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Abstract: Despite the criticality of considering student academic motivation as it influences learning,
research within the field of adaptive learning technologies for education has so far focused more on
customising instruction to implement personalised learning, than investigating how personalised
learning is associated with learners’ motivation. Given this, a robust instrument is required to gather
information about student academic motivation within the context of adaptive learning technologies.
This study sought to validate the Academic Motivation Toward Mathematics Survey (AMTMS)
currently used to measure motivation based on self-determination theory in mathematics education
at pre-tertiary levels (grades 11 and 12) in Asia. A total of 196 participants recruited via availability
sampling took part in this study, after interacting with an in-house mathematics adaptive learning
system within a tertiary educational institution. The validation was performed based on modern
test theory given that it overcomes some limitations of classical factor analytic approaches. Results
supported the factorial structure of the AMTMS but 12 of the original 21 items had to be rescored to
establish ordered thresholds. Further, the bifactor equivalent solution suggested the possibility of
reporting a singular motivation index comprising the five factors within the AMTMS. Along with the
results, this study offers researchers a robust and validated instrument to measure motivation toward
mathematics that can be used within an adaptive learning environment.

Keywords: academic motivation; validation; mathematics education; Rasch

1. Introduction

To improve students’ learning experiences and outcomes, tertiary educational in-
stitutions are increasingly adhering to technologies such as adaptive learning systems.
Adaptive learning coursewares use computer algorithms to parse data gathered during
students’ interaction with e-learning environments to adapt learning modules, instruction,
and assessment [1].

Studies on adaptive technology have found mixed results in terms of academic perfor-
mance, though this field of research is relatively nascent [1,2]. Some have also indicated
that academic motivation has been shown to have an effect on the impact of adaptive
learning technologies [3,4]. Despite the criticality of student motivation in learning ana-
lytics research, research has so far focused more on customising instruction to implement
personalised learning, than investigating how personalised learning is associated with
learners’ intrinsic motivation, competence, and autonomy [5–9].

With the growing trend of e-learning, including the use of adaptive learning systems in
various higher learning institutions, it is worthwhile to gain insights on student motivation
as they interact with adaptive learning systems [10,11]. To the authors’ knowledge and
based on the literature review undertaken as part of this study, there remains a dearth
of published instruments measuring tertiary students’ academic motivation validated
using Rasch measurement theory (RMT) within the context of an adaptive learning system.
To fill this gap, the current study aimed to validate the Academic Motivation Toward
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Mathematics Scale (AMTMS) [12] using RMT, with the view that a robust instrument
would provide valuable information related to tertiary-student motivation as they interact
with an in-house adaptive learning system (a.k.a. AdLeS). The AMTMS was selected as:
(1) it had been validated with 1610 pre-tertiary (grades 11 and 12) students in Singapore, a
country within which this study was conducted; (2) it presented psychometrically sound
properties based on a sufficiently large sample, though these properties were established
based on the classical factor analytic approach; (3) it comprised items appropriate and
relevant to AdLeS; and (4) it is an abbreviated version of the AMS (i.e., 21 versus 28 items)
and comprises five sub-scales (i.e., amotivation (AMOT), external regulation (EMER),
introjection (EMIN), identification (EMID) and intrinsic motivation (IMT)) along the well-
established self-determination continuum [13].

2. Motivation

Motivation is an important construct for researchers and educators due to its relation
to learning and teaching contexts. A number of complex and multidimensional definitions
have been proposed to explain motivation, though none have departed from how motiva-
tion was initially derived (i.e., from the Latin verb “movere” which means to move [14]).
For example, [15] described motivation as the forces that drive and direct one’s behaviour
towards a desired outcome; [16] defined motivation as that to be moved to take an action;
while [17] stated that motivation can influence what, how, and when learners decide to
learn.

According to established studies, motivated learners are more likely to actively engage
in activities, and exhibit persistence in learning [16]. To enhance students’ motivation and
provide insights for understanding learners’ actions, a vast amount of research continues
to examine its role when assisting learners to succeed in various educational contexts [18].
Particularly for learning within online environments, motivation is vital [19,20], because
unmotivated students tend to feel hopeless, and easily discontinue their learning pro-
cesses [21]; this cements the importance of considering student motivation as a factor for
success in online learning contexts [22,23]. Hence, the need to measure motivation via a
robust instrument when learning takes place within an adaptive learning environment is
non-trivial.

2.1. Self-Determination Theory (SDT)

Undergirding the study of motivation is the established self-determination theory
(SDT), which proffers the notion that individuals have three fundamental psychological
needs: autonomy, competence, and relatedness, and these either move individuals to act or
not to act [24]. When these three needs are satisfied and supported, they can contribute
to students’ motivation [25]. Subsequently, positive outcomes such as optimal motivation,
internalisation, and learning will follow [13,26,27].

Ryan and Deci (2000) [16] further noted that these three needs experience varying
degrees of motivational orientation, moving from amotivation, to extrinsic, and intrinsic
motivations (see Table 1, which presents a synthesis of these motivational orientations).
These needs also reflect students’ natural propensities to learn, since motivation differs in
quality depending on relative autonomy, contributing to learners having different reasons
for engaging in a behaviour [28].

Table 1. SDT: amotivation, extrinsic motivation, and intrinsic motivation.

Amotivation (AMOT):
Nonself-Determined

Extrinsic Motivation * (EMOT):
Least Self-Determined

Intrinsic Motivation (IMOT):
Most Self-Determined

Lack of motivation
1. External regulation (EMER)
(lower): reward or punishment
(non-autonomous)

Perform a task due to
enjoyment, interest, or
satisfaction
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Table 1. Cont.

Amotivation (AMOT):
Nonself-Determined

Extrinsic Motivation * (EMOT):
Least Self-Determined

Intrinsic Motivation (IMOT):
Most Self-Determined

Absence of both intrinsic
and extrinsic
motivations

2. Introjected regulation (EMIN):
social approval or guilt
(non-autonomous)

Presence of high-quality
learning

3. Identified regulation (EMID):
self-endorsement of goals
(autonomous)

4. Integrated regulation (EMIR)
(higher): congruence (autonomous)

Note. * SDT advocates four types of extrinsic motivation: external regulation and introjected regulation (non-
autonomous); identified regulation and integrated regulation (autonomous).

2.2. Measuring Motivation in Learning Mathematics

There is a wealth of research on motivation-related constructs and their associations
with mathematics instruction, achievement and educational outcomes. Instruments, some
with unsatisfactory psychometric properties based on Messick’s seminal unified concept of
validity, and their derivatives have been developed within certain contexts to assess various
related constructs [29]. Nonetheless, the 28-item Academic Motivation Scale (AMS) by [30]
is considered one of the most comprehensive and widely used instruments in assessing
motivation from a self-determination-theory perspective [12]. The AMS has been tailored
to fit various contexts (languages and grade levels) and disciplines. For example, it has
been adapted into a Turkish version [31]; it has been validated against first year university
mathematics students in Bulgaria [32], and against students from grades 9 to 12 offering
biology [33].

While there are other motivation scales developed specifically for mathematics such as
the Mathematics Motivation Scale by [34], and the Motivation for Mathematics Abbreviated
Instrument by [29], these scales have been developed for a non-Asian and non-Singaporean
context, and are not as established as the AMS. Given these reasons, this study adapted the
AMTMS for use with AdLeS, and validated it using RMT.

2.3. Rasch Measurement Theory (RMT)

RMT is a unidimensional measurement model with a set of requirements (e.g., re-
sponse dependency, dimensionality, etc.). Instead of focussing on explaining variance
like the classical factor analytic approach, RMT provides a basis for measurement; ob-
served data in Rasch analysis that do not fit the model would need to be adjusted to fit the
model. The polytomous Rasch model is used to analyse data with more than two response
categories and is expressed by Equation (1) [35].

P{xni = x} = e−τ1i−τ2i ...−τχi+χ(βn−δi)

∑mi
χ′=0 e−τ1i−τ2i ...−τχ′ i+χ′(βn−δi)

(1)

where P{xni = x} is the probability that person n selects in category “x”, respectively, on
item i; β is the person location parameter; τ are the response probability thresholds; and δ
is the mean of these thresholds. Based on Equation (1), RMT provides a table of expected
response probabilities that reflect the theory (i.e., a person with greater proficiency should
have a higher probability of solving or endorsing an item).

The AMTMS had been previously validated upon the classical factor analytic ap-
proach [12]. Nonetheless, RMT enables an examination of the hierarchical structure, uni-
dimensionality, and additivity of the scores generated through rating scales by providing
a foundation for doing so [36]. In RMT, item parameters are independent of respon-
dent characteristics, and person parameters do not depend on the specific items within a
questionnaire; validating an instrument upon RMT hence overcomes a limitation of the clas-
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sical factor analytic approach, where measurements are not person- and item-distribution
free [36,37]. Further, RMT offers the advantages of focusing on probabilistic distributions
of respondents’ performance at the item- rather than test-level data by first locating and
ordering individuals and item difficulty on a log-linear scale reflecting degrees of the latent
trait (e.g., most to least endorsable).

3. Method

This study was conducted in two stages, both of which sought validity evidence for
the AMTMS based on the unified concept of validity recommended by the Standards for
Educational and Psychological Testing [38].

3.1. Stage 1

In Stage 1, the original 21-item AMTMS was reviewed for content appropriateness by
two faculty leading and one professional staff member involved in mathematics education
and AdLeS within the university. While the AMTMS was deemed as the most appropriate
instrument for this study given the context under which it was developed and the sem-
blance of the sample to the participants in this study, this stage was critical as the AMTMS
was validated using Singapore pre-tertiary students (grade-11 and -12 students).

The review resulted in minor edits that would not impact the factorial structure of the
AMTMS to three items (see Appendix A). These edits included: (1) the term “teacher” in
item EMIN2 was changed to “instructors”, a term more commonly used in the university;
(2) the sentence “course of my choice in university” was changed to “the subsequent
courses in university” for item EMID4, as the intended participants were already enrolled
in a course in university; and (3) the term “career progression” was added to item EMID1
as some of the intended participants were already working. The remaining items were
considered content appropriate, based on the intended purpose of the AMTMS (i.e., to
assess motivation toward mathematics based on SDT).

3.2. Stage 2

Following the review for content appropriateness, the AMTMS was prepared and
administered via AdLeS. Ethics approval were sought from the university institution
review board before participants (see Table 2) were invited via availability sampling [39] to
indicate their consent preference and voluntarily complete the AMTMS at the end of their
interaction with AdLeS. Participants had one month to interact with AdLeS, and would
indicate participation consent by checking on a box on-screen after reading the participant
information sheet online. To encourage participation, participants who completed the
AMTMS were given the option to accept a cash voucher.

Table 2. Participants.

Course/Semester/Year Number of Enrolled
Students *

Number of Students Who
Completed the AMTMS

MTH107/2/2021 130 42
MTH107/1/2022 160 80
MTH108/2/2021 74 41
MTH108/1/2022 96 33

Note. * All were part-time adult learners as the university these students were enrolled in caters primarily to adult
learners.

The age range of the participants was 20 to 67 years (M = 27.98, SD = 7.53 years). The
total number of participants (n = 196) was considered adequate based on the recommenda-
tion by [40], which suggested the adequacy of 243 observations to estimate item and person
locations based on the Rasch model.

Upon data collection, a Rasch analysis was performed using RUMM2030 (RUMM
Laboratory Pty Ltd., Perth, Australia) to establish the dimensionality of the AMTMS, noting
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that RMT affords an evaluation of the factorial structure of an instrument via examining
scores gathered through rating scales; Rasch analysis also provides information on the
dimensionality and feasibility of the additivity of sub-scale scores [36,37]. As a five-factor
model and multidimensionality (i.e., AMOT, EMER, EMID, EMIN and IMT factors) had
previously been established via the classical factor analytic approach on the AMTMS [12],
Rasch analysis was performed for each factor separately. A Rasch analysis was also
performed for all items to investigate the plausibility of reporting an overall AMTMS score
in addition to the five factor scores.

4. Results

To establish the dimensionality and validity evidence of the AMTMS in this study,
fit (overall, person and item) and reliability, threshold ordering, scale targeting, item
invariance (i.e., differential item functioning), dimensionality and response dependence
were considered, as with most Rasch analysis reports. Essentially, items within each
AMTMS factor should fit the Rasch model; this would imply that items are consistent with
one another and provide invariant comparisons to ensure that factor scores characterise
respondents as intended. This section reports results of each of these parameters.

4.1. AMTMS

Table 3 presents the fit, unidimensionality and reliability indices across the five origi-
nally purported factors of the AMTMS. Initially, the factors did not appear to fit the Rasch
model well as the χ2 values were all statistically significant, with the exception of the
AMOT and IMT factors. Nonetheless, it is noteworthy that the χ2 statistic is sensitive to
sample size [35]. There was little evidence to suggest the presence of misfitting items, as
all individual person and item fit residuals were within the range (±2.5) recommended
by [41], with the exception of items EMIN2 and EMID1, which had fit residuals 3.28 and
4.26, respectively. Reliability was adequate across all factors except for the EMIN factor
(PSI = 0.61; Cronbach’s alpha = 0.67), based on the recommendations of [35] (i.e., PSI > 0.7).
Unidimensionality within each factor was generally supported by the results of the sub-
test analyses performed on the first principal component loading (PC1) derived from a
principal components analysis of item residuals. Ref. [35] stated that, for non-violation of
unidimensionality, subtest analyses should result in fewer than 5% of respondents showing
a statistically significant difference between person locations. Other than the EMER and
IMT factors that indicated 5.10% of respondents showing a statistically significant differ-
ence between person locations, results of the PC1 subtest analyses for all the other factors
supported unidimensionality. As 5.10% marginally exceeded the recommended threshold,
it would be tenable to suggest that the EMER and IMT factors are unidimensional. It is
also evident that collectively considering the AMTMS as one scale is not tenable, given
that the subtest analyses on PC1 resulted in 26.53% of respondents showing a statistically
significant difference between person locations.

Table 3. Fit, unidimensionality and reliability indices of AMTMS.

Factor Number of
Items χ2 Value/p PSI Cronbach’s

Alpha
Unidimensionality
(%)

Item
Residual
(M/SD)

Person
Residual
(M/SD)

AMOT 4 15.28/0.05 0.68 0.80 2.04 0.37/1.48 −0.49/1.19
EMER 4 23.47/0.003 0.74 0.78 5.10 0.47/1.54 −0.64/1.44
EMIN 4 53.04/0.000 0.61 0.67 3.06 0.66/1.86 −0.405/1.41
EMID 4 55.59/0.000 0.74 0.76 1.53 0.77/2.45 −0.46/1.32
IMT 5 4.48/0.92 0.82 0.86 5.10 0.25/0.48 −0.74/1.64
AMTMS 21 200.42/0.000 0.90 0.88 26.53 0.77/2.38 −0.47/2.24

Note. M = mean; SD = standard deviation; p = probability; PSI = Person separation index.
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While the overall fit, reliability and dimensionality of the AMTMS factors were mostly
consistent with the Rasch model, each of the factors displayed disordered thresholds.
The presence of disordered thresholds (see Appendix B for example) suggests, amongst
others, that there might be more response categories than respondents could meaningfully
discriminate [37]. Subsequent analyses of factors that have items with disordered thresholds
would be inappropriate and not meaningful and, hence, an adjusted scoring matrix was
proposed upon an iterative process of refining the number of response categories by item,
by factor. This adjusted scoring matrix is presented in Table 4.

Table 4. Adjusted scoring matrix.

Item Original Scoring Adjusted Scoring

AMOT1 0-1-2-3-4 4-3-2-1-0
AMOT2 0-1-2-3-4 2-2-1-0-0
AMOT3 0-1-2-3-4 3-2-1-0-0
AMOT4 0-1-2-3-4 4-3-2-1-0
EMER1 0-1-2-3-4 0-1-2-3-4
EMER2 0-1-2-3-4 0-1-2-3-4
EMER3 0-1-2-3-4 0-1-1-2-3
EMER4 0-1-2-3-4 0-1-1-2-3
EMIN1 0-1-2-3-4 0-1-1-2-3
EMIN2 0-1-2-3-4 0-1-1-2-3
EMIN3 0-1-2-3-4 0-1-2-3-4
EMIN4 0-1-2-3-4 0-1-1-2-3
EMID1 0-1-2-3-4 0-1-1-2-3
EMID2 0-1-2-3-4 0-1-2-3-4
EMID3 0-1-2-3-4 0-1-1-2-3
EMID4 0-1-2-3-4 0-1-2-3-4
IMTA4 0-1-2-3-4 0-1-2-3-4
IMTK2 0-1-2-3-4 0-1-2-3-4
IMTK3 0-1-2-3-4 0-0-1-2-3
IMTS2 0-1-2-3-4 0-1-2-3-4
IMTS3 0-1-2-3-4 0-1-2-3-4

4.2. AMTMS Re-Scored (AMTMSrs)

The AMTMS was re-scored based on the adjusted scoring matrix and a second Rasch
analyses was conducted for each of the factors. Table 5 presents the fit, unidimensionality
and reliability indices across the re-scored factors. Evidently, this second analysis yielded
similar if not better results, along with ordered thresholds. To achieve this, however, items
EMIN2 (Because I want to show to others (e.g., instructors, family, friends) that I can do
mathematics) and EMID1 (Because I think that mathematics will help me better prepare for
my future career/career progression) were deleted. Upon further review, removing these
items was, in part, consistent with the academic motivations of adult learners (of which
the sample of this study comprises), in that adult learners tend to return to school for the
purposes of ensuring employability, as opposed to showing others their capabilities [42].

The second Rasch analyses also found little evidence of ceiling or floor effects and,
hence, it could be suggested the each of the factors were adequately targeted (see Figures 1–5).
All the item and Person residual means and standard deviations were close to zero and
one, respectively, an indication that each of the factors were neither too easy nor difficult to
endorse for the participants [41].
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Table 5. Fit, undimensionality and reliability indices of AMTMS re-scored.

Factor Number of
Items χ2 Value/p PSI Cronbach’s

Alpha
Unidimensionality
(%)

Item
Residual
(M/SD)

Person
Residual
(M/SD)

AMOTrs 4 14.07/0.08 0.66 0.77 2.04 0.20/0.99 −0.43/1.14
EMERrs 4 20.88/0.007 0.73 0.76 5.10 0.51/1.20 −0.65/1.41
EMINrs 3 12.72/0.05 0.64 0.72 2.55 0.46/0.72 −0.50/1.05
EMIDrs 3 7.09/0.31 0.77 0.84 4.08 0.39/0.56 −0.70/1.32
IMTrs 5 5.52/0.85 0.82 0.97 5.10 0.29/0.63 −0.71/1.63
AMTMSrs 19 239.64/0.000 0.87 0.86 25.51 0.71/3.22 −0.56/2.40

Note. M = mean; SD = standard deviation; p = probability; PSI = Person separation index; rs = rescored based on
adjusted scoring matrix.
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Correlation among residuals within each factor was also within the acceptable thresh-
old of 0.3 [35], suggesting response independence between items and further supporting
the unidimensionality of each factor. Item invariance was also achieved (i.e., no differ-
ential item functioning (DIF)) across both courses, with the exception of item EMIN4rs
(i.e., Because I want to show myself that I can do well in mathematics) (see Figure 6 for
item characteristic curve), which suggested the existence of uniform DIF. Nonetheless, it
is reasonable to suggest that this DIF is benign rather than adverse [43], as there is little
reason to expect that students reading MTH107 would respond differently to EMIN4rs,
compared with students reading MTH108, both of which are foundational calculus courses.
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While the second Rasch analysis also found that the AMTMSrs was multidimensional,
an attempt at a bifactor equivalent solution by means of forming super items and subtesting
each factor was made [44], with the view that reporting a singular motivation index instead
of five could be more practical, particularly for policy makers. The bifactor equivalent
solution performed within RUMM2030 in this instance reported a proportion of common
variance of 0.82. This suggests the possibility of using a total sum-score (arising from
averaging the five sub-scores of the AMTMSrs) as an approximation for an index repre-
senting academic motivation toward mathematics, based on common variance thresholds
recommended by [45,46].

5. Discussion

Academic motivation remains critical and should be considered in developing adap-
tive learning systems [19–21]. With this in view, this study sought to validate a measure
(i.e., the AMTMS) that would potentially provide information about student academic
motivation toward mathematics as they interacted with an adaptive learning system (i.e.,
AdLeS). Participants were part-time adult learners reading level one mathematics courses
in a tertiary educational institution. Despite an extensive Rasch analysis performed on each
of the purposed factors (i.e., AMOT, EMER, EMID, EMIN and IMT factors), disordered
thresholds remained. To overcome the issue of disordered thresholds, this study proposed
an adjusted scoring matrix that should be used to compute item-level scores. For example,
item EMER3 has a scoring strategy of 0-1-1-2-3; this would mean that response scores
would correspond to “0 Does not correspond at all; 1 Corresponds a little; 1 Corresponds
moderately; 2 Corresponds a lot; 3 Corresponds exactly” instead of “1 Does not correspond
at all; 2 Corresponds a little; 3 Corresponds moderately; 4 Corresponds a lot; 5 Corresponds
exactly”. Other indicators commonly studied in RMT (i.e., fit (overall, person and item)
and reliability, scale targeting, item invariance (i.e., DIF), dimensionality and response
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dependence) were within recommended thresholds, though benign DIF was found for item
EMIN4rs.

Re-scoring the AMTMS resulted in ordered thresholds but, of the 21 items, 2 had
to be deleted (items EMIN2 and EMID1) to achieve model fit; this deletion was deemed
tenable as the items were not as relevant for adult learners. For the purpose of reporting a
singular motivation score, an approximation for an index representing academic motivation
toward mathematics was sought following the Rasch analyses of each factor. Clearly, the
total sum scores of all 21 AMTMS items or 19 AMTMSrs items could not be taken as
unidimensional. Nonetheless, a bifactor equivalent solution performed within RUMM2030
retained a proportion of common variance of 0.82 after forming super items and subtesting
each factor. This suggested the possibility that, while the AMTMS or AMTMSrs are not
unidimensional, a bifactor solution exists and a singular motivation score could be used as
an approximation of the five factors.

Based on the findings of this study, it is recommended that further bifactor equiva-
lent analyses (with more data) be undertaken within RUMM2030, as some studies have
recommended that a 0.90 proportion of common variance retained might be more conser-
vative [46]. The potential of using the AMTMSrs for a conventional class (i.e., not adaptive
learning) could also be explored, and motivation factor scores could be compared, to
determine if the mode (i.e., in-person lessons or adaptive learning) influences academic
motivation toward mathematics.

6. Conclusions

This study found that all except for two AMTMS items functioned according to the
RMT. Validity evidence based on internal structure found from the Rasch analyses com-
plemented by those by [12], with the additional suggestion of using a singular motivation
index to represent the five factors. Given this, the context of this study (i.e., academic
motivation toward mathematics as part-time adult learners interacted with AdLeS), and
the criticality of considering motivation in online learning contexts, the 19-item AMTMSrs
holds promise as an instrument ready for use as researchers develop adaptive learning
systems. Based on the Rasch analyses, the AMTMSrs would allow users to establish as-
sociations between each of the five factors (i.e., AMOT, EMER, EMIN, EMID, IMT); this
information would help developers of adaptive learning systems appreciate which are
potential motivation areas that students lack and, hence, be better able to help learners to
achieve selected goals.
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Appendix A. Academic Motivation toward Mathematics Scale (5 Point Likert Scale:
1, Does Not Correspond at All; 2, Corresponds a Little; 3, Corresponds Moderately;
4, Corresponds a Lot; 5, Corresponds Exactly)

Why do you want to spend time studying Mathematics?
AMOT1—Honestly, I don’t know; I feel that it is a waste of time studying mathematics.
EMIN2—Because I want to show to others (e.g., instructors, family, friends) that I can

do mathematics.
EMIN4—Because I want to show myself that I can do well in mathematics.
AMOT4—I am not sure; I don’t see how mathematics is of value to me.
EMER1—Because without a good grade in mathematics, I will not be able to find a

high-paying job later on.
EMID3—Because I believe that mathematics will improve my work competence.
IMTK2—For the pleasure I experience when I discover new things in mathematics

that I have never learnt before.
EMER2—In order to obtain a more prestigious job later on.
EMIN3—To show myself that I am an intelligent person.
EMER4—In order to have a better salary later on.
IMTS3—For the pleasure that I experience when I feel completely absorbed by what

mathematicians have come up with.
EMID4—Because what I learn in mathematics now will be useful for the subsequent

courses in university.
IMTA4—Because I want to feel the personal satisfaction of understanding mathematics.
EMID2—Because studying mathematics will be useful for me in the future.
IMTK3—For the pleasure that I experience in broadening my knowledge about mathematics.
EMER3—Because I want to have “the good life” later on.
AMOT3—I don’t know; I can’t understand what I am doing in mathematics.
EMID1—Because I think that mathematics will help me better prepare for my future

career/career progression.
AMOT2—I can’t see why I study mathematics and frankly, I couldn’t care less.
EMIN1—Because of the fact that when I do well in mathematics, I feel important.
IMTS2—For the pleasure that I experience when I learn how things in life work,

because of mathematics.
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