reported here for the first
time. The project was approved by the institutional review boards at the university where the
data were collected (IRB ID no. 2017-39) and the university where the data were analyzed
(IRB ID no. 201710100). Consent was provided by 108 out of 123 (87.8%) of these students.
Study 1b included 77 students electing to participate in a research laboratory experiment as
one of several options to fulfill a research credit requirement for their psychology courses at a
mid-sized private research university in the midwestern United States in fall 2024. The project
was approved by the university’s institutional review board (IRB ID no. 202308131).

2.1.2. Concept-Building Task

Participants’ concept-building tendency (exemplar or abstraction learners) was deter-
mined using the same concept-building task established in previous work
(McDaniel et al., 2014, 2018; Frey et al., 2017, 2020). Participants had no prior knowl-
edge or exposure to the task, as it involved a fictional scenario with an alien organism and
two non-existent elements. The task was completed on a computer, and participants were
asked to imagine they had been hired by NASA to study a new organism found on Mars
that absorbs an element called Zebon and releases an element called Beros. The goal of
the task was to predict an output variable (quantity of Beros) based on the input variable
(quantity of Zebon). Unknown to the participants, the input-output points followed either
an inverted-V function (Study 1a) or a regular-V function (Study 1b).

Participants first completed a training phase, in which output predictions were made
based on given input values, followed by feedback showing the correct value and the
amount of error in their prediction. Figure 1 shows an example of a training trial with input,
output, and feedback screenshots. In total, there were 20 unique input values (all odd
numbers between 61 and 99 for Study 1a; all odd numbers between 81 and 119 for Study 1b),
which were presented once each during a training block. Participants completed a total
of 10 training blocks (200 individual trials), with the order of input values varying across
each training block. No instructions were given as to how long to spend on each trial; the
participants paced themselves throughout the task. Following each block, participants were
shown their mean prediction error (mean absolute error, MAE) for that block. Additionally,
after block two, participants saw their previous MAE and a message indicating whether
they had reduced or failed to reduce their error (“Your accuracy IMPROVED. Keep up
the good work!” vs. “Your accuracy DID NOT IMPROVE. Keep working to improve your
predictions!”). After 10 training blocks, if the participant achieved a MAE <10, training
concluded. In Study 1a, if participants had not met the threshold, up to three additional
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training blocks were presented, with training ending if MAE dropped below 10 on either
block 11 or block 12. Training ended after block 13 (trial 260) for everyone in this version,
regardless of whether the learning criterion was met. In Study 1b, training ended following
block 10 for everyone.

Input Screen Output Response Screen
NASA Exercise NASA Exercise

— 200~ 200— 200-—— pov—

160-]

Zebon Prediction Beros Zebon Prediction Beros

Feedback Screen

NASA Exercise
00~ 200 00|
90— 190 20—
80| 430; 80~|
70~ 470.’ 70|
60- 160— 60|
50— 150— 0
0- 140 0|
= You were off by: 16 units e -
g Good job e e
10— Get ready for the next trial 110 110-]
00~ 100-] 00—
90| 90— 90|
80— 80— 80—
0-| 70.‘ 0-
60— ».0.. 60—
50— 50.- 50—
0| 40_' 0|
30— 30— 0-[I8
10- 10— 10-|8
0- o- o 1
Zebon Prediction Beros

Figure 1. Screenshots from the concept-building task. Note. Adapted from (McDaniel et al., 2014).
Copyright 2014 by the American Psychological Association.

Following the training blocks, participants completed a 36-trial transfer phase in which
they predicted output values for novel (previously unseen) inputs. The procedure was
similar except that no feedback was given after each trial. After making a prediction,
participants saw the message “Prediction recorded. Get ready for the next trial.” The
transfer phase featured 30 extrapolation trials, composed of odd numbers outside the
training range (all odd numbers between 31 and 59 and between 101 and 129 for Study 1a;
all odd numbers between 51 and 79 and between 121 and 149 for Study 1b); it also included
six interpolation trials, featuring even numbers within the training range (64, 72, 80, 88, 94,
and 100 for Study 1a; 84, 92, 100, 108, 114, and 120 for Study 1b). The extrapolation and
interpolation trials were intermixed for the transfer phase. Participants took around 40 min
on average to complete the full task.

As with the previous studies using the concept-building task, learners were classified
using a two-step process. First, participants with a final training block MAE greater
than or equal to 10 were classified as non-learners. The rest of the participants falling
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below the cutoff were considered “learners,” and were then further classified using their
extrapolation MAEs from the transfer trials. By using a simple exemplar model as a
comparison, one would predict a flat extrapolation extending from the edges of the training
domain (represented by dashed horizontal lines in Figure 2). The functions used would
result in a simple exemplar model making a prediction of 148 for every extrapolation trial
in Study 1a and a prediction of 52 in Study 1b, leading to a MAE of 34.72 in both cases.
Note that any set of predictions that average 148 or 52, respectively, and never overestimate
the output value produce the same MAE of 34.72. The extrapolation MAE and surrounding
95% confidence interval were calculated for each learner.

If the upper-bound limit of the 95% confidence interval was below 34.72 (i.e., the
learner’s predictions were statistically significantly better than a simple exemplar model),
the learner was classified as an abstraction learner. This assumes that to outperform an
exemplar model, learners must have extracted some information about the function rule
during the training trials that was then applied during extrapolation. The remaining learners
whose upper-bound extrapolation MAE values were greater than 34.72 (i.e., did not outperform
a simple exemplar model) were classified as exemplar learners. The assumption is that these
participants learned specific input-output associations but did not extract the function rule
necessary to make accurate predictions on the novel transfer (extrapolation) inputs.

To represent these distinctions visually, Figure 2 displays the mean output predictions
for each input value by abstraction and exemplar learners in Study la and Study 1b.
Inspection of Figure 2 indicates that accuracies of predictions for abstraction and exemplar
learners in the training range (interpolation) are both high (i.e., all learners look the same in
the training range). In contrast, it can be seen that accuracy of extrapolation trials diverge,
such that abstraction learners make predictions that follow the given function and exemplar
learners do not extrapolate much beyond the value for the most extreme training point” (i.e.,
tends to be relatively flat in predictions hovering around the value of the closest training point).

2.1.3. The Modified Approaches and Study Skills Inventory (M-ASSIST)

The M-ASSIST is a 12-item measure developed by Bunce et al. (2017) to assess students’
approaches to studying (Bunce et al., 2017; see Supplementary Materials for full set of
survey items). It is a brief, modified version of the Approaches and Study Skills Inventory
for Students (ASSIST) (Tait et al., 1997). The M-ASSIST contains six items comprising a deep
scale, reflecting deep approaches and strategies to learning, and six items comprising a
surface scale, reflecting more superficial approaches and concerns about learning. Response
options range from ‘disagree’ to ‘agree’ on a five-point Likert scale. Deep approach and
surface approach scales were scored by averaging the individual item ratings across each
scale. The measure was found to be a good fit for a two-factor structure across two semesters
of data collected by Bunce et al. (2017) with model fit indices: CFI = 0.95, RMSEA = 0.05,
and SRMR = 0.05 for the 1st semester, and CFI = 0.96, RMSEA = 0.04, and SRMR = 0.04 for
the 2nd semester. Standardized factor loadings ranged from 0.36 to 0.70 for the deep items,
and 0.43 to 0.82 for the surface items, with all p’s < 0.05.

2.1.4. Procedure

For Study 1a, all students enrolled in the chemistry course completed the concept-building
task following their first course exam during a supervised laboratory period approximately 5-6
weeks into the course. Students were given one-hour to complete the concept-building task.
The M-ASSIST was completed 2—4 weeks later via an online survey at the student’s leisure
during this time period. Only consenting students” data were included in the analyses. Of the
108 consenting students, 54 (50%) were classified as abstraction learners, 28 (25.9%) exemplar
learners, 25 (23.1%) non-learners, and 1 did not complete the task.



Behav. Sci. 2025, 15, 1055

10 of 24

210
200
190
180
170
160
150

5

130
120

Output (Beros released)
=

00 o

oo oo

~J
=

140

-t
[ 5]
o

120

=
o
==

Output (Beros released)
B WE OO ®O
[ T o T e e Y e O s N e T e Y

=]

20

40

For Study 1b, participants were directed to a private room with a computer and pro-
ceeded to complete the concept-building task. Once the task was finished for participants,
they were given five online surveys to complete, with the M-ASSIST included as the fourth
survey. Participants were given up to 90 min to complete the concept-building task and
surveys. Of the 77 consenting participants, 30 (39%) were classified as abstraction learners,
31 (40%) as exemplar learners, and 16 (21%) as non-learners.
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Figure 2. Input and output values from final training block and transfer trials for participants in
Study 1a (Top Chart) and participants in Study 1b (Bottom Chart). Note. Vertical black lines represent
the boundaries of the training range. Dashed horizontal lines represent theoretical exemplar model
predictions based on learning the outputs at the boundaries of the training range and predicting those
same outputs during extrapolation. Black squares represent the correct output values, based on the
function. The blue circles represent the mean prediction across all abstraction learners for each input
value. The orange circles represent the mean prediction across all exemplar learners for each input value.
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2.1.5. Analyses

All statistical analyses were conducted using SPSS version 29. To examine associations
between deep approach and surface approach strategies on the M-ASSIST with abstrac-
tion and exemplar concept-building approaches, correlation coefficients were calculated.
Concept-building tendency was dichotomously coded as 0 for abstraction learners and
1 for exemplar learners, and separate point-biserial correlations were computed with the
deep approach and surface approach scores (treated as continuous variables). To increase
sensitivity, we also included the continuous variable extrapolation mean absolute error
(MAE) to index concept-building tendency and compared this with the deep and surface
approach scores. A 2 (Concept-Building Approach: Abstractor vs. Exemplar; between-
subjects) X 2 (M-ASSIST: Deep Approach vs. Surface Approach; within-subjects) mixed
factor analysis of variance (ANOVA) was used to evaluate if abstraction learners endorsed
deep approach items more strongly than surface approach items, and exemplar learners
endorsed surface items more than deep items (an interaction effect). Statistical signifi-
cance was set at p < 0.05 for all tests. As a general guideline for effect size estimates,
Pearson’s r values of 0.1 are considered small, 0.3 medium, and 0.5 or higher large; partial-
eta squared values (associated with the ANOVA effects) of 0.01 are considered small,
0.06 medium, and 0.14 large (Cohen, 1988).

Power analyses using G*Power 3.1.9.7 (Faul et al., 2007, 2009) were conducted to
determine the power available to detect medium-size and large-size effects for Study 1la
and Study 1b. At a significance level of p = 0.05, Study 1a (N = 82) provided 79% power to
detect a medium correlation (99% power for large correlation) and 87% power to detect a
medium effect size (99% power for large effect size) when testing the interaction between
concept-building and learning approach using the M-ASSIST. Study 1b (N = 61) provided
66% power to detect a medium correlation (99% power for large correlation) and 73% power
to detect a medium effect size (98% power for large effect) for the interaction. To provide
greater power to detect associations between concept-building and student approaches
to learning, data from Study 1a and Study 1b were pooled in a subsequent analysis. At a
significance level of p = 0.05, this combined sample (N = 143) provided 96% power to detect
a medium correlation and 98% power to detect a medium effect size.

2.2. Results and Discussion

Table 1 displays correlation coefficients for concept-building approach (as point biserial
correlations), the continuous index used to determine learner category (extrapolation MAE),
M-ASSIST deep approach scores, and M-ASSIST surface approach scores for Studies 1a and 1b.
Concept-building approach was significantly positively correlated with the deep approach
responses of the M-ASSIST in Study 1a, but not in Study 1b. The Study 1la correlation
indicates that exemplar learners were more likely to endorse a greater number of deep
approach items than abstraction learners—counter to Hypothesis 1. Concept-building
approach was not correlated with the surface approach responses of the M-ASSIST in
either study. Further, extrapolation MAE was not significantly related with deep or surface
approach scores in either study. Finally, the deep and surface approach scales of the
M-ASSIST were not significantly correlated with one another in either study.

Figure 3 displays the average scores for the deep approach and surface approach scales
of the M-ASSIST for abstraction and exemplar learners in Studies 1a and 1b. For Study 1a,
all learners endorsed significantly more deep approach items than surface approach items,
F(1, 80) = 53.47, p <0.001, 7%, = 0.401. Unique to Study la, exemplar learners endorsed
items more strongly overall than abstraction learners, F(1, 80) = 5.56, p < 0.001, 7%, = 0.065.
Concept-building approach did not significantly interact with M-ASSIST learning approach,
F(1, 80) = 0.68, p = 0.411, 7%, = 0.008.
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For Study 1b, as with Study 1a, all learners endorsed significantly more deep approach
items than surface approach items, F(1, 59) = 33.88, p < 0.001, 5, = 0.365. However, in
Study 1b exemplar learners and abstraction learners did not significantly differ in their
endorsement of items, F(1, 59) = 0.20, p = 0.66, 112p = 0.003. Most importantly, concept-
building tendency again did not significantly interact with M-ASSIST learning approach
responses, F(1, 59) = 0.30, p = 0.585, 172,, =0.005.

Table 1. Correlations for concept-building approach and M-ASSIST deep approach and surface
approach scales in Study 1a (upper table section) and Study 1b (lower table section).

Study 1a Variable 1 2 3 4
1. Concept-Building Approach @ -
2. Extrapolation MAE 0.83* -
3. M-ASSIST Deep Approach 0.29 * 0.19 -
4. M-ASSIST Surface Approach 0.09 0.15 —0.08 -
Study 1b Variable 1 2 3 4
1. Concept-Building Approach ? -
2. Extrapolation MAE 0.87* -
3. M-ASSIST Deep Approach —0.10 —0.06 -
4. M-ASSIST Surface Approach 0.01 0.04 —0.13 -

Note.? 0 = abstraction learners, 1 = exemplar learners. * p < 0.05. n = 82 for Study 1a correlations, n = 61 for
Study 1b correlations.

Study 1a Study 1b

e B Abstractors
W Exemplars
2.95
1

Surface Deep Surface

Approach Apporach Approach Approach

M-ASSIST Scale

Figure 3. M-ASSIST deep approach and surface approach average scores for abstractor and exemplar
learners in Studies 1a and 1b. Note. Error bars represent standard error of the mean. In Study 1a,
there were 54 abstractors and 28 exemplars. In Study 1b, there were 30 abstractors and 31 exemplars.

Combined Analyses

Table 2 displays correlation coefficients for concept-building approach, extrapolation
MAE, M-ASSIST deep approach, and M-ASSIST surface approach scores for the combined
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data of Studies 1a and 1b. Concept-building approach was not significantly related with the
deep approach responses or with the surface approach responses of the M-ASSIST. Similarly,
extrapolation MAE was not significantly correlated with deep or surface approach scores.
Additionally, the deep and surface approach scales of the M-ASSIST were not significantly
correlated with one another.

Table 2. Correlations for concept-building approach and M-ASSIST deep approach and surface
approach scales in combined Study 1a and 1b sample.

Variable 1 2 3 4
1. Concept-Building Approach ? -
2. Extrapolation MAE 0.83 * -
3. M-ASSIST Deep Approach 0.12 0.05 -
4. M-ASSIST Surface Approach 0.08 0.09 —0.09 -

Note.® 0 = abstraction learners, 1 = exemplar learners. * p < 0.05. n = 143 for combined sample correlations.

Figure 4 displays the average scores for the deep approach and surface approach
scales of the M-ASSIST for abstraction and exemplar learners for the pooled data. Most
importantly, converging with the individual analyses of Studies 1a and 1b, there was no hint
of an interaction between concept-building tendency and self-reported learning approaches
on the M-ASSIST, F(1, 141) = 0.02, p = 0.885, 172p = 0.000. Also as before, significantly
more deep approach items were endorsed by learners compared to surface approach items,
F(1, 141) = 87.05, p < 0.001, %, = 0.382. With the pooled data, the tendency seen in Study 1a
for exemplar learners to more strongly endorse M-ASSIST items regardless of approach
(deep or surface) relative to abstraction learners was no longer significant, F(1, 141) = 2.96,
p = 0.088, 7%, = 0.021.

I MW Abstractors
W Exemplars

Deep Approach Surface Approach
M-ASSIST Scale

Figure 4. M-ASSIST deep approach and surface approach average scores for abstractor and exemplar
learners for combined data of Studies 1a and 1b. Note. Error bars represent standard error of the
mean. In the combined sample, there were 84 abstractors and 59 exemplars.
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Hence, overall, when the results were considered across the general chemistry class-
room and the laboratory settings, the patterns were straightforward. There were no signifi-
cant correlations between the deep approach score from M-ASSIST and concept-building
tendency or between the surface approach score from M-ASSIST and concept-building
tendency. Reinforcing these correlation results, there was no crossover interaction in the
ANOVAs between abstraction learning and deep approach scores or exemplar learning
and surface approach scores.

Thus, these findings provide evidence for Hypothesis 2, which states that the concept-
building tendency of a learner is not related to the learner’s self-reported approaches to
learning. (Study la produced the anomalous finding that exemplar learners endorsed
a greater number of deep approach items than abstraction learners, but this result did
not stand in Study 1b or when combining the datasets. Perhaps, this was due, in part, to
participants in Study la completing the concept-building task and M-ASSIST several weeks
apart, during which some learners’ approaches to learning may have shifted. To avoid
this possibility, Study 1b required participants to complete both assessments during the
same session.) To provide further support for Hypothesis 2 of a non-relationship between
these factors, a Bayesian alternative to traditional null-hypothesis significance testing was
performed to test for an interaction (examined in the ANOVA) following the procedure
outlined by Masson (2011) and originally formulated by Wagenmakers (2007). A Bayes
factor value was computed (from the delta Bayesian Information Criterion) to determine
the posterior probabilities of the null hypothesis model. Study la yielded a posterior
probability of 0.865 for the null hypothesis, suggesting “positive” evidence for the null
hypothesis model (i.e., no interaction) (following guidelines from (Raftery, 1995)). Study 1b
yielded a posterior probability of 0.870 for the null hypothesis, again providing “positive”
evidence for the null. The combined data yielded a posterior probability of 0.922 for the null
hypothesis model, showing stronger positive evidence that concept-building tendencies
were not related to students’ self-reports of deep or surface approaches to learning.

3. Study 2

Studies 1a and 1b relied on the M-ASSIST to determine students” approaches to learning,
which was designed specifically for use in chemistry courses. To better generalize outside
of a chemistry learning context, in Study 2 we administered another commonly used SAL
inventory, the two-factor Revised Study Process Questionnaire (R-SPQ-2F) to determine student
approaches to learning (Biggs et al., 2001). In addition to being designed for generic learning
contexts, the R-SPQ-2F has been used in mathematics (Maciejewski & Merchant, 2016), physics
(Prosser et al., 2000), engineering (Zakariya et al., 2023), life sciences (Adkins et al., 2023;
Leiva-Brondo et al., 2020), physiology (Thompson, 2024), and health sciences (LoGiudice et al., 2023).
Additionally, the R-SPQ-2F provided a non-overlapping set of items with the M-ASSIST. It
may be that the items on the R-SPQ-2F better reflect deep-understanding processes (deep
approach to learning) that presumably lead to more abstract and encompassing cognitive
representations and similarly better reflect surface learning processes (surface approach to
learning) that support reliance on reproduction of the instructional examples (exemplar-based
cognitive representations).

Again, in the present study, if Hypothesis 1 is supported, we should find significant
associations between students’ self-reported approaches to learning and their concept-
building tendencies (abstractor, exemplar). Alternatively, if Hypothesis 2 has merit, then
the same pattern reported in Studies 1a and 1b should be observed; i.e., no evidence of an
association between students’ self-reported approaches to learning and their objectively
determined concept-building tendencies.
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3.1. Method
3.1.1. Participants

Study 2 was conducted in a research laboratory at a mid-sized private research uni-
versity in the midwestern United States across two semesters (fall 2023 and fall 2024).
Participants elected to participate as one of several options to fulfill a research credit re-
quirement for their psychology courses. Consent was provided by 157 participants, of
which 57 (36%) were abstraction learners, 56 (36%) were exemplar learners, 37 (24%) were
non-learners, 5 (3%) did not complete the concept-building task, and 2 (1%) did not com-
plete the R-SPQ-2F. The project was approved by the university’s institutional review board
(IRB ID no. 202308131).

3.1.2. The Revised Study Process Questionnaire (R-SPQ-2F)

The R-SPQ-2F is a 20-item questionnaire designed for use by educators to evaluate the
learning approaches of their students (Biggs et al., 2001; see Supplementary Materials for
full set of survey items). The scale has deep approach and surface approach scales, each
with 10-items. Response options range from ‘never or only rarely true of me’ to ‘always
or almost always true of me’ on a five-point Likert scale. The deep approach and surface
approach scales were scored by creating a sum value of responses for each scale. The
possible range of values for each scale is from 10 to 50. Biggs et al. (2001) examined the
extent to which the items fit a deep approach and surface approach factor structure and
yielded model fit indices of CFI = 0.99 and SRMR = 0.02 for their data, suggesting a good
fit to the two-factor structure. Standardized factor loadings ranged from 0.31 to 0.63 for the
deep items, and 0.38 to 0.67 for the surface items, with all p’s < 0.05.

3.1.3. Procedure

The overall procedure and concept-building task were identical to that used in Study 1b;
however, the order and number of surveys completed by participants varied by semester.
In fall 2023, participants completed the R-SPQ-2F and a few short demographic questions;
whereas in fall 2024, the R-SPQ-2F was completed last out of five surveys, the fourth being
the M-ASSIST (the other surveys focused on motivational and mindset factors for purposes
unrelated to this study). Participants were allowed up to 90 min to complete the concept-
building task and surveys as part of one session.

3.1.4. Analyses

The analysis plan was similar to that used in Study 1 with correlation coefficients and
a mixed-factor ANOVA utilized to compare concept-building classification with learning
approaches. The ANOVA was a 2(Concept-Building Approach: Abstractor vs. Exemplar)
X 2(R-SPQ-2F: Deep Approach vs. Surface Approach). Power analyses were again con-
ducted using G*Power 3.1.9.7 (Faul et al., 2007, 2009) to determine the power to detect
medium and large effects. At a significance level of p = 0.05 with N = 113 (all abstraction
and exemplar learners), the sample provided 90% power to detect a medium correlation
and provided 91% power to detect a medium effect size when testing the interaction of
concept-building and learning approach. There was 99% power to detect a large correlation
and 99% power to detect a large effect size.

3.2. Results and Discussion

Table 3 displays correlation coefficients for concept-building approach (as point biserial
correlations), extrapolation MAE (continuous index of concept-building tendency), R-SPQ-2F
deep approach, and R-SPQ-2F surface approach scores. Concept-building approach was
not related to the deep approach scale of the R-SPQ-2F or with the surface approach scale
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of the R-SPQ-2F. Extrapolation MAE was also not related to the deep or surface scales. The
deep and surface approach scales of the R-SPQ-2F were significantly negatively correlated
with one another.

Table 3. Correlations for concept-building approach and R-SPQ-2F deep approach and surface
approach scales.

Variable 1 2 3 4
1. Concept-Building Approach ? -
2. Extrapolation MAE 0.88 * -
3. R-SPQ-2F Deep Approach —0.11 —0.06 -
4. R-SPQ-2F Surface Approach —0.003 0.003  —0.28* -

Note.? 0 = abstraction learners, 1 = exemplar learners. * p < 0.05. n = 113 for all correlations.

Figure 5 displays the average scores for the deep approach and surface approach
scales of the R-SPQ-2F for abstraction and exemplar learners. Significantly more deep
approach items were endorsed by all learners compared to surface approach items,
F(1, 111) = 7.34, p = 0.008, 1%, = 0.062. Exemplar and abstraction learners did not sig-
nificantly differ in their endorsement of items on the R-SPQ-2F, F(1, 111) = 0.86, p = 0.356,
n?p = 0.008. Most importantly, concept-building tendency did not significantly interact
with R-SPQ-2F learning approach, F(1, 111) = 0.43, p = 0.514, qu = 0.004.

Revised Study Process Questionnaire Scale

Figure 5. R-SPQ-2F deep approach and surface approach average scores for abstractor and exemplar
learners. Note. Error bars represent standard error of the mean.

3.3. Exploratory Analysis

Following Thompson’s (2024) comparison of the ASSIST and the R-SPQ-2F, as an
exploratory analysis, we examined the relationship between the deep and surface approach
items from the M-ASSIST and R-SPQ-2F using the fall 2024 subsample of participants,
who completed both measures. Unlike the previous analyses, non-learners from the
concept-building task were included in these correlations to achieve greater power, if they
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fully completed both the M-ASSIST and the R-SPQ-2F. Table 4 displays the correlation
coefficients between the deep and surface approach scales from both the M-ASSIST and
the R-SPQ-2F. The deep approach scales of the M-ASSIST and R-SPQ-2F were significantly
highly correlated, and the surface approach scales of both instruments showed a significant
moderate-to-strong correlation. There was also a small-to-moderate significant negative
correlation between the surface scale of the M-ASSIST and the deep approach scale of the
R-SPQ-2F, as well as a significant small-to-moderate negative correlation between the deep
scale of the M-ASSIST with the surface scale of the R-SPQ-2F. The direction and strength
of these relationships largely mirror that found by Thompson (2024), with the exception
that Thompson did not find a significant negative relationship between the surface scale
of the ASSIST with the deep scale of the R-SPQ-2F. Overall though, our analysis extends
Thompson’s findings by using the more succinct M-ASSIST instead of the ASSIST and
providing similar results with a different sample of participants.

Table 4. Correlations for M-ASSIST and R-SPQ-2F deep approach and surface approach scales.

Variable 1 2 3 4
1. M-ASSIST Deep Approach -
2. M-ASSIST Surface Approach —0.083 -
3. R-SPQ-2F Deep Approach 0.599* —0.294* -
4. R-SPQ-2F Surface Approach —0.378 % 0.400* —0.253* -

Note. * p < 0.05. n = 77 for all correlations; these include non-learners.

Study 2 expanded on Study 1 by employing the widely used R-SPQ-2F as a measure of
student approaches to learning and replicated the previous findings examining the relation
of concept-building tendency with self-reported approaches to learning (indexed by the
M-ASSIST) in a laboratory setting. There was no significant relationship between the deep
approach score from R-SPQ-2F and the abstraction concept-building tendency or between
the surface approach score from R-SPQ-2F and the exemplar concept-building tendency.
These findings again lend support for Hypothesis 2, that the concept-building tendency of
a learner is not related to the learner’s self-reported approaches to learning. To provide
further evidence for Hypothesis 2, the Bayesian alternative to null hypothesis significance
testing was again conducted as in Study 1. For the interaction in Study 2, the posterior
probability for the null hypothesis being true was 0.895, providing “positive” evidence for
the null hypothesis model (Raftery, 1995).

4. General Discussion

In this paper, we compared two frameworks used to measure students’ learning ap-
proaches: the concept-building framework and the student approach to learning (SAL) frame-
work. We wanted to explore potential overlap between these frameworks in revealing how
students learn. To investigate this issue, we conducted two related studies in which college
students completed both SAL self-report surveys and a function-learning task designed to
determine college students’ concept-building tendencies (abstraction vs. exemplar learning
tendencies). For the SAL surveys, we used two common instruments in STEM education:
M-ASSIST, an adaptation of ASSIST for chemistry, and R-SPQ-2F, which has been broadly used
in many disciplines. These studies involved different student populations and were conducted
in both a chemistry classroom and a research laboratory setting.

As developed in the introduction, it seemed plausible that these frameworks could be
converging on a similar idea in individual differences among learners in the fundamental
ways in which they approach learning challenges. However, across both studies, we found
a consistent pattern: There was no detectable association between the deep versus surface
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learning approaches of the SAL framework (as measured by two SAL inventories) and the
abstraction versus exemplar approaches from the concept-building framework. Specifically,
in both studies (Studies 1a and 1b combined and Study 2), we found no significant correla-
tion between a student’s concept-building approach and their SAL self-reports, whether
using M-ASSIST or R-SPQ-2F. This lack of association remained consistent across both
classroom and laboratory settings, despite the studies having sufficient power to detect
medium size correlations. These findings suggest that the SAL framework instruments do
not differentiate between exemplar and abstraction learners.

To further explore potential connections, we examined whether exemplar learners
scored higher on surface approach items and abstraction learners scored higher on deep
approach items. If the two frameworks measured a similar tendency, this pattern would be
expected. However, across both SAL surveys, all students endorsed significantly more deep
approach items than surface approach items, regardless of their concept-building approach.
Thus, we found no empirical evidence linking these two theoretical frameworks. It could
be that the lack of empirical overlap between the two frameworks stemmed from procedural,
methodological, or participant-related factors affecting the behavior of the SAL inventories in
our studies. Thompson (2024) found that in an undergraduate anatomy course, the R-SPQ-2F
and ASSIST surveys aligned, with deep approach scores and surface approach scores having
significant positive correlations across both instruments. This finding suggests that these two
surveys are measuring similar constructs. If the M-ASSIST and R-SPQ-2F are functioning
as expected in our studies, similar correlations should emerge. Our results confirmed this
expectation. There were significant positive correlations between the M-ASSIST and R-SPQ-2F
deep approach scores, as well as between their surface approach scores. Furthermore, we found
significant negative correlations between deep and surface approaches across the two surveys.
Hence, these findings support stability in our assessment of the deep and surface approaches,
aligning with previous research. In the next section, we consider several alternative reasons
why there was no support for an empirical overlap between the measurement indices that are
commonly favored by these two frameworks.

4.1. No Empirical Overlap: Why?

One possible reason for no empirical overlap between the two frameworks is that the
self-report inventories inspired by the SAL framework (Entwistle & McCune, 2004) may
not provide a valid indicator of whether a particular student’s learning reflects a push
toward understanding the content (deep approach) or reflects a push toward reproducing
that content (surface approach). Students’ responses to some individual items could be
inaccurate because they simply make careless responses or misinterpret the items. For
instance, Mogashana et al. (2012) collected interviews from students who were instructed
to elaborate on their responses to items on the Approaches to Learning and Studying
Inventory (Entwistle & Ramsden, 1983) that target deep and surface approaches to learning.
In some cases, in the interviews, students disagreed with their response(s), claiming that
it was a mistake. In other cases, certain items confused students primarily because the
entire statement was not well understood (e.g., “I just don’t get this one. It is a complicated
statement”, p. 788), or because the students struggled in how to interpret a key word in the
item (e.g., “trouble”). Additionally, interviews with undergraduates in an Anatomy class
about their responses to the R-SPQ-2F survey found misalignments between their quantita-
tive results and their qualitative data for at least 12 of the 20 items (Johnson et al., 2021).
Students interpreted words in the items differently, and there were several compound items
further complicating what exactly students were responding to.

In a related vein, these self-report inventories rely on the assumption that students’
metacognitions regarding their learning are accurate. Cognitive and education stud-
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ies have shown; however, that learners” metacognitions can be substantially inaccurate
(Dunlosky & Metcalfe, 2008). With regard to the student approach to learning inventories,
one challenge is that the student must be able to accurately report on how they learn. That
is, students may believe that they are implementing a described activity, but in fact, they
are not. These potential problems with the inventory content itself, along with possible
metacognitive inaccuracies in how respondents report their approach to learning, may
reduce the validity of the commonly used inventories for assessing student approaches to
learning. As a result, this could weaken any empirical relationship between the SAL frame-
work inventory assessments (e.g., the R-SPQ-2F) and the objective learning assessments
used in the concept-building framework.

A second possible reason is that students’ responses to self-report inventories could in part
reflect their intended approach, but not what they are able to achieve. Findings in classroom
contexts (e.g., Frey et al., 2020; Wilujeng & Alvarez, 2025) consistently demonstrate that learners
are not especially good at judging their level of understanding. Algebra students can express
high confidence in incorrect answers, unaware that their understanding of the principles
underlying the problem is flawed (e.g., Wilujeng & Alvarez, 2025). Similarly, Frey et al. (2020),
using think-aloud protocols, confirmed that students’” incorrect answers on chemistry problems
could be driven by incomplete understanding of the underlying concepts. Nevertheless,
students were generally overconfident in the accuracy of these answers, suggesting that
students were unaware that they had incomplete understanding of the requisite chemistry
concepts. The point here is that some students may adopt a deep approach to learning—and
thus endorse items on a SAL inventory that convey they are attempting to fit and relate ideas
together, to understand the meaning of what they have to learn, to self -test until they have
a complete understanding, and so on. Yet, because of poor meta-comprehension or because
of having less skill at building organized cognitive structures (less-skilled structure builders
(McDaniel et al., 2022)), these students do not achieve a deep understanding. Consequently,
the association between responses on the SAL inventories and the objective learning patterns
on the learning task used for identifying an individual’s concept-building tendency may not
be as robust as underlying theory might suggest it should be. This may especially be the case
for the deep-approach scale, where for a number of reasons just reviewed, the scale may not
discriminate among the students who actually do achieve deep understanding versus those
who attempt to understand the concept but ultimately do not.

A third potential reason for our finding of no empirical relation across the SAL and
concept-building frameworks hinges on some SAL theorists” emphasis that student ap-
proaches to learning are determined contextually (e.g., are dependent on specific course
demands or content) (Sinapuelas & Stacy, 2015; Case & Marshall, 2004), which are revealed
when students respond to the inventories within a particular course context. Because the
concept-building task is neutral to course content and not completed with reference to
particular course demands or content, concept-building approaches revealed by this task
may not intersect with student approaches to learning revealed through SAL inventories
administered within a course context (e.g., Study 1a). When SAL inventories are not ad-
ministered within a course context (e.g., Study 1b, Study 2), it may be that they are not
especially valid because they are not sensitive to the context dependencies that some SAL
theorists believe are essential to understanding student approaches to learning.

In summary, our study found a disconnect between two well-known frameworks for
understanding how students learn: the concept-building framework and the SAL frame-
work. Despite theoretical overlap suggesting that deep learning approaches might align
with abstraction-based concept-building and surface learning approaches might align with
exemplar-based concept building, our empirical findings across two studies and multiple
contexts did not support this assumption. The lack of correlation may reflect limitations
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inherent to self-report inventories, including inaccurate metacognitive judgments and item
misinterpretation, as well as the potential for a misalignment between students’ intended
and actual learning outcomes. Furthermore, contextual factors emphasized by SAL theo-
rists may limit the utility of SAL inventories when used outside of specific course settings.
These results suggest that while both frameworks offer valuable perspectives, they may be
tapping into fundamentally different dimensions of student learning.

4.2. Study Limitations and Future Directions

The present study has some limitations worth acknowledging and also sets the stage
for potential future directions into deepening our understanding of the relationship between
these two frameworks, as well as how students learn. First, for classroom application, the
concept-building task (function-learning) has some practical limitations. The task is rela-
tively demanding, requiring about 45 min to complete. Moreover, to determine a student’s
concept-building approach, a high level of learning in the training phase must be achieved (oth-
erwise transfer patterns are indeterminate of individual differences in abstraction vs. exemplar
learning). Unfortunately, 23% or more students typically do not meet this criterion in class-
room studies (21-24% in the present studies conducted). It appears that part of this “failure”
rate hinges on these students exerting less effort than those that meet the learning criterion
(McDaniel et al., 2022). Incentives to increase motivation to perform well in the training phase
might alleviate this problem. Alternatively, there is an existing category learning task that
distinguishes between abstraction and exemplar learners but is less demanding and exhibits a
much lower “failure” rate (J. L. Little & McDaniel, 2015). Future work could explore the extent
to which this task provides an index of individual differences in concept-building approaches
that is a valid indicator of classroom performance. Additionally, future work could explore
having learners write down their problem-solving steps during the training phase. For example,
we might see exemplar learners writing down input-output pairs for the training examples,
whereas abstraction learners may attempt to graph the underlying function. Incorporating this
aspect into the task could potentially reduce the number of non-learners or, at the very least,
provide deeper insight into how different learners engage with the task.

A second limitation is that we did not examine the accuracy of students” metacognitions
regarding their responses to the approaches to learning inventories. Consequently, possible
explanations that hinge on metacognition for why there was no empirical association between
the SAL and concept-building frameworks remain speculative. Future work could examine the
role of learners’ metacognition in influencing the accuracy of their self-reported approaches to
learning. Following the issues raised in the preceding section related to students’ generally poor
ability to estimate their own learning and judge their level of understanding, future studies
might directly compare students” SAL inventory responses with these students” metacognitive
accuracy. Two possibilities could be to (a) collect students” inventory responses and sometime
later conduct think-alouds for these students as they read a scientific text to evaluate the
degree to which they are indeed activating surface versus deep learning approaches; or (b)
administer comprehension questions to evaluate the degree to which deep understanding
was achieved (e.g., Gouravajhala & McDaniel, 2025; McNamara et al., 1996) as a function of
inventory response patterns.

A third limitation is that we did not assess course performance for our participants,
to try to gauge the degree to which there are linkages between course performances
(e.g., exam scores) and individual differences in learning approaches or in concept-building
approaches. Future work could fruitfully examine the relationship between course achievement
(exam questions or exam scores) and learners’ surface and deep approach tendencies on the one
hand and their concept-building classification on the other hand. Existing research generated
from each framework separately has done so, with somewhat divergent results. A deep
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1

learning approach should theoretically correlate positively with performance on transfer (or
higher-order) questions. Yet, Thompson (2024), in an undergraduate human anatomy course,
found no significant correlation between ASSIST or R-SPQ-2F learning approach scores (deep
or surface) and exam scores, even when distinguishing between lower-order and higher-
order questions. Similarly, LoGiudice et al. (2023), in two undergraduate health sciences
courses, found no significant correlation between the R-SPQ-2F deep approach scores and
student performance on transfer questions. By contrast, as reviewed in the Introduction,
individual differences in abstraction learning tendencies versus exemplar learning tendencies
are consistently associated with course achievement (Frey et al., 2017), particularly when course
exams include transfer questions (McDaniel et al., 2018, 2022). However, the courses and
course assessments across studies adopting the SAL inventories relative to those adopting the
concept-building approach learning task have not been all that similar. Future studies that
examine how both frameworks fare in predicting exam performances for the same students
in the same courses could provide a substantial advance (with exam questions that target
retention and questions that target transfer of course material).
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survey has been used in STEM courses such as engineering (Rowe, 2002), nursing (Trigwell & Prosser, 1991), and chemistry

(Brown et al., 2015). The survey also features items comprising a strategic component, relating to study organization, time

management, motivation, and assessment demands.

The observant reader may notice that there is a slight positive linear bias for exemplar learners seen in the left of the top chart and

the right of the bottom chart of Figure 2, consistent with a ubiquitous bias in human function learning (see Busemeyer et al., 1997).
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