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Abstract: Natural speech plays a pivotal role in communication and interactions between human
beings. The prosody of natural speech, due to its high ecological validity and sensitivity, has been
acoustically analyzed and more recently utilized in machine learning to identify individuals with
autism spectrum disorders (ASDs). In this meta-analysis, we evaluated the findings of empirical
studies on acoustic analysis and machine learning techniques to provide statistically supporting
evidence for adopting natural speech prosody for ASD detection. Using a random-effects model,
the results observed moderate-to-large pooled effect sizes for pitch-related parameters in distin-
guishing individuals with ASD from their typically developing (TD) counterparts. Specifically, the
standardized mean difference (SMD) values for pitch mean, pitch range, pitch standard deviation,
and pitch variability were 0.3528, 0.6744, 0.5735, and 0.5137, respectively. However, the differences
between the two groups in temporal features could be unreliable, as the SMD values for duration and
speech rate were only 0.0738 and −0.0547. Moderator analysis indicated task types were unlikely
to influence the final results, whereas age groups showed a moderating role in pooling pitch range
differences. Furthermore, promising accuracy rates on ASD identification were shown in our analysis
of multivariate machine learning studies, indicating averaged sensitivity and specificity of 75.51%
and 80.31%, respectively. In conclusion, these findings shed light on the efficacy of natural prosody in
identifying ASD and offer insights for future investigations in this line of research.

Keywords: prosody; autism; machine learning; natural speech

1. Introduction

Speech prosody has a crucial role in social reciprocity, which can directly modify
meanings in daily communication [1–6]. Individuals undergoing difficulties in commu-
nication commonly exhibit prosodic abnormalities, as a result of which atypical prosody
can serve as a promising biomarker for neurodevelopmental disorders (NDDs) [6]. ASD,
a specific NDD with spectrum features, is commonly co-morbid with other NDDs, such
as intellectual disabilities or global developmental delay [7]. ASD is characterized by a
dyad of impaired social communication as well as restricted and repetitive patterns of
behaviors and interests [8,9]. For ASD patients, atypical prosody substantially contributes
to their social oddness [10,11] and prominently impedes their social acceptance [11,12].
Therefore, prosodic disorders can be distinctive characteristics of ASD [3,8,13,14], which
offers insights into the etiological understanding and fingerprint screening [15,16].

With high ecological validity and sensitivity, natural prosody has drawn cumulative
research attention to portray the prosodic profile of the autistic population [4,17]. It has
been demonstrated that prosodic features in natural contexts show representativeness
and sensitivity in distinguishing individuals with ASD [13]. Employing the power of
natural speech, machine learning is a burgeoning field that aims to identify ASD more
efficiently [13,18–20]. However, previous literature has highlighted several challenges in
this line of research, including the inconsistent description of autistic prosodic features,
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unaccounted between-study heterogeneity, and limited quantitative evidence on specific
aspects of autistic prosody performance [21,22]. Therefore, this study performed a fine-
grained meta-analysis to offer a comprehensive evaluation of the significance of natural
speech prosody in the ASD population.

2. Literature Review

Prosodic disorders are inherently related to socio-communicative problems [11,22,23],
which potentially provides insightful observations on the core symptomatology of ASD [15,16].
In speech communication, social information is encoded and conveyed via sound patterns [2].
However, autistic individuals commonly struggle to establish the cognitive foundation nec-
essary for recognizing speech prosody [4], due to challenges in inferring communication
intentions from speech [24] and/or the difficulties in integrating multi-channel processing [25].
Reciprocally, the production of atypical prosody is exaggerated by inaccurate perception
because of the aberrant auditory system of ASD patients [26]. The impaired speech chain
shows a long-lasting impact on the social-pragmatic ability of ASD children whose prosodic
abnormality is resistant to the development of other language abilities [12,27]. Therefore,
prosodic disorders have been recognized as key and early features of ASD [3,8,13,14].

Prosodic disorders of autistic individuals have prompted a fair amount of research
attempts [16], but the general pattern of prosody cannot be characterized for ASD pa-
tients, considering the inconsistent findings among studies due to the large individual
heterogeneity and measurement variability [12]. For example, despite the conventional
description of “mono-toned” or “machine-like”, autistic speech has been reported to show
a higher pitch variability with accumulating evidence [3,15,22,28]. The inconsistency is
further complicated by a variety of factors moderating the pitch variability, including
IQ, age, gender, autistic severity, and language capacity [3,16,29]. In the same vein, re-
search has revealed discrepant results on the pitch mean. Several studies have reported
higher values of mean pitch for ASD over TD, regardless of constrained or natural speech
tasks [3] and across positive or negative emotional contexts [30]. However, other inves-
tigations have found non-significant differences in the mean F0 between ASD and TD,
with a refined control/modulation of IQ and verbal ability across the two groups [1,16].
Furthermore, the temporal performances observed are also perplexing due to different
criteria of duration [29] and large heterogeneity among individuals with ASD [1,31]. In
conclusion, these insistent findings have highlighted the considerable heterogeneity in
terms of autistic prosody [12,22]. This underscores the necessity for a fine-grained, sensitive,
and explicit assessment of prosodic characteristics for monitoring, detecting, diagnosing,
and treating ASD patients [10,16,32,33].

Despite the aforementioned inconsistencies, the analyses of natural prosody are sup-
posed to provide a more accurate portrayal of autistic prosody [4]. It is noteworthy that
prosodic features in natural speech have been demonstrated to be more representative and
sensitive [13]. For example, accumulating studies have showed elevated pitch mean in natu-
ral speech for ASD patients, irrespective of tonal or non-tonal language speakers and across
different age groups [28]. Furthermore, the pitch standard deviation of ASD groups is
82.6% larger than that of TD groups in a natural context [34]. With high sensitivity, prosodic
characteristics of natural speech are incorporated in the clinical diagnosis of ASD [16,28].
For example, prosodic features or voice quality in natural speech were used in the Autism
Diagnostic Interview-Revised and Autism Diagnostic Observation Schedule-in the Second
Edition (the golden standards for the assessment of ASD) and Social Responsiveness Scale
to detect autistic individuals [28,35]. In addition, aberrations of pitch variability in daily
conversation are applied by clinicians to distinguish autistic speakers [3]. However, these
conventionalized methods heavily rely on the accumulative knowledge and implicit expe-
rience of trained clinicians [17,36], with subject-dependent and time-consuming limitations.
Therefore, the adoption of quantitative techniques has been advocated to advance ASD
detection in clinical practices based on prosodic evidence [37–39].



Behav. Sci. 2024, 14, 90 3 of 19

There is a surging interest in employing machine learning algorithms trained by nat-
ural prosodic features for the automatic identification of ASD [13,18,19]. Specifically, a
machine learning algorithm learns distributions and patterns from training data and then
uses them to predict the target outcome [40]. Leveraging the power of the automated
approach, a machine can achieve 67.6% accuracy even though the training data are re-
markably limited (e.g., natural speech from four ASD children and four TD children) [20].
Importantly, with time-limited discourse clips (90 s per clip) and a larger sample size
(20 ASD and 38 TD children), relatively more accurate results (70% accuracy) are obtained,
suggesting encouraging results trained by limited data and better performances trained by
larger data [13]. This finding has been confirmed by higher accuracy (more than 85%) with
larger samples [5,39] and higher accuracy (88%) with a larger data corpus [41]. However,
despite the promising accuracy of ASD detection using machine learning techniques, the
inclusion of various acoustic parameters in different algorithms has led to remarkable
variations in extant observations [39]. For instance, the algorithms trained by rhythm or
by intonation relevant characteristics reached significantly different Area Under Curves
(AUCs; e.g., 88.6%, 75%, and 55.9%) [5,42]. Therefore, these aforementioned findings have
highlighted the promising prospects as well as the heterogeneity of machine learning in
ASD detection.

Overall, natural speech prosody correlates with communicative development, which
has received intense research interest for a better understanding and screening of ASD.
However, the literature reviewed shows strikingly inconsistent discoveries regarding
the distinctive characteristics of autistic prosody and the efficacy of machine learning in
ASD detection. Performing a targeted meta-analysis may be helpful to deal with these
inconsistencies and offer valuable insights for clinical practice. By aggregating eligible
studies, a meta-analysis has the potential to mitigate the result bias of individual studies,
provide reliable power with large sample sizes, find consistent patterns across studies, and
offer invaluable insights for future empirical investigations and clinical interventions.

To the best of our knowledge, the two latest meta-analyses conducted by Fusaroli et al. [22]
and Asghari et al. [21] examined the acoustic features of individuals with ASD. Fusaroli et al.
evaluated prosodic and voice quality data derived from constrained, spontaneous production,
or social interaction of autistic patients, which observed salient standard mean differences
in pitch mean value, pitch range, and pitch variability between ASD and TD individuals.
In addition to the univariate studies, Fusaroli et al. also revealed the encouraging accuracy
of machine learning trained by prosodic features for ASD detection. Although the results
were inspiring, the review by Fusaroli et al. [22] did not explore the specific performance of
autistic prosody in different production conditions (i.e., constrained production, spontaneous
production, and social interaction) or between different age groups. Moreover, their review of
the machine learning outcome was restricted by the limited amounts of the included data. To
verify the findings of Fusaroli et al. on the prosodic performance of ASD, Asghari et al. [21]
conducted an updated review of univariate studies with more eligible data. Their findings
replicated the significant differences between ASD and TD populations in terms of pitch mean,
pitch range, and speech duration, but found non-significant differences between the two
populations in pitch standard deviation and speech rate. Additionally, Asghari et al. classified
the task types and age groups, which revealed that the confounding factors might have a
significant moderating role in effect size pooling, such as task types in pooling pitch range
and duration differences and age groups in intensity mean differences. However, caution
should be exercised while interpreting the results of Asghari’s research. On the one hand, the
limited samples of each subgroup for the moderator analysis could deviate from the precision
of the final results. On the other hand, despite the refinement of task types, considerable
heterogeneity resulting from different tasks remained apparent (e.g., I2 = 91.4% in a narration
task, I2 = 80.7 in a conversation task).
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3. The Present Study

This study was built upon the prior reviews for twofold expansions. Firstly, given the
high ecological validity and sensitivity of natural prosody in evaluating the communicative
ability of ASD patients, we focused on the analysis of prosodic features in spontaneous
speech. The specification was intended to reduce heterogeneity, better profile autistic
prosodic performance, and provide clinical implications for ASD diagnosis. Secondly, we
updated the reviewing procedure to January 2024 and included comprehensive research
across multiple databases. As a result, we extracted and coded a total of 25 eligible uni-
variate studies on spontaneous speech and 18 multivariate studies on machine learning.
By incorporating newly available evidence, this state-of-the-art review could add statis-
tical power and provide valuable implications for the diagnosis and intervention of the
autistic population.

Specifically, this study aimed to extend prior efforts to elucidate the between-study
heterogeneity and the perplexing inconsistencies of the literature reviewed. Therefore, a
meta-analysis of autistic prosodic performance, subgroup analysis, and machine learning
analysis of model performance were conducted. Research questions for this study were
raised as follows:

Q1: Can natural prosodic features differentiate ASD from TD groups?
Given the previous evidence that prosody was a reflection of social communicative

ability [11,22,23] and ASD populations were deflected in theory of mind [24], we predicted
that a large number of prosodic features might have conspicuous differences between the
ASD and TD groups.

Q2: Are there confounding factors that affect size pooling?
Previous research has proved that large individual differences in the autistic group [1,31],

including severity [1,22] and age [43], could influence the prosodic performance of ASD.
Therefore, we predicted that there were potential moderators, such as age groups and task
types, with a role in effect size pooling.

Q3: How do machine learning models trained by natural speech perform in ASD
detection?

The previous systematic review by Fusaroli et al. [22] concluded a promising land-
scape of machine learning in ASD detection. In addition, more recent work conducted by
Chi et al. [13] also showed that even limited data could train machine learning to detect
ASD populations. Therefore, we predicted that machine learning might have promising
accuracy, specificity, precision, and sensitivity in ASD detection.

4. Materials and Methods
4.1. Search Strategy

To identify the relevant articles, we conducted exhaustive literature research in the
following databases: Biosis Previews, Elsevier Science-direct, Embase, Eric, Inspec, MED-
LINE, PorQuest, Scopus, and Web of Science Core Collection from the time of their first
publication to January 2024. The following combination of words was used as search terms:
(a) “autism OR autistic OR ASD OR HFA OR Asperger OR PDD” AND (b) “prosody OR
prosodic OR phonetics OR phonology OR phonological OR voice” AND (c) “rhyme OR
spontaneous discourse OR conversation OR speech OR automatic OR melody OR natural
conversation OR narration”. In addition, manual searches of reference lists were conducted
to identify more potential eligible studies.

Furthermore, the identified studies eligible for inclusion in the review were screened
with the following inclusion criteria: (1) Studies should include individuals who had a
confirmed diagnosis of ASD with normal nonverbal intelligence and had no hearing or
visual disorders. (2) Studies should have TD counterparts enrolled in a control group.
(3) Studies should clearly report the detailed statistical data for effect size calculation,
such as sample sizes, mean differences, standard deviation, AUC, recall, and precision.
(4) Studies should employ experimental or quasi-experimental methods and have a detailed
report on the quantitative research design. Additionally, studies had to be excluded for
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one of the following reasons: (1) The studies were meta-analyses or reviews without origin
data. (2) The studies did not provide sufficient data to qualify the calculation of an effect
size. (3) The studies did not employ natural speech tasks to elicit prosody data.

4.2. Risk of Bias Assessment

The quality of the included data was evaluated using the Risk of Bias2 (ROB2) assess-
ment tool in five fields: randomization process, intended interventions, data completeness,
outcome measurement, and result reporting intactness. Two independent reviewers rated
the reports, and any disagreements were resolved through discussion to reach a consensus.
The results were visualized using a summary barplot figure, where the proportion of studies
with a given risk of bias judgement in each ROB2 domain would be revealed (Figure 1). The
risk of bias plot showed that bias due to deviations from intended interventions, missing
outcome data, measurement of the outcome, and selection of the reported results was less
likely to have high risk. However, the randomized process due to the selection of qualified
participants might bias the final results.
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4.3. Data Extraction

Data were extracted targeting the three research questions. Firstly, related statistical
values for prosodic measures (e.g., sample sizes, means, standard deviations, t value, and
F value) and numbers of participants were extracted for the calculation of effect sizes.
In light of the findings in the literature, potential moderators (e.g., task types, speaking
languages, and ages of participants) were coded. Thirdly, characteristics of machine
algorithms were extracted, such as types of data, number of participants, and results
of performance (i.e., AUC, accuracy (ACC), sensitivity (SENS), specificity (SPEC), and
precision (PREC)).

In classifying task types, natural speech was defined as discourse that occurred with-
out explicit elicitation [44] and exhibited acoustic distinctions from controlled or read
speech [29,45]. Natural language, by virtue of approximating real-world social situations
and having high ecological validity, formed the basis of linguistic communication [46] and
portrayed social phenotypes of ASD [15]. There were three widely reported types of natural
speech in the included research, namely narration (e.g., story-telling and picture-describing),
conversation (e.g., question–answer tasks and semi-structured ADOS interviews), and in-
teraction (e.g., free talk and game-playing) [20]. These three tasks exhibited varying degrees
of spontaneity. For example, narration, while natural in nature, required great stability and
differed from genuinely spontaneous [36]. Compared with narration, conversation relied on
the shared social knowledge of interlocutors, occurring spontaneously and reciprocally [47].
Although conversation shared characteristics of interaction [34], the latter had a higher
degree of social spontaneity and interpersonal dynamics in nature [22].

4.4. Statistical Analysis

Effect sizes for continuous variables were usually calculated as standardized mean
differences with Cohend’s d, of which the magnitude was interpreted as a slight (0.2),
medium (0.5), and large (0.8) effect. However, Cohend’s d could meet upward bias when
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the sample number of a study was limited (n < 20) [48]. Since the included studies varied
in group sizes and the majority recruited a restricted number of participants, Hedges’ g
was used to computerize effect sizes, which is appropriate for studies with limited sample
sizes. To aggregate the effect sizes, we ran the meta-analysis under a random-effect model,
considering that the true effect could be influenced by both the sampling error and between-
study heterogeneity. To further control uncertainty regarding between-study heterogeneity,
the meta-analysis was adjusted with the Knapp–Hartung adjustment.

We quantified variances in true effects using estimates of Tau2, which were run
under a restricted maximum likelihood to avoid any bias from limited sample sizes. We
assessed the between-study heterogeneity using I2, which showed the percentage of true
variability in observed heterogeneity and was interpreted based on the thresholds of
low (25%), moderate (50%), and high (75%) heterogeneity [49]. To further explain a specific
heterogeneity pattern, a subgroup analysis was performed to explore specific confounding
factors in effect size aggregation. For this process, we previously synthesized the sample
sizes of ASD and TD groups, age groups, languages, severity of autism, task types of natural
speech production, and available results of acoustic measures. Given that the confounding
factors might collectively or interactively exert a moderating role, multi-model construction,
inference, and interactions were conducted.

Through the above process, the meta-analytic techniques tried to reveal an unbiased
estimate of the aggregated effect size. However, studies with unfavorable findings might be
unpublished, and the pooled estimates were distorted due to the publication bias. Funnel
plots, which can also evaluate the bias from small-study effects, were employed to assess
the potential publication bias. Interpreting the results of funnel plots was to judge the plot
asymmetry in a qualitative way, which was complemented by Egger’s test to testify to
quantitative evidence [50].

The statistical analysis was performed in R 4.2.3 via the use of tidyverse v.2.0.0,
meta v.6.2-1, metaphor v.4.0-0, dmetar 0.0.9, and robvis 0.3.0 packages.

5. Results
5.1. Study Selection Overview

The research in electronic databases identified 3336 studies that were retained for title
and abstract screening. After the removal of duplicates and other irrelevant studies, 158 full-
text articles were evaluated. In total, 21 papers with 25 acoustic studies on autistic prosodic
features and 13 papers with 18 studies on automatic machine learning were ultimately
included (see Figure 2 for a description of the selection process). Table 1 provides a
descriptive overview of the characteristics of studies on rhythmic features: the number of
participants, the age (mean, standard deviation, and group) of participants, and the SMD of
prosodic features, whereas Table 2 provides an overview of temporal features. A succinct
overview of the included machine learning studies is outlined in Table 3.

Table 1. Summary of pitch characteristics of ASD and TD in included studies.

Name N_ASD N_TD Age_ASD Age_TD Group Language Task PitchMeanASDvsTD

(Redford et al., 2018) [2] 17 17 M: 9 (Yr.)
SD: 18 (mon.)

M: 8.9 (Yr.)
SD: 15 (mon.) Children English Conversation −0.8403 (0.3578)

(Scharfstein et al., 2011) [51] 30 30 M: 0.57 (mon.) M: 10.60 (mon.) Children English Interaction −0.3666 (0.2604)

(Shriberg et al., 2011) [11] 46 10 M: 69.9 (mon.)
SD: 14.4 (mon.) Range: 4–7 (Yr.) Children English Conversation −0.3569 (0.3505)

(Quigley et al., 2016) [52] 10 9 M: 12.12 (mon.)
SD: 0.89 (mon.)

M: 11.95 (mon.)
SD: 0.84 (mon.) Infant English Interaction −0.066 (0.4596)

(Dahlgren et al., 2018) [29] 11 11 M: 11.1 (Yr.)
SD: 1.10 (Yr.)

M: 11.1 (Yr.)
SD: 0.47 (Yr.) Children Swedish Narration −0.0647 (0.4265)

(Diehl et al., 2009) [16] 17 17 M: 8.81 (Yr.)
SD: 2.13 (Yr.)

M: 9.49 (Yr.)
SD: 2.22 (Yr.) Children English Narration 0.1235 (0.3433)

(Kissine and Geelhand, 2019) [36] 38 38 M: 28.1 (Yr.)
SD: 11.48 (Yr.)

M: 27.9 (Yr.)
SD: 11.53 (Yr.) NA French NA 0.1704 (0.1704)

(Brisson et al., 2014) [31] 13 13 M: 4.38 (mon.)
SD: 0.88 (mon.)

M: 3.71 (mon.)
SD: 1.39 (mon.) Infant French Interaction 0.2079 (0.3933)

(Diehl et al., 2009) [16] 21 21 M: 13.58 (Yr.)
SD: 2.10 (Yr.)

M: 13.24 (Yr.)
SD: 2.09 (Yr.) Children English Narration 0.4217 (0.312)

(Nadig and Shaw, 2012) [3] 15 11 M: 10.6 (Yr.)
SD: 17 (mon.)

M: 10.8 (Yr.)
SD: 23 (mon.) Children English Interaction 0.5226 (0.4035)

(Quigley et al., 2016) [52] 10 9 M: 18.27 (mon.)
SD: 0.85 (mon.)

M: 18.13 (mon.)
SD: 0.88 (mon.) Infant English Interaction 0.5758 (0.4689)

(Pokorny et al., 2017) [53] 10 10 NA NA Infant Swedish Interaction 0.6134 (0.4576)

(Ochi et al., 2019) [34] 62 17 M: 26.9 (Yr.)
SD: 7.0 (Yr.)

M: 29.6 (Yr.)
SD: 7.0 (Yr.) Adult Japanese Interaction 0.6237 (0.2769)
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Table 1. Cont.

Name N_ASD N_TD Age_ASD Age_TD Group Language Task PitchMeanASDvsTD

(Nadig and Shaw, 2012) [3] 15 13 M: 11.0 (Yr.)
SD: 19 (mon.)

M: 11.0 (Yr.)
SD: 24 (mon.) Children English Conversation 0.6306 (0.3882)

(Chan and To, 2016) [54] 19 19 M: 25.72 (Yr.)
SD: 3.63 (Yr.)

M: 25.50 (Yr.)
SD: 3.21 (Yr.) Adult Chinese Narration 0.8473 (0.3387)

(Choi and Lee, 2019) [55] 17 34 M: 98.8 (mon.)
SD: 18.6 (mon.)

M: 99.3 (mon.)
SD: 20.7 (mon.) Children Korean Conversation 1.3121 (0.3242)

(Sharda et al., 2010) [56] 15 10 M: 6.25 (Yr.)
SD: 1.5 (Yr.)

M: 7.3 (Yr.)
SD: 2.0 (Yr.) Children English-Hindi

bilingual Interaction 1.6031 (0.4670)

(Drimalla et al., 2020) [17] 37 43 M: 36.89 (Yr.) M: 33.14 (Yr.) Adult German Interaction 0.8831 (0.2349)

(Maes et al., 2023) [57] 10 10 M: 4 (Yr.); 06.9 (mon.)
SD: 1 (Yr); 00.23 (mon)

M: 4 (Yr); 06.54 (mon.)
SD: 0 (Yr); 09.82 (mon.) Children French Interaction 0 (0.4472)

Name N_ASD N_TD Age_ASD Age_TD Group Language Task PitchRangeASDvsTD

(Dahlgren et al., 2018) [29] 11 11 M: 11.1 (Yr.)
SD: 1.10 (Yr.)

M: 11.1 (Yr.)
SD: 0.47 (Yr.) Children Swedish Narration −0.0957 (0.4266)

(Quigley et al., 2016) [52] 10 9 M: 2.12 (mon.)
SD: 0.89 (mon.)

M: 1.95 (mon.)
SD: 0.84 (mon.) Infant English Interaction 0.1271 (0.4599)

(Quigley et al. 2016) [52] 10 9 M: 8.27 (mon.)
SD: 0.85 (mon.)

M: 8.13 (mon.)
SD: 0.88 (mon.) Infant English Interaction 0.3682 (0.4633)

(Kaland, Krahmer, and Swerts, 2012) [58] 20 20 M: 28.9 (Yr.) NA Adult Dutch Interaction 0.7047 (0.3259)

(Chan and To, 2016) [54] 19 19 M: 25.72 (Yr.)
SD: 3.63 (Yr.)

M: 25.50 (Yr.)
SD: 3.21 (Yr.) Adult Chinese Narration 0.8019 (0.3372)

(Lehnert-LeHouillier et al., 2020) [59] 12 12 M: 12.14 (Yr.)
SD: 1.84 (Yr.)

M: 12.23 (Yr.)
SD: 1.89 (Yr.) Children English Conversation 0.88 (0.4335)

(Nadig and Shaw, 2012) [3] 15 11 M: 10.6 (Yr.)
SD: 17 (mon.)

M: 10.8 (Yr.)
SD: 23 (mon.) Children NA Interaction 0.8834 (0.4154)

(Shardaet al., 2010) [56] 15 10 M: 6.25 (Yr.)
SD: 1.5 (Yr.)

M: 7.3 (Yr.)
SD: 2.0 (Yr.) Children English-Hindi

bilingual Interaction 1.1945 (0.4418)

(Nadig and Shaw, 2012) [3] 15 13 M: 11.0 (Yr.)
SD: 19 (mon.)

M: 11.0 (Yr.)
SD: 24 (mon.) Children NA Conversation 1.8097 (0.4495)

(Maes et al., 2023) [57] 10 10 M: 4; 06.9 (Yr.)
SD: 1; 00.23 (Yr.)

M: 4; 06.54 (Yr.)
SD: 0; 09.82 (Yr.) Children French Interaction −0.003 (0.4472)

Name N_ASD N_TD Age_ASD Age_TD Group Language Task PitchSDASDvsTD

(Ochi et al., 2019) [34] 65 17 M: 26.9 (Yr.)
SD: 7.0 (Yr.)

M: 29.6 (Yr.)
SD: 7.0 (Yr.) Adult NA Interaction 0.1425 (0.2726)

(Diehl et al., 2009) [16] 21 21 M: 13.58 (Yr.)
SD: 2.10 (Yr.)

M: 13.24 (Yr.)
SD: 2.09 (Yr.) Children English Narration 0.7017 (0.318)

(Diehl et al., 2009) [16] 17 17 M: 8.81 (Yr.)
SD: 2.13 (Yr.)

M: 9.49 (Yr.)
SD: 2.22 (Yr.) Children English Narration 0.9109 (0.3603)

(Chan and To, 2016) [54] 19 19 M: 25.72 (Yr.)
SD: 3.63 (Yr.)

M: 25.50 (Yr.)
SD: 3.21 (Yr.) Adult Chinese Narration 0.8019 (0.3372)

(Quigley et al., 2016) [52] 10 9 M: 2.12 (mon.)
SD: 0.89 (mon.)

M: 1.95 (mon.)
SD: 0.84,mon.) Infant English Interaction 0.3286 (0.4626)

(Quigley et al., 2016) [52] 10 9 M: 8.27 (mon.)
SD: 0.85 (mon.)

M: 8.13 (mon.)
SD: 0.88 (mon.) Infant English Interaction 0.7417 (0.475)

Name N_ASD N_TD Age_ASD Age_TD Group Language Task PitchVarASDvsTD

(Scharfstein et al., 2011) [51] 30 30 M: 10.57 (Yr.) M: 10.60 (Yr.) Children English Interaction −0.2308 (0.2591)

(Dahlgren et al., 2018) [29] 11 11 M: 11.1 (Yr.)
SD: 1.10 (Yr.)

M: 11.1 (Yr.)
SD: 0.47 (Yr.) Children Swedish Narration −0.1053 (0.4267)

(Ochi et al., 2019) [34] 65 17 M: 26.9 (Yr.)
SD: 7.0 (Yr.)

M: 29.6 (Yr.)
SD: 7.0 (Yr.) Adult NA Interaction 0.1425 (0.2726)

(Quigley et al., 2016) [52] 10 9 M: 2.12 (mon.)
SD: 0.89 (mon.)

M: 1.95 (mon.)
SD: 0.84 (mon.) Infant English Interaction 0.3286 (0.4626)

(Diehl et al., 2009) [16] 21 21 M: 13.58 (Yr.)
SD: 2.10 (Yr.)

M: 13.24 (Yr.)
SD: 2.09 (Yr.) Children English Narration 0.7017 (0.318)

(Kaland, Krahmer, and Swerts, 2012) [58] 20 20 M: 28.9 (Yr.) NA Adult NA Interaction 0.7047 (0.3259)

(Quigley et al., 2016) [52] 10 9 M: 8.27 (mon.),
SD: 85 (mon.)

M: 8.13 (mon.)
SD: 8 (mon.) Infant English Interaction 0.7417 (0.475)

(Chan and To, 2016) [54] 19 19 M: 25.72 (Yr.)
SD: 3.63 (Yr.)

M: 25.50 (Yr.)
SD: 3.21 (Yr.) Adult Chinese Narration 0.8019 (0.3372)

(Nadig and Shaw, 2012) [3] 15 11 M: 10.6 (Yr.)
SD: 17 (mon.)

M: 10.8 (Yr.)
SD: 23 (mon.) Children NA Interaction 0.8834 (0.4154)

(Diehl et al., 2009) [16] 17 17 M: 8.81 (Yr.)
SD: 2.13 (Yr.)

M: 9.49 (Yr.)
SD: 2.22 (Yr.) Children English Narration 0.9109 (0.3603)

(Sharda et al., 2010) [56] 15 10 M: 6.25 (Yr.)
SD: 1.5 (Yr.)

M: 7.3 (Yr.)
SD: 2.0 (Yr.) Children English-Hindi

bilingual Conversation 1.1945 (0.4418)

(Nadig and Shaw, 2012) [3] 15 13 M: 11.0 (Yr.)
SD: 19 (mon.)

M: 11.0 (Yr.)
SD: 2 (mon.) Children NA Conversation 1.8097 (0.4495)

(Plank et al., 2023) [60] 26 54 M: 34.85 (Yr.)
SD: 12.01 (Yr.)

M: 30.80 (Yr.)
SD: 10.42 (Yr.) Adult German Conversation −0.5832 (0.2431)
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Table 2. Studies involving acoustic measures of duration or speech rate in ASD.

Name N_ASD N_TD Age_ASD Age_TD Group Language Task DurationASDvsTD

(Morett et al. 2015) [61] 18 21 M: 15.17
SD: 2.75

M: 15.81
SD: 2.42 Children English Narration −0.8087 (0.334)

(Ochi et al., 2019) [34] 65 17 M: 26.9 (Yr.)
SD: 7.0 (Yr.)

M: 29.6 (Yr.)
SD: 7.0 (Yr.) Adult Japanese Interaction −0.212 (0.2729)

(Sharda, et al., 2010) [56] 15 10 M: 6.25 (Yr.)
SD: 1.5 (Yr.)

M: 7.3 (Yr.)
SD: 2.0 (Yr.) Children

English-
Hindi

bilingual
Interaction −0.0046 (0.4082)

(Brisson et al., 2014) [31] 13 13 M: 4.38
SD: 0.88

M: 3.71
SD: 1.39 Infant French Interaction −0.0031 (0.3922)

(Kissine and Geelhand,
2019) [36] 38 38 M: 28.1

SD: 11.48
M: 27.9
SD: 11.5 NA French NA 0.0032 (0.2294)

(Cho et al., 2023) [15] 45 47 M: 25.7 (mon.)
SD: 3.63 (mon.)

M: 25.5 (mon.)
SD: 3.21 (mon.) Children Chinese Conversation 0.44 (0.1566)

(Quigley et al. 2016) [52] 10 9 M: 2.12 (mon.)
SD: 0.89 (mon)

M: 1.95 (mon.)
SD: 0.84 (mon.) Infant English Interaction 0.4903 (0.4903)

(Quigley et al. 2016) [52] 10 9 M: 8.27 (mon.)
SD: 0.85 (mon.)

M: 8.13 (mon.) SD:
0.88 (mon.) Infant English Interaction 0.8738 (0.4808)

(Maes et al., 2023) [57] 10 10
M: 4 (Yr.); 06.9 (mon.)

SD: 1 (Yr.); 00.23
(mon.)

M: 4 (Yr.); 06.54 (mon.)
SD: 0 (Yr.); 09.8 (mon.) Children French Interaction 0.1603 (0.4479)

Name N_ASD N_TD Age_ASD Age_TD Group Language Task RateASDvsTD

(Ochi et al., 2019) [34] 65 17 M: 26.9 (Yr.)
SD: 7.0 (Yr.)

M: 29.6 (Yr.)
SD: 7.0 (Yr.) Adult Japanese Interaction −0.1743 (0.2728)

(Dahlgren et al., 2018) [29] 11 11 M: 11.1 (Yr.)
SD: 1.10 (Yr.)

M: 11.1 (Yr.)
SD: 0.47 (Yr.) Children NA Narration −0.1182 (0.4268)

(Cho et al., 2023) [15] 45 47 M: 25.7 (mon.)
SD: 3.63 (mon.)

M: 25.5 (mon.)
SD: 3.21 (mon.) Chidlren Chinese Conversation −0.33 (0.1464)

(Choi and Lee, 2019) [55] 17 34 M: 98.8 (mon.)
SD: 18.6 (mon.)

M: 99.3 (mon.)
SD: 20.7 (mon.) Children Korean Conversation 0.2399 (0.298)

(Nadig and Shaw, 2012) [3] 15 13 M: 11.0 (Yr.)
SD: 19 (mon.)

M: 11.0 (Yr.)
SD: 24 (mon.) Children English Conversation 0.5177 (0.3852)

(Nadig and Shaw, 2012) [3] 15 11 M: 10.6 (Yr.)
SD: 17 (mon.)

M: 10.8 (Yr.)
SD: 23 (mon.) Children English Interaction 0.0686 (0.397)

Table 3. Summary of machine learning characteristics in included studies.

Authos Sample Size Task Performance

(Oller et al., 2010) [62] ASD: 77; TD: 106 Interaction ACC: 0.86; SENS: 0.75; SPEC: 0.98
(Kiss et al., 2012) [42] ASD: 14; TD: 28 Interaction AUC: 0.75; ACC: 0.74; SPEC: 0.57

(Fusaroli et al., 2013) [63] ASD: 10; TD: 13 Narration ACC: 0.86; SENS: 0.884; SPEC: 0.854
(Fusaroli, Grossman, et al., 2015) [64] ASD: 52; TD: 34 Narration ACC: 0.7165; SENS: 0.5832; SPEC: 0.8442
(Fusaroli, Grossman, et al., 2015) [64] ASD: 26; TD: 34 Narration ACC: 0.8201; SENS: 0.848; SPEC: 0.8139

(Fusaroli, Lambrechts, et al., 2015) [65] ASD: 17; TD: 17 Narration ACC: 0.819; SENS: 0.8483; SPEC: 0.822
(Asgari et al., 2021) [32] ASD: 90; TD: 28 Conversation AUC: 0.82; ACC: 0.733; SENS: 0.6967; SEPC: 0.7683
(Santos et al., 2013) [19] ASD: 23; TD: 20 Conversation AUC: 0.66; ACC: 0.628; SPEC: 0.55
(Santos et al., 2013) [19] ASD: 23; TD: 20 Conversation AUC: 0.97; ACC: 0.977; SPEC: 1

(MacFarlane et al., 2022) [39] ASD: 88; TD: 70 Interaction AUC: 0.78; ACC: 0.7215; SENS: 0.75; SPEC: 0.6857
(MacFarlane et al., 2022) [39] ASD: 88; TD: 70 Interaction AUC: 0.8748; ACC: 0.7975; SENS: 0.7727; SPEC: 0.8286
(MacFarlane et al., 2022) [39] ASD: 88; TD: 70 Interaction AUC: 0.9205; ACC: 0.8671; SENS: 0.8977; SPEC: 0.8266

(Lau et al., 2022) [5] ASD: 83; TD: 63 Narration AUC: 0.886; ACC: 0.835; SENS: 0.79; SPEC: 0.877
(Lau et al., 2022) [5] ASD: 83; TD: 63 Narration AUC: 0.559; ACC: 0.566; SENS: 0.632; SPEC: 0.509

(Rybner et al., 2022) [66] ASD: 10; TD: 8 Narration ACC: 0.89; SENS: 0.75; SPEC: 1; PREC: 1
(Rybner et al., 2022) [66] ASD: 28; TD: 32 Narration ACC: 0.68; SENS: 0.5; SPEC: 0.76; PREC: 0.82
(Plank et al., 2023) [60] ASD: 26; TD: 54 Conversation ACC: 0.762; SENS: 0.738; SPEC: 0.76; PREC: 0.63

(Chowdhury et al., 2023) [67] ASD: 14; TD: 15 Conversation ACC: 0.76; SENS: 0.64; SPEC: 0.87; PREC: 0.84

5.2. Results of Prosodic Differences between ASD and TD Groups
5.2.1. Pitch Mean

Pitch is generated by pharynx vibration and reflects the frequency of voice. In the
review, 19 articles with 20 studies (416 participants with ASD and 351 TD counterparts)
investigated the difference in mean pitch value between the ASD and TD groups. After
synthesizing the 18 experimental cases in a meta-analysis, the pooled effect size was 0.3528
(95%CI [0.0698 0.6358], I2 = 65.6%) (see Figure 3). Given the zero-exclusive 95% confidence
interval and the significant results of the t-test (t = 2.59, p = 0.0181), the larger mean pitch
value of ASD was remarkable. Furthermore, neither moderators (age groups and task
types) nor their multi-regressive or interactive roles significantly functioned in the pooled
effect size.
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Figure 3. Forest plot for the meta-analysis of pitch mean differences [2,3,11,16,17,29,31,34,36,51–57].

5.2.2. Pitch Range

The pitch range indicates the scope of changes in pitch and is calculated by the
max-min differences. In this review, 10 studies (137 participants with ASD and 124 TD par-
ticipants) were included. In terms of the pooling results from the studies, the achieved effect
size was significantly large (SMD = 0.6744, 95%CI [0.2698, 1.0790], I2 = 43%) (see Figure 4).
This large effect was evidenced by statistical estimates of the t-test (t = 3.77, p = 0.0044).
Further subgroup analysis indicated that the moderating role of age groups was substantial
(t = 2, p = 0.0005).
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5.2.3. Pitch Standard Deviation

Different from the pitch range, the pitch standard deviation reflects the dispersion
degree of the pitch value. With the six eligible studies (142 ASD participants and 92 counter-
parts), the pooled effect size reached a significantly strong effect (SMD = 0.5735,
95%CI [0.2350, 0.9135], I2 = 0) (see Figure 5). Considering the non-zero overlapped confi-
dence interval and zero reported between-heterogeneity, the larger pitch standard deviation
of ASD groups was salient. Owing to the limited number of included studies, confounding
factor analysis in the meta-analysis concerned with pitch SD was not performed.
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5.2.4. Pitch Variability

Although the pitch range and pitch standard deviation indicate changes in pitch,
their combination convincingly indicates the magnitude of pitch variability [28]. In the
review, a total of 13 experimental studies (274 ASD participants and 241 TD participants)
were included. After aggregating the results, a significantly large effect size was revealed
(SMD = 0.5137, 95%CI [0.1237, 0.9037], I2 = 73.1%) (see Figure 6). The significant effect size
was statistically evidenced (t = 4.27, p = 0.0141). A further confounding factor analysis
revealed that no task type, age group, or interactive model had a moderating role.
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5.2.5. Utterance Duration

Utterance duration was investigated by nine studies in the review (224 participants
with ASD and 174 TD counterparts). Synthesizing the studies in the meta-analysis, the
mean difference between ASD and TD groups was slight (SMD = 0.0738, 95%CI [−0.2768,
0.4244], I2 = 52.5%) (see Figure 7), which was also observed in the t-test (t = 0,49, p = 0.6404).
Further moderator analysis of the two confounding factors (age groups and task types)
indicated no significant moderating or interactive role.
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5.2.6. Speaking Rate

Six papers on the speaking rate (158 participants with ASD and 133 TD participants) were
included in the review. After pooling the findings of the studies, the meta-analysis reported
a small effect size (SMD = −0.0547, 95%CI [−0.3818, 0.2725], I2 = 23.2%) (see Figure 8).
However, the standardized mean difference was insignificant (t = −0.43, p = 0.6855). Given
that only six studies were included in the meta-analysis, further moderator analysis and
model construction were neglected.



Behav. Sci. 2024, 14, 90 11 of 19
Behav. Sci. 2024, 14, x FOR PEER REVIEW 14 of 23 
 

 
Figure 8. Forest plot for the meta-analysis of speaking rate differences. 

5.2.7. Intensity Mean and Variation 
Intensity quantifies the energy of sound waves and influences information delivery 

in speech communication. The intensity differences between ASD and TD groups were 
investigated by six eligible studies in this review. Specifically, four available studies re-
ported the intensity mean differences between ASD and TD, and all but one revealed a 
higher intensity mean of the ASD groups than TD ones. For intensity variability, only two 
eligible studies were included in the review. Although the two studies agreed that ASD 
groups had higher intensity variability, the degrees of the difference they indicated were 
completely different. Ochi et al. [34] examined the intensity of high-functioning autistic 
people (HFA) in their semi-structured conversation and revealed  slight intensity stand-
ard deviation differences between ASD and TD (SMD = 0.1275, SD = 0.2726). On the con-
trary, Choi and Lee [55] found that in the interaction and communication speech of HFA, 
the difference could reach a large effect (SMD = 0.998, SD = 0.3131). Owing to the limited 
number (n < 6) of included papers, a meta-analysis failed to run. 

5.3. Results from Machine Learning for ASD Diagnosis 
The previous section reviewed the prosodic patterns of the ASD group and revealed 

their prosodic differences from the TD group. In this section, a second set of 18 studies 
(see Table 3) about machine learning were evaluated. Machine learning studies, different 
from the univariate ones focusing on specific prosodic feature(s), seek to train multiple 
datasets to automatically identify the ASD populations. With regard to results, all but two 
multivariate studies in the review reached above 70% and up to 98% accuracy. A more 
detailed overview of the specificities and sensitives of the machine learning studies was 
reported in Figures 9 and 10, of which the averaged specificities and sensitives achieved 
75.51% and 80.31%. 

 

Figure 8. Forest plot for the meta-analysis of speaking rate differences [3,15,29,34,55].

5.2.7. Intensity Mean and Variation

Intensity quantifies the energy of sound waves and influences information delivery
in speech communication. The intensity differences between ASD and TD groups were
investigated by six eligible studies in this review. Specifically, four available studies
reported the intensity mean differences between ASD and TD, and all but one revealed a
higher intensity mean of the ASD groups than TD ones. For intensity variability, only two
eligible studies were included in the review. Although the two studies agreed that ASD
groups had higher intensity variability, the degrees of the difference they indicated were
completely different. Ochi et al. [34] examined the intensity of high-functioning autistic
people (HFA) in their semi-structured conversation and revealed slight intensity standard
deviation differences between ASD and TD (SMD = 0.1275, SD = 0.2726). On the contrary,
Choi and Lee [55] found that in the interaction and communication speech of HFA, the
difference could reach a large effect (SMD = 0.998, SD = 0.3131). Owing to the limited
number (n < 6) of included papers, a meta-analysis failed to run.

5.3. Results from Machine Learning for ASD Diagnosis

The previous section reviewed the prosodic patterns of the ASD group and revealed
their prosodic differences from the TD group. In this section, a second set of 18 studies
(see Table 3) about machine learning were evaluated. Machine learning studies, different
from the univariate ones focusing on specific prosodic feature(s), seek to train multiple
datasets to automatically identify the ASD populations. With regard to results, all but two
multivariate studies in the review reached above 70% and up to 98% accuracy. A more
detailed overview of the specificities and sensitives of the machine learning studies was
reported in Figures 9 and 10, of which the averaged specificities and sensitives achieved
75.51% and 80.31%.
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In the machine learning process, four steps were typically involved, namely data
extraction, selection, classification, and validation. The first process involved the extrac-
tion of voice features from the speech recordings. The extracted acoustic features had
significant overlaps with those discussed in the previous section (e.g., mean and standard
deviation of pitch, duration, and intensity), but also included additional parameters like
harmonic-to-noise ratio (HNR), Mel-frequency cepstral coefficients (MFCC), jitter, and
shimmer [13,18,19,67]. Considering that the extracted data was likely to be redundant, it
was necessary to reduce overfit potentiality and promote the efficiency of machine learning
algorithms. Therefore, features with remarkable contributions to distinguish ASD from
TD groups were selected with tools like correlation analysis [53,67], principal component
analysis, factor analysis [18,62], ElasticNet [63–65], and Geneva Minimalistic Acoustic
Parameter Set (GeMAPS) [68]. Data selection was further classified by tools such as native
Bayed (NB) [42], support vector machines (SVMs) [5,20,41,60,66,68], probabilistic neural
networks (PNNs) [19], speech-related vocal islands (SVIs) [62], or random forests [67]. Since
machine learning was not merely to find a model explaining the current data but to create
a model that generalizing to new data [69]. To ensure generation for out-of-data testing,
cross-validation (CV) [66,67] was frequently reported, with 5-fold CV [32,63–66], 10-fold
CV [5,19], and leave-out procedures [19,39,42,67]. For a more comprehensive introduction
and overview of multivariate machine learning processes, please see books written by
Bishop [70] and Hastie et al. [71].

5.4. Publication Bias and Risk of Bias

Publication bias was evaluated using funnel plots and Egger’s and Begg’s tests. The results
showed that the funnel plots of the meta-analyses aforementioned (except the plot of pitch
variability) appeared to have a systematic distribution, and Egger’s tests obtained p-values
larger than 0.05. These results indicated that the review had low risks of publication bias.

6. Discussion

With high ecological sensitivity and validity, natural speech prosody has gained con-
siderable research attention for identifying autistic individuals. Through the aggregation of
relevant research, the present study showed that (1) pitch-related features had significantly
differential power between ASD and TD groups, whereas the power of temporal features
was non-significant; (2) different task types could have no significant role, while the pitch
range performance of individuals with ASD could be influenced by age groups; and (3) ma-
chine learning trained by natural speech samples showed encouraging accuracy in ASD
detection, with an averaged sensitivity and specificity of 75.51% and 80.30%, respectively.
To our knowledge, this study represents the first meta-analysis that focuses on the power of
natural prosody in quantitatively assessing and automatically identifying ASD populations.
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These findings have highlighted the potential of natural speech prosody for high-efficient
monitoring, detection, and intervention in individuals with autism, pointing to a promising
direction for future research.

6.1. Prosodic Performance of ASD

In this review, the aggregated standardized mean difference for pitch value between
ASD and TD achieved a positive medium effect (SMD = 0.3528, 95%CI [0.0698, 0.6358]).
The pooled mean differences were significant between the two groups for pitch variability
(SMD = 0.5137, 95%CI [0.1237, 0.9037]), pitch range (SMD = 0.6744, 95%CI [0.2698, 1.0790]),
and pitch standard deviation (SMD = 0.5735, 95%CI [0.2320, 0.9150]). Notably, the zero-
exclusive confidential interval along with the low-to-moderate heterogeneity revealed the
robustness of melodic differences in autistic speech. The findings were in line with the
previous literature [3,30,54], which consolidated the significance of pitch-related features in
distinguishing ASD [32].

The abnormal pitch-related features observed in autistic individuals could be at-
tributed to the deviated speech chain [25]. Speech is generated by the vibration of vocal
cords, but the source–filter theory [72] has indicated the atypical vocal cords of autistic
people [73], which can lead to different speech production. Speech sounds can be aberrantly
perceived by ASD patients [26], which may directly impact the perception-production loop.
Furthermore, autistic individuals tend to have difficulty inferring pragmatic or mental
information from natural speech [4], due to their deficits in theory of mind [24]. Therefore,
the impaired ability to perceive and process speech sounds shows potential to explain and
reflect the atypical production performance of autistic children.

However, contrary to the findings of the current review, several studies observed
non-significant differences in the mean F0 between the ASD and TD groups. For example,
non-significant results were found when participants with HFA were included [16] or
confounding variables (e.g., full-scale IQ) were controlled [1]. The selective criteria can
deviate from the ecological validity of autistic natural prosody performance, potentially
influencing the results. In addition, the selection can be a manifestation of the spectrum
dimension of autistic patients, who show a wide range of degrees in social communication
ability. The heterogeneity is evident in the overlapping pitch differences between ASD
and TD groups [54], as well as the high pitch variations within the ASD group [16]. This
has highlighted the necessity of considering individual heterogeneity when confirming
the pitch performance of the autistic population. In addition to participant heterogeneity,
between-study differences can also contribute to non-significant pitch-related differences
between ASD and TD groups. A recent study on Mandarin-speaking autistic children indi-
cated that the differences in pitch performances between ASD and non-ASD groups could
be language-dependent issues since the differences were reported to be non-significant in
native English speakers [1,3,16]. However, by pooling the results from participants with a
large heterogeneity and multi-language speaking backgrounds, the current research has
highlighted the significant pitch-related differences between ASD and TD groups, which
can draw alerts to the general power of pitch features in ASD detection.

Moreover, the review showed slightly negative mean differences in speech rate
(SMD = −0.0547, 95%CI [−0.3818, 0.2725]) and in speech duration (SMD = 0.0738, 95%CI
[−0.2768, 0.4244]) between ASD and TD groups. With the confidential intervals containing
zero, the differences were non-significant, indicating the instability of using temporal fea-
tures to detect ASD groups. The non-significant difference was consistent with previous
meta-analyses [21], raising doubts about the distinctive power of the autistic speech rate.
There are several possible explanations for these non-significant differences in temporal per-
formance between the two groups. Firstly, autistic speakers may perceive daily communica-
tion as a stressful task due to its high social knowledge and pragmatic demands [11]. Stuck
by the increased load [74], autistic children tend to produce shorter utterances [31,61,75],
and fewer non-grammatical pauses [12,75], reflecting the weak communicative activity of
autistic individuals. Secondly, the lack of significant differences in temporal terms may
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also be attributed to heterogeneity in materials, measurement techniques, language, and
individual differences [45]. Natural speech is characterized by remarkable variations [45].
With regard to types of speech, articulatory rate can differ between spontaneous speech,
connected read speech, and sentence reading [76]. Additionally, large individual differ-
ences within the autistic patients [1,31], including severity [1,22] and age [43], have also
been widely observed to contribute to their varied temporal performance. Furthermore,
heterogeneity may exist across different studies conducted by diverse researchers, who
may define an utterance as speech delimited by periods of silence or define it based on
pragmatic or syntactic features [29].

However, unlike the current research, significant temporal differences between the
ASD and TD groups have been reported in either univariate research or previous systematic
reviews [21,22]. Notably, longer speech duration has also been long reported [77,78] and
utilized as a diagnostic criterion for ASD [79]. Inherently, speech prosody functions as a
bridge between verbal behaviors and mental disorders [25], and temporal performance is
essentially a reflection of psychological phenomena [80]. The slower speed at which autistic
people speak can be negatively correlated with their deflected social performance and
therefore with the greater severity of ASD [1], which highlights the influence of individual
differences in autistic speech. However, the current research focused on the natural prosody
produced by a large number of autistic participants, encompassing a wide range of severity
and heterogeneity, and found the aggregated temporal differences to be insignificant. This
finding can implicate re-consideration when utilizing temporal features in ASD detection
in the future.

6.2. Moderator and Heterogeneity Analysis

The current research revealed that all of the heterogeneity in the pooled effect size
reached a low-to-medium (from 0% to 73.1%) degree, indicating an improvement in compar-
ison with previous meta-analysis studies by Fusaroli [22] and Asghari [21]. The reduction
in heterogeneity supports the potential reliability and stability of natural prosody in char-
acterizing autistic people [4,81]. Specifically, different age groups, languages, severity of
autism, and task types of natural production were coded as potential confounding factors
in this study. It should be noted that the task type (i.e., narration, conversation, and in-
teraction) was not a significant moderator in any effect size pooling, which contradicted
the findings of the previous meta-analysis [21]. The differences could further highlight
the sensitive and stable characteristics of natural prosody in autistic detection [13,17]. In
addition, the current results showed that age groups (i.e., infants, children, and adults)
had no salient moderating role in all of the meta-analysis except in pooling pitch range
differences. However, the moderating power of age groups in pitch range differences could
be deviated by the limited number of included studies (n = 10), warranting prudence in
converging age groups while evaluating autistic prosodic performance. Furthermore, due
to the lack of sufficient eligible data, some factors (e.g., languages and severity of autism)
could not be incorporated in moderator analysis, which encouraged more open data in
future research.

6.3. Predictive Value of Machine Learning

Synthesizing the multivariate machine learning studies, the averaged values of accu-
racy, sensitivity, and specificity were 77.96%, 75.51%, and 80.31%, respectively. Current
findings reaffirm the promising results for automatic analysis in ASD detection [22]. Fur-
thermore, leveraging high efficiency and non-invasion, machine learning techniques can
complement the descriptive findings of clinicians and researchers [5]. This highlights the
feasibility of adopting objective evaluations on prosodic parameters to identify individuals
with autism or language delay [18,20,62].

However, regardless of the encouraging predictive value of machine learning tech-
niques, the distinctive characteristics of natural prosody remain inconclusive for accurately
identifying individuals with ASD [22,39]. For one thing, spontaneous speech recognition
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within the field of automatic modeling has only been in the initial phrase [45]. The limited
number of related studies restricted a more refined meta-analysis to pool the distinctive
performance of specific prosody. In addition, though previous research has indicated that
different age groups (i.e., infants and adults) and different degrees of autistic severity can
significantly influence machine learning results, their efforts on individual heterogeneity
in machine learning performance have been largely overlooked. For another, no general
attempt has been made to replicate findings across multiple studies [22]. The heterogeneity
of machine learning procedures in different multivariate studies made it challenging to ag-
gregate an estimate. Future studies call for more collaborative and open-research programs
within the field of machine learning [22,37].

6.4. Implications and Limitations

The findings of this study are compatible with the view of previous meta-analyses that the
panorama of autistic prosodic performance remains perplexing [22] and heterogeneous [21].
Focusing on the natural prosody, the present research takes a precise and further step to
provide fine-grained and exhaustive evidence for the prosodic profile of ASD. This precision
and renewal can provide a plausible direction for a better understanding of autistic prosody
performance and can warrant more attention to the role of natural prosody in ASD detection. In
addition, the moderating effect of age differences in autistic pitch range performance highlights
the need to consider this factor in investigating autistic prosodic features and encourages
exploring other confounding factors, such as the severity of autism, in future research.

Moreover, the current findings could have clinical implications for more efficient and
objective screening and intervention for ASD populations. Firstly, previous research on
autistic prosody has been hindered by the heterogeneity of tasks and reliance on qualitative
analysis, contributing to obstacles to drawing plausible conclusions [22]. The present
meta-analysis aimed to bridge the research gap by focusing on the natural speech context
to reduce heterogeneity and pooling pure quantitative results to minimize subjective
bias. Natural speech tasks are expected to complement qualitative analysis and inspire
more participant-friendly approaches in order to improve assessment success and expand
screening for individuals with ASD. Secondly, the incorporation of natural speech prosody
in machine learning has revealed the feasibility of prosodic features as a promising marker
for individuals with autism. Therefore, in the future, natural prosodic features can play a
pivotal role in the efficient, objective, and reliable detection of ASD.

However, several limitations should be acknowledged for this review. Firstly, it was
common for a single study to correspond to more than one effect size in our meta-analysis,
especially for studies including multiple autistic groups or measuring multiple tasks. This
could present a unit-of-analysis problem, potentially resulting in the double-counting of data.
Secondly, due to the limited number of eligible data points, the meta-analysis cannot analyze
some moderators, such as the severity of autism. In addition, though the moderators as task
types and age groups were evaluated, their moderating role might be influenced by small
sample sizes, calling for more precise and specified research in the future. Thirdly, inadequate
reporting of statistical estimates prevented a thorough examination of the performance of
specific prosodic features in automatically identifying ASD groups. In future research, more
open and collaborative efforts are expected to be made.

7. Conclusions

Natural speech inherently indicates social communicative ability, serving as a po-
tential biomarker for detecting ASD patients, who are typically characterized by socio-
communicative disorders. To assess the efficacy of natural prosody in ASD detection, the
present study conducted a meta-analysis on the prosodic differences between ASD and
TD groups, a moderator analysis of between-study heterogeneity, and an investigation of
the pertinent machine learning performance. The results have indicated that pitch-related
features can significantly distinguish individuals with ASD from TD individuals. For the
moderator analysis, different task types exert a slight influence on heterogeneity. Fur-
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thermore, natural prosody has shown promising accuracy in machine learning models
for ASD detection. In a nutshell, the current research provides updated and fine-grained
evidence for distinctive characteristics of autistic prosody, which corroborates the feasibility
of natural prosody in ASD identification and offers a focused direction for future research.
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