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Abstract: This study explores the interplay between executive functions and body weight, examining
both the influence of biological factors, specifically sex, and methodological issues, such as the choice
between Body Mass Index (BMI) and waist circumference (WC) as the primary anthropometric
measure. A total of 386 participants (222 females, mean age = 45.98 years, SD = 17.70) were enrolled,
from whom sociodemographic (sex, age, years of formal education) and anthropometric (BMI and
WC) data were collected. Executive functions were evaluated using the Frontal Assessment Battery–
15 (FAB15). The results showed the increased effectiveness of WC over BMI in examining the
relationships between executive functions, sex differences, and body weight. In particular, this
study revealed that there was a significant moderating effect of sex at comparable levels of executive
functioning. Specifically, women with higher executive performance had lower WCs than their
male counterparts, suggesting that executive function has a greater impact on WC in women than
in men. Our findings highlight the importance of conducting more in-depth investigations of the
complex relationship between cognitive deficits and weight gain, considering confounding variables
of behavioral, psychobiological, and neurophysiological origin.

Keywords: obesity; executive functions; sex differences; Body Mass Index; waist circumference;
moderation analysis

1. Introduction

Obesity affects about 650 million adults globally, transcending geographical bound-
aries. Given its contribution to the pathogenesis of several chronic diseases, within which
it increases mortality rates [1–5], obesity represents a major public health challenge [6–8].

Over the past few decades, obesity has been associated with reduced cognitive per-
formance. Consistently, it is now recognized as a risk factor involved in the onset of the
majority of neurocognitive disorders [9–19].

Among the most extensively investigated cognitive domains, executive functions—
higher-order cognitive functions associated with neural activity in the prefrontal cortex—
appear to play a central role in the regulation of body weight. In general, these functions
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enable individuals to deal effectively with environmental challenges, particularly in novel
or conflictual situations [20–24].

In the context of research on weight-related issues, previous behavioral studies have
found that executive functions may predict body weight variability, dietary inhibition,
appetite regulation, energy expenditure, adherence to a healthy diet, and outcomes of
interventions aimed at weight reduction [25–30]. Congruently, neurophysiological evidence
has identified the prefrontal cortex as a critical hub in regulating dietary self-control,
operating in tandem with the mesocorticolimbic pathway to modulate reward mechanisms
and the hedonic aspects of food choices [31–33]. Still, previous research in cognitive
neuroscience has highlighted a significant association between impaired working memory
and diminished gray matter volume in the left dorsal striatum, as well as alterations
in the white matter microstructure of the left inferior longitudinal fasciculus along the
occipitotemporal/ventral visual stream in individuals with higher body weight [34,35].
Given the involvement of the dorsal striatum in learning action–reward associations [36,37]
and the role of the ventral visual stream in reward-cueing-related processes during spatial
working memory tasks [38], this pattern of results may imply a significant relationship
between reward processing mechanisms and obesity-related phenomena.

Other studies have focused on decision making. For example, structural neuroimaging
studies in obese individuals have reported reduced gray matter density in key frontal
regions responsible for decision making, such as the frontal operculum, middle frontal
gyrus, and orbitofrontal cortex [39–41]. In addition, a previous fMRI study on obese women
participating in a monetary decision-making task showed that greater task complexity
was associated with increased activation in the frontal cortex. Furthermore, reduced brain
activity in the same regions predicted an increased rate of weight gain over the following
3 years [42]. Taken together, this brief overview only partially explains the relationship
between executive functions, brain activity, and obesity.

Noteworthy are the “paradoxical” findings, such as those underpinning the so-called
“obesity paradox”. This paradox implies a potential positive association between obesity
and psychophysical well-being, including cognitive functioning, particularly in the older
adult population [43–45]. Once again, these counterintuitive findings not only highlight
the intrinsic complexity of the relationship between cognitive functions, obesity, and health
status but also suggest the need for further research aimed at exploring this topic [46–53].

A number of factors can definitely influence the relationship between executive func-
tions and obesity. These include the different methods used for assessing body weight
and the role of some confounding variables [54,55]. The Body Mass Index (BMI), which is
commonly used to assess weight status, has faced criticism as a more imperfect indicator for
individual evaluation, particularly when measuring regional adiposity [56–59]. This may
lead to distortions in evaluating obesity-related effects [58]. In contrast, waist circumference
(WC) appears to be a more sensitive measure of visceral obesity, with greater reliability in
predicting obesity-related health risk factors, such as cardiovascular diseases, diabetes, and
mortality [60–63].

In addition to methodological issues, the interaction between executive functions and
obesity may be further complicated by biological sex differences [64–66]. On the one hand,
such differences may influence the prevalence of obesity; on the other hand, sex may influ-
ence raw performance in neuropsychological tests assessing executive functions [67–72].
Hence, it should be recommended to treat sex as a potential covariate to be kept under
control in psychometric models attempting to explore the association between executive
functions and obesity.

The impact of sex on obesity prevalence is a stark global reality. Obesity is more
prevalent among women in several geographic regions, including Sub-Saharan Africa, East
Asia, the United States, and Europe [64–66]. This likely results from the interplay of socio-
cultural, environmental, and genetic factors [73]. Regarding neuropsychological outcomes,
different studies have detected a significant concomitant effect of sex on tests exploring
executive functioning. For instance, men and women exhibit distinct abilities in specific
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executive subdomains such as attention, planning, inhibition, and verbal fluency, and these
differences manifest across different life stages [67–72]. In particular, increased impulsivity
and shorter reaction times have been found in men as compared with women [68,72,74].
Conversely, better planning [75–77], attention [75,77], decision making [78,79], and working
memory skills have been observed in female as compared with male individuals [80–83].
Nevertheless, it is important to stress that sex differences in executive functioning do not
necessarily imply systematic disparities between sexes; rather, they may reflect differences
in the cognitive strategies employed when required to perform a cognitive task [84,85].

Sex differences in neuropsychological test scores may extend to a lower level of
abstraction and relate to variability in anatomofunctional brain characteristics. Indeed,
men and women seem to employ different brain networks when performing a number
of cognitive tasks, and may exhibit different activity across neurotransmitter systems,
including dopamine and serotonin [86–91].

The present study was designed to further explore the intricate relationship between
executive functions and body weight, taking into account the critical issues highlighted
above. In particular, two primary objectives were outlined: (1) to assess the predictive value
of executive functions in explaining the variance of different anthropometric measures
(BMI vs. WC) and (2) to explore the potential moderating role of sex in the relationship
between executive functions and body weight. In this regard, we expect that (1) executive
functions will show a significant association with anthropometry and (2) sex will signif-
icantly moderate the relationship between executive functions and body weight. More
specifically, we hypothesize that higher executive performance will be associated with
lower body weight. Furthermore, we predict that sex will demonstrate a moderating effect
on the association between executive functions and body weight.

2. Materials and Methods
2.1. Participants

A total of 386 participants (222 females) were involved in this study. Italian volun-
teers were recruited through the convenience sampling method from various districts
in the Campania, Calabria, and Puglia regions of Southern Italy. The inclusion criteria
for participation in this study were as follows: being at least 18 years old and having
a minimum of 5 years of formal education (equivalent to completing primary school).
Moreover, according to the normative datasets detailed in the Materials and Procedure
section, participants who scored insufficiently on the cognitive batteries administered were
excluded from the study. Additional exclusion criteria were past or current history of
intellectual and/or linguistic deficits, or neurocognitive, psychiatric, or psychopathological
disorders. None of the participants had a history of alcohol or substance abuse/addiction,
and they were not receiving treatment with drugs known to affect cognitive performance.
To prevent a “hyper normality” bias [92], individuals with chronic medical conditions that
were managed pharmacologically, such as hypertension, cardiovascular diseases, or type II
diabetes, were not excluded.

2.2. Materials and Procedure

Participants were accommodated in a soundproof room where anamnestic information
was collected, and anthropometric and neuropsychological measurements were performed.
Specifically, the initial phase involved gathering sociodemographic data such as sex, age,
and years of formal education. This was followed by anthropometric assessments, includ-
ing measurements of weight, height (measured using a weight scale with a stadiometer),
and waist circumference (WC). The Body Mass Index (BMI) value was calculated using
Quetelet’s formula (expressed as kg/m2). WC was measured by encircling a tape mea-
sure horizontally around the abdomen, positioned approximately 2 cm above the navel.
Global cognitive functioning was assessed by administering the Mini-Mental State Exami-
nation [93,94]. Executive functions were evaluated using the Frontal Assessment Battery–15
(FAB15) [69]. This is a short screening battery designed to assess general frontal/executive
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functioning. The FAB15 explores various executive domains, such as abstraction, generativ-
ity, set-shifting, planning, sensitivity to interference, and inhibitory control. The battery
showed a robust psychometric architecture, supported by adequate internal consistency
(Cronbach’s alpha = 0.72), a parsimonious unifactorial structure, and excellent interrater
(ICC = 0.99) and test–retest (ICC = 0.98) reliability. Regression-based normative data are
available from a cohort of 1187 healthy individuals [69]. The scoring range is 0–15, with
higher scores indicating a better general executive functioning. Following correction of raw
scores for sex, age, and education, participants scoring below 23.8 on the MMSE and 9.36
on the FAB15 were excluded.

2.3. Statistical Analyses

Descriptive statistics were expressed as frequency for categorical variables and mean
(M) and standard deviation (SD) for continuous variables. According to biological sex,
between-group equivalence in age, education, and FAB15 scores was checked by univariate
Analysis of Variance (ANOVA). Theoretically speaking, considering the potential differ-
ences in body composition between men and women, including the distribution of adipose
tissue (specifically, visceral adiposity around the abdomen), sex disparities might be more
pronounced in WC than BMI measurements. To mitigate this bias, we used a standardized
regression-driven psychometric algorithm to remove the effects of possible linear associa-
tions between sex and anthropometric measures. Specifically, two simple linear regression
models were constructed by independently entering BMI and WC as outcome variables
and sex as a predictor. Based on the results of regression analyses, the following correction
equation was solved:

antropometric adjusted value = antropometric valuei −
[
bsex ×

(
xi(sex) −

–
x(sex)

)]
where b refers to the unstandardized regression coefficient, which represents the average
change in the dependent variable associated with moving from one sex category to the
other, and x to the sex dummy variable (coded as 1 = female, 0 = male). Subsequently, the
SPSS Macro PROCESS was employed for running moderation analysis with 5000 bootstrap
samples. Two moderation models were tested. BMI- and WC-adjusted values entered
each model as outcome variables, the FAB15 score as a predictor, and sex as a moderator,
respectively. The nominal α level = 0.05 was adjusted according to Bonferroni’s correction
for multiple comparisons, if appropriate. Overall, statistical analyses were performed by
means of IBM SPSS Statistics v. 27.

3. Results
3.1. Preliminary Data Analysis: Normality Assumptions and Missing Data

Univariate outliers, i.e., z-scores higher than three in absolute terms, were deleted.
Thereafter, univariate normality was assessed according to skewness and kurtosis indexes.
In particular, values ranging from −2 to +2 indicate the absence of appreciable deviations
from normality. For diagnostics of multivariate outliers, Mahalanobis’ distance was used.
No multivariate outliers were detected. Multivariate normality was assumed by Mardia’s
kurtosis coefficient.

3.2. Descriptive Statistics

Data from 386 participants (222 females; M age = 41.80 years, SD = 18.32, range = 18–86 years;
M education = 15.11 years, SD = 3.96, range = 5–24) were analyzed. Mean BMI and WC
values were 25.32 (SD = 4.53, range = 18.03–39.51) and 86.11 (SD = 14.83, range = 60–130),
respectively. The mean MMSE score was 29.11 (SD = 1.29, range = 23–30) while the
mean FAB15 score was 13.56 (SD = 1.62, range = 7–15). No sex differences were detected
for age [F(1, 385) = 1.152, p = 0.284], education [F(1, 385) = 0.129, p = 0.720], MMSE
[F(1, 385) = 0.110, p = 0.740], or FAB15 score [F(1, 385) = 0.909, p = 0.341]. As anticipated, no
between-group differences were detected for BMI [F(1, 385) = 1.267, p = 0.21], while they
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emerged for WC [F(1, 385) = 20.910, p < 0.001]. Sex-group differences are reported in Table 1
for descriptive purposes. Based on the regression analyses’ results (BMI: bsex = −0.525,
SE = 0.47, t = −1.126, p = 0.26; WC: bsex = −6.906, SE = 1.51, t = −4.573, p < 0.001), and
taking into account an x(sex) of 0.58, correction equations were derived, par condicio,
to adjust both BMI and WC values. In both instances, this led to a significant selective
reduction in sex differences (ps > 0.99).

Table 1. Mean (SD) by sex groups.

Whole Sample
(N = 386)

Females
(n = 222)

Males
(n = 164) p-Value

Age (years) 41.80 (18.32) 42.66 (18.18) 40.63 (18.50) ns
Education (years) 15.11 (3.96) 15.17 (4.03) 15.02 (3.89) ns
MMSE 29.11 (1.29) 29.09 (1.40) 29.13 (1.12) ns
FAB15 13.56 (1.62) 13.64 (1.72) 13.46 (1.47) ns
BMI 25.32 (4.53) 25.10 (4.81) 25.62 (4.13) ns
WC 86.11 (14.83) 83.26 (15.07) 90.17 (13.53) <0.001

MMSE: Mini-Mental State Examination; FAB15: Frontal Assessment Battery–15; BMI: Body Mass Index; WC:
waist circumference.

3.3. Moderation Analysis

To test the moderating role of sex in the relationship between the FAB15 and anthropo-
metric measures, two moderation analyses with 5000 bootstrap samples were performed,
where BMI- and WC-adjusted values were entered as dependent variables, respectively. The
first model was statistically significant (R2 = 0.172, F(3, 382) = 22.802, p < 0.001) and showed
a main effect of the FAB15 score only (b = −0.787, 95% CI [−1.246, −0.329], SE = 0.233,
t = −3.376, p < 0.001) (Table 2). Similarly, the second model explained a significant amount
of WC variance (R2 = 0.188, F(3, 382) = 25.324, p <0.001). In addition, both a main effect
of the FAB15 score (b = −2.014, 95% CI [−3.426, −0.603], SE = 0.717, t = −2.808, p = 0.005)
and a significant interaction between sex and the FAB15 (b = −2.172, 95% CI [−3.917,
−0.427], SE = 0.887, t = −2.448, p = 0.015) were found (Table 3). This result suggests that
sex significantly moderated the relationship between the FAB15 and WC. More specifically,
as revealed by the analysis of the conditional effects at each moderator’s level (Table 4),
female subjects with higher FAB15 scores had lower WCs than males (Figure 1).

Table 2. Results of moderation analysis of BMI-adjusted-by-sex values.

b SE t p LLCI ULCI

Constant 36.213 3.159 11.462 <0.001 29.998 42.428
FAB15 −0.787 0.233 −3.376 <0.001 −1.246 −0.329
Sex 5.939 3.937 1.508 0.132 −1.806 13.685
FAB15×Sex −0.476 0.289 −1.647 0.100 −1.045 0.092

FAB15: Frontal Assessment Battery–15; LLCI: Lower Level of Confidence Interval; ULCI: Upper Level of Confi-
dence Interval.

Table 3. Results of moderation analysis of WC-adjusted-by-sex values.

b SE t p LLCI ULCI

Constant 118.653 9.702 12.229 <0.001 99.567 137.739
FAB15 −2.014 0.717 −2.808 0.005 −3.426 −0.603
Sex 20.444 12.065 1.694 0.091 −3.290 44.179
FAB15×Sex −2.172 0.887 −2.448 0.015 −3.917 −0.427

FAB15: Frontal Assessment Battery–15; LLCI: Lower Level of Confidence Interval; ULCI: Upper Level of Confi-
dence Interval.
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Table 4. Results of analysis of conditional effects of FAB15 scores at sex levels.

b SE t p LLCI ULCI

Male −2.014 0.717 −2.808 0.005 −3.426 −0.603
Female −4.187 0.522 −8.023 <0.001 −5.213 −3.160

LLCI: Lower Level of Confidence Interval; ULCI: Upper Level of Confidence Interval.
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4. Discussion

In the current study, we examined the relationship between executive functioning, sex
differences, and two different anthropometric indexes, namely BMI and WC. Our results
showed the following: (1) executive functions, as measured by the FAB15, are significantly
associated with body weight; (2) WC is a more reliable measure than BMI for examining
the relationship between FAB15 score, sex, and body weight; and (3) biological sex exerts a
moderating effect in the relationship between FAB15 score and WC. Specifically, we found
that the association between waist circumference and the FAB15 was more significant
in women, suggesting that executive function has a greater impact on WC in women
than in men. Taken together, these findings provide additional insights into the interplay
between executive functions and body weight. Considering the growing scientific interest
regarding this topic [95–99], our results may offer meaningful contributions to this area
of discussion by incorporating the role of sex-related physiological variability. However,
only a few studies have explored this issue in the scientific literature [100]. Therefore, the
interpretation of our findings draws predominantly from the realm of speculation and
thus requires further investigations. In fact, the hypotheses that will follow are built upon
spurious pathways.

Executive functions rely on the activation of various brain regions, particularly the pre-
frontal cortex, encompassing both the medial [101–103] and orbitofrontal regions [104–107].
Overall, the prefrontal cortex plays a critical role in executive processes like attention, action
planning, and working memory. Still, the prefrontal cortex relies on a delicate balance
between excitatory glutamatergic neurons [108,109] and inhibitory GABAergic neurons to
function properly [101,109,110]. Similarly, neurotransmitters such as dopamine, endoge-
nous opioids [102,111,112], and acetylcholine [113] have been associated with proficient
executive functioning. To understand how sex differences might interact with cognition, it
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is essential to discuss the physiological variations occurring in neurotransmitter systems,
particularly within the prefrontal cortex and striatum.

Previous research in animal models has highlighted innate differences in serotonin and
dopamine levels in the prefrontal cortex between sexes [114], as well as different behavioral
responses following excitation of nicotinic receptors [115]. Additionally, sex differences
have been observed in the expression of dopaminergic receptors into the striatum [116]. In
humans, fluoxetine, a selective serotonin reuptake inhibitor, has been shown to enhance
attention in women but not in men [117]. From the perspective of cognitive functioning, and
moving from the molecular level to the “raw” gray matter, it is important to acknowledge
how sex differences in structural brain development may determine sex differences in
executive functions. Indeed, during the early stages of brain development, there is a
proliferation of neurons and synapses, followed by a process of synaptic pruning, in which
less active neural connections are eliminated [118].

Sex differences in brain development, in terms of both timing and complexity, are
evident, with variations observed in both cortical maturation [119] and neuronal structural
complexity [120]. These variations may influence different cognitive and behavioral pat-
terns in each sex. Still, microglia and astrocytes, which play a key role in synaptic pruning,
interact with some components of the immune system, known as the complement system,
including specific proteins such as C1q and C3 [121,122]. Sex differences have been shown
in these components, which appear, moreover, sensitive to environmental factors including
stress [123,124] and alcohol exposure [125].

In the field of cognitive neuroscience, the impact of sex hormones on both brain
connectivity and cognitive abilities is widely recognized, exhibiting significant variations
depending on age and sex. Specifically, in women, sex hormones may affect brain connec-
tivity, especially during the natural aging process and menopause. This seems to have a
detrimental effect on cognitive performance [126,127]. In men, elevated testosterone levels
were associated with reduced performance in specific executive tasks involving domains
like error monitoring and set-shifting [128]. This pattern of results highlights how sex
differences may exert a selective impact on cognitive functions [129].

Focusing on the link binding sex differences and executive functions to obesity, the role
played by the Central Autonomic Network (CAN) is likely pivotal. This network encom-
passes brain regions such as the insula and ventromedial prefrontal cortex, interacting with
the cingulate cortex and sensorimotor areas. Such interactions exert a significant impact on
both autonomic nervous system activation and central brain processing. Thus, the CAN’s
neural activity influences cognition, with a particular focus on executive functions [100,130].

Intrinsic activity within the CAN shows variations between male and female individu-
als due to their respective metabolic and hormonal differences [129]. These variations affect
reward sensitivity, potentially influencing eating behavior. Moreover, they may be further
exacerbated by limited awareness of internal bodily signals (interoceptive awareness) and
difficulties in impulse control [53,131]. The dynamics of these mechanisms, in analogy
with Damasio’s Somatic Marker Hypothesis [132], suggest that eating behavior and weight
control abilities may vary between sexes according to different levels of CAN activation.
This would imply a difference in the ability to effectively evaluate the long-term conse-
quences of dietary choices, with the potential for dysfunctional eating behaviors. However,
it is important to note that this hypothesis requires further in-depth investigation. Despite
our study’s results showing that female sex might be considered a “protective” factor in
the context of weight-related cognitive issues, executive functions impacted body weight
in both sexes. In this vein, research in the field of physiology has unveiled a potential
mechanistic pathway involving metabolic, immune, and neurological systems [133–135].

It is well known that obesity is strongly linked to metabolic dysregulation [136]. The
relationship between cognitive dysfunctions and body weight may involve the alteration
of brain glucose metabolism and mitochondrial function in obese individuals [137,138].
In addition, these individuals demonstrate a higher uptake of brain fatty acids compared
to their lean counterparts [139]. In this context, the impact of sex as a biological modifier
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is relevant. Indeed, sex differences have been found in glycolysis and mitochondrial
metabolism [140,141].

Still, adipose tissue, through the production of cytokines such as interleukin (IL1ß, IL6),
interferon γ (IFNγ), tumor necrosis factor α (TNFα), and monocyte chemoattractant protein
1 (MCP1), contributes to the establishment of a chronic low-grade inflammation [142–146].
This persistent state of inflammation exerts its influence on the blood–brain barrier, resulting
in endothelial dysfunction, neuroinflammation, and heightened oxidative stress, all of
which can culminate in cognitive deficits [147,148]. Given that the blood–brain barrier
interfaces with the central nervous system, it constitutes a key element in bridging the
gap between peripheral inflammation and weight-related cognitive blunting, potentially
extending to executive functions.

It should not be overlooked that differences in the association between executive
functions and body weight between men and women may arise from the interaction of
environmental, cultural, and social factors. For instance, in Western cultures, pervasive
societal ideals of thinness for women and muscularity for men may influence individ-
uals’ perceptions of body image [149–153], potentially impacting executive functioning
differently between sexes. Conversely, in many African societies, where larger body sizes
are often favored in women [154–156], different outcomes in executive functions may be
observed in the female sex due to greater body satisfaction in response to greater body fat.

Notwithstanding the aforementioned hypotheses, it is crucial to underscore that
sex differences in the relationship between executive functions and body weight may be
attributed to sex-related variability in strategies for task resolution and preferences for
different outcomes rather than clear disparities in cognitive abilities between sexes [85]. In
this regard, note that our assessment of executive functions exclusively relies on the FAB15.
While this constitutes a neuropsychological battery, we cannot disregard the possibility that
alternative measures, particularly domain-specific ones, may provide different insights,
given the multifaceted nature of executive functions.

5. Conclusions

In this study, we found that WC may serve as a more effective body weight index
than BMI in exploring the relationship between executive functions, sex, and body weight.
Furthermore, our moderation model unveiled a significant modulation effect of sex. In par-
ticular, female participants, who scored higher in executive function assessments, exhibited
a comparatively lower standardized WC than their male counterparts. This suggests that
the relationship between executive function and WC is more pronounced in women than
in men. These observations might be particularly relevant in the current scientific context,
where the link between executive functions and obesity remains an area of active research
and inquiry.
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