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Abstract: Mild cognitive impairment (MCI) is defined as an intermediate state of cognitive alteration
between normal aging and dementia. In this study, we performed a functional network connectivity
analysis using resting-state functional magnetic resonance imaging to investigate the association
between changes in functional connectivity in the brain and the improvement in cognitive abilities
after cognitive training. A computerized cognitive training program was used to improve the abilities
of fifteen participants with MCI. The cognitive training program (Comcog), which consists of three
weekly sessions totaling 90 min, was conducted with all participants over six weeks. The cognitive
abilities before (pre-Comcog) and after (post-Comcog) the cognitive training process were measured
using a neurocognitive function test. After the Comcog, the participants enhanced their visual and
verbal memories, attention, and visuo-motor coordination. The functional connectivity between
cingulo-opercular (CON) and default mode (DMN) showed significant improvements after Comcog
training. Therefore, our study suggests that cognitive training may improve the cognitive abilities
of participants. This improvement was associated with an increase in the functional connectivity
between DMN and CON. The increase in functional connectivity after cognitive training was
specifically associated with overall cognitive functions, including executive, memory, decision-making,
and motivational functions.

Keywords: cognitive impairment; cognitive training; resting-state functional magnetic resonance
imaging; functional connectivity

1. Introduction

Mild cognitive impairment (MCI) is defined as an intermediate state of cognitive alteration
between normal aging and dementia [1,2]. Cognitive impairment increases the risk of various diseases
that are linked with dementia, such as Alzheimer’s and Parkinson’s, as well as other psychiatric
symptoms, by accelerating cognitive dysfunction [3] and leading to a decline in the patients’ quality of
life [4,5]. Fifteen to twenty percent of people over 65 years of age have MCI and, among these, fifteen
percent develop dementia [6]. Cognitive training has been one of the solutions to reduce the risk of
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dementia or MCI because it improves patients’ cognitive abilities or delays the onset of symptoms [7,8].
However, there were recent reports stating that cognitive training has no effect on cognitive ability
such as decision-making [9,10]. Therefore, the effect of cognitive training is still controversial.

Although this controversy exists, computerized cognitive training (CCT) programs have been
increasingly used to improve cognitive functions [11,12]. CCT programs involve structured practice
tasks and have proved to be effective in improving cognitive abilities such as language, visuo-spatial
memory, and attention skills [13,14]. In addition, a previous meta-analysis of neuroimaging studies
revealed that CCT prompted changes in brain activity or connectivity [15–17]. In addition, these studies
identified the dysfunction of the default mode (DMN), cingulo-opercular (CON), and fronto-parietal
network (FPN), components known as the “core of cognitive processing” [18,19], as the main factor
influencing cognitive impairment [20,21]. In particular, older adults with MCI have DMN [22–24],
which is responsible for performing verbal episodic memory and serving visuo-spatial attention
functions [25–27], and FPN, which is responsible for initiating and adjusting overall cognitive
control [28,29]. The CON, responsible for sustaining or updating internal attention settings, is also
known to suffer dysfunction due to cognitive impairment [30,31].

In this study, we used resting-state functional magnetic resonance imaging (fMRI) to investigate
what the effects of CCT are on the alteration of the resting-state functional connectivity among brain
functional systems in participants with MCI. In particular, we used functional connectivity analysis,
which is an increasingly used tool to observe associations among regions within or between brain
networks [32]. Several functional connectivity studies have previously investigated the changes in
cognitive functions using CCT in MCI patients. Despite these advances, it is still unclear what the
effects of CCT are on the alteration of the resting-state functional connectivity among DMN, CON, and
FPN in older adults with MCI. We focused on the changes in functional connectivity in DMN, CON,
and FPN brain networks before and after CCT. We hypothesized that the CCT increases the cognitive
abilities of participants by changing the functional connectivity between brain networks.

2. Materials and Methods

2.1. Participants

Fifteen MCI participants (mean age = 74.3 ± 5.83 years; mean education = 6.0 ± 3.113) were
recruited in this study. These participants were determined as MCI patients by considering the following
inclusion criteria: a < 1 score on the Korean version of theclinical dementia rating (CDR) [33]; a > 18
score on the mini-mental state examination (MMSE) based on the Korean version of the Consortium to
Establish a Registry for Alzheimer’s Disease (CERAD-K) assessment packet [34–36]; and no history of
brain injury or brain diseases such as degenerative or psychiatric disorders. Written informed consent
was obtained from each participant and ethical approval was provided by the Institutional Review
Board of Kyungpook National University Chilgok Hospital.

2.2. Computerized Cognitive Training (CCT) System

All participants performed the cognitive training using the Comcog system (Maxmedica, Seoul,
Korea) for six weeks. The training course consisted of three weekly sessions totaling 90 min. The Comcog,
which is commonly used in Asia [37], was used as a CCT system. The system was composed of ten
activities for cognitive training: two visual and two auditory tasks that evaluate the response time to
visual and auditory stimuli, respectively; two attention tasks that track attention during distraction
periods; three working memory tasks that evaluate recognition and recall memory upon visual, auditory,
and multisensory stimuli; and one emotional task that evaluates responses upon an emotional stimulus.

2.3. Neurocognitive Measurements

All participants had their cognitive function assessed using CDR, MMSE, and a computerized
neurocognitive function test (CNT; Maxmedica, Seoul) one week before CCT as pre-test and one
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week after CCT as post-test. All tests were conducted by an occupational therapist, who completed
the required certification program. The CDR and MMSE have been used in testing cognitive performances
in clinical settings and to synthetically evaluate the orientation, attention, judgment, memory, language,
and visuo-spatial functions. The CNT is also a method for evaluating degrees of cognitive impairment [38,39];
it consists of six categories, including a verbal memory test, visual memory test, attention test, visuo-motor
coordination test, and high cognition test. These tests were distributed in fourteen sessions: 4 sessions
of verbal memory tests; 4 sessions of visual memory tests; 2 sessions of attention tests; 2 sessions of
visuo-motor coordination tests, and 2 sessions of high cognition tests.

2.4. Image Acquisition and Analysis

A Discovery MR750w 3.0T scanner (GE healthcare, Milwaukee) with a 24-channel head coil was
used to obtain all structural and functional imaging data. A 3D brain volume imaging (BRAVO)
sequence was used to obtain structural images (echo time (TE) = 3.2 ms, repetition time (TR) = 8.4 ms,
field of view (FOV) = 25.6 cm, matrix = 256 × 256, slice thickness = 1 mm, flip angle (FA) = 12 degrees).
A T2*-weighted gradient echo planar imaging pulse sequence was used to obtain functional images
(TE = 30 ms, TR = 2000 ms, FOV = 23 cm, matrix = 64 × 64, slice thickness = 4 mm, FA = 90 degrees).

All functional images were preprocessed using a statistical parametric mapping toolbox (SPM12;
http://www.fil.ion.ucl.ac.uk/spm). The slice-timing correction, realignment, and co-registration were
included in the preprocessing steps for temporal, spatial interpolation, and motion correction,
respectively. All functional data were normalized to an MNI standard space. A functional connectivity
toolbox (CONN; https://web.conn-toolbox.org/) was used to process the functional connectivity analysis.
Individual images were denoized to minimize the influence of artifactual factors. The denoizing steps
included temporal band-pass filtering (0.008–0.09 Hz) and linear regression (motion, white matter,
cerebrospinal fluid (CSF), and outlier scan effects).

Region of interest (ROI)-to-ROI correlation analysis was applied to investigate the functional
connectivity among ROIs associated with cognitive systems. The significance of the difference in the
functional connectivity between the two conditions (pre-Comcog vs. post-Comcog) was determined by
a paired t-test. The total ROI consisted of 87 spheres with 5 mm radii each, which were included in the
DMN, CON, and FPN based on Dosenbach 160 functional ROIs [40]. Specifically, six specific regions
were included within the DMN: right precuneus, left posterior cingulate cortex (PCC), right superior
frontal gyrus (SFG), bilateral ventro-medial prefrontal cortex (vmPFC), and medial prefrontal cortex
(mPFC). The CON contained a total of ten regions, which include the dorsal (dACC) and middle (ACC)
part of anterior cingulate cortex, anterior (aINS) and posterior (pINS) part of insula (INS), ventro-lateral
prefrontal cortex (vlPFC), orbito-frontal cortex (OFC), caudate, and thalamus.

The ROI-to-ROI connection between each condition was determined by the false discovery rate
(FDR) corrected at the cluster level p < 0.05 and uncorrected p < 0.05 at the connection level (post-hoc)
based on functional network connectivity multivariate parametric statistics [41]. The REX toolbox
(https://www.nitrc.org/projects/rex) was used to extract connection values from ROIs.

2.5. Statistical Analysis

The statistical package for social sciences (SPSS 25; http://www.ibm.com/analytics/spss-statistics-
software) was used for statistical analysis. According to the assumption of normality of variances,
a paired t-test or Wilcoxon signed-rank test were performed between pre- and post-Comcog from
neurocognitive measurements to evaluate the change in cognitive abilities. Sensitivity analyses
were performed for all neurocognitive measurements using g*power (http://www.gpower.hhu.de) for
preventing statistical errors [41]. The alpha and beta error probabilities were defined as 0.05 and 0.2,
respectively, to assess the appropriate effect size (d = 0.675) on fifteen samples. All effect size factors
were calculated using the mean, standard deviation, and correlation between groups. The correlation
analysis was performed on the differences between each condition in the functional connection values
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of ROIs and cognitive abilities. For the correlation analysis, a partial correlation analysis was performed
using SPSS 25, after removing the Beck depression inventory (BDI) effects.

3. Results

3.1. Neurocognitive Abilities

As a result of the normality test, 7 out of 17 sessions, consisting of CNT, MMSE, CDR, and BDI,
could assume normality: MMSE; digit span B; verbal delayed recall; visual span A/B; visual delayed
recall; auditory CPT. There were significant differences between the pre- and post-Comcog conditions in
the CDR (z = 2.828, p = 0.008, d = 1.653) and MMSE scores (t = 6.012, p = 0.000, d = 1.915), which assess
cognitive dysfunction. In addition, we observed an improvement in cognitive function after 14 sessions
of CNT in the post-Comcog condition. Detailed cognitive measures are summarized in Table 1.

Table 1. Demographic and neurocognitive characteristics of participants with mild cognitive impairment
before and after Comcog training.

Participants (N = 15) Pre-Comcog Post-Comcog Paired
t-Test (t)

Wilcoxon
Signed-Rank Test (z)

Effect
Size (d)

Age (years) 74.3 ± 5.83
Education (years) 6.0 ± 3.113

BDI 9.6 ± 8.10 10.3 ± 8.23 −0.420 0.082
CDR 0.8 ± 0.25 0.5 ± 0.37 −2.828 ** 1.186 †

MMSE 24.3 ± 3.08 26.9 ± 2.57 6.011 * 1.513 †

CNT (t-value)
Verbal memory test

Digit span A 32.1 ± 5.28 39.9 ± 11.62 −3.197 ** 0.951 †

Digit span B 36.4 ± 6.86 45.1 ± 7.77 3.708 ** 0.954 †

Verbal learning 28.7 ± 3.47 29.3 ± 3.97 −0.535 0.225
Verbal delayed recall 30.9 ± 5.49 36.6 ± 7.98 3.332 * 0.866 †

Visual memory test
Visual span A 34.1 ± 9.44 37.5 ± 9.12 1.379 0.363
Visual span B 33.3 ± 7.56 37.8 ± 7.31 2.802 * 0.718 †

Visual learning 37.9 ± 11.44 41.9 ± 11.48 −2.804 ** 0.669
Visual delayed recall 46.2 ± 7.94 51.4 ± 8.29 3.948 ** 1.021 †

Attention test
Visual CPT 49.1 ± 19.25 56.2 ± 18.67 −2.366 * 0.653

Auditory CPT 48.9 ± 18.23 51.6 ± 14.27 1.286 0.335
Visuo-motor
coordination

Trail-making A 41.3 ± 11.15 46.7 ± 12.34 −2.810 ** 0.775 †

Trail-making B 43.8 ± 15.28 49.0 ± 19.61 −2.324 * 0.602
High cognition test

Card sorting test 54.9 ± 22.96 62.5 ± 15.49 −2.197 * 0.543
Word color test 35.6 ± 11.38 41.4 ± 14.08 −2.207 * 0.570

BDI, Beck depression inventory; CDR, clinical dementia rating scale; MMSE, mini-mental state examination;
CNT, computerized neurocognitive function test. All neurocognitive measurements, except BDI and CDR in the
Wilcoxon signed-rank test, were based on a negative rank. * p < 0.05, ** p < 0.01, † d > 0.675.

3.2. Functional Connectivity and Correlation Analysis

DMN and CON showed significant differences between the pre- and post-Comcog conditions in the
paired t-test (FDR < 0.05 corrected in cluster level) (Figure 1). Specifically, there were fourteen positive
connections between ROIs in the paired t-test. These positive connections mean improved connections
in the post-Comcog condition. For example, the right precuneus was functionally connected with the
right aINS and the left PCC showed a significant increase in functional connectivity with the bilateral
aINS and the thalamus. In addition, we observed positive differences in connections between the right
SFG and the left pINS, right aINS, dACC, and caudate. Notably, the mPFC was functionally connected
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with the left dACC and the left side of the vmPFC showed an enhanced functional connectivity with
the right ACC and vlPFC. Additionally, the right side of the vmPFC was connected with the left dACC,
OFC, and pINS (Figures 1 and 2, Table 2).
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Figure 2. The functional connections between ROIs in CON and DMN, which showed high correlations
with improved cognitive functions (executive and memory, motivation, decision-making, attention),
as revealed by neurobehavioral tests.

The functional connectivity among ROIs was associated with neurocognitive abilities. In the
partial correlation analysis, the left vmPFC–right vlPFC connectivity was positively correlated with
the MMSE score (r = 0.580, p = 0.023) and the right SFG–left pINS connectivity showed a positive
correlation with the digit span A score (r = 0.620, p = 0.014), which is associated with verbal memory
function. In addition, the functional connections on the left PCC–right aINS and right vmPFC–left
dACC showed significant correlations with the digit span B score (r = 0.563, p = 0.029 and r = 0.526,
p = 0.044 respectively). Moreover, the left PCC–right thalamus connectivity had a positive correlation
with the visual span B score (r = 0.648, p = 0.009), which is associated with visual memory ability.
Finally, the right vmPFC–left OFC connectivity was correlated with the trail-making A test (r = 0.544,
p = 0.036), which is associated with visuo-motor coordination. Detailed results are summarized in
Figures 2 and 3 and in Table 2.
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Table 2. The functional connectivity between ROIs for a paired t-test in participants with mild cognitive
impairment (MCI) (post-Comcog–pre-Comcog condition).

Comparison
Regions in Network

Left/Right
Coordinates (mm) Connectivity

(T-Value)DMN CON x y z

Post > Pre

Precuneus R 9 −43 25
aINS R 37 −2 −3 4.73

PCC L −5 −43 25
aINS L −36 18 2 2.68
aINS R 37 −2 −3 2.73

Thalamus R 11 −24 2 2.83
SFG R 23 33 47

pINS L −30 −14 1 2.70
aINS R 37 −2 −3 2.41

dACC R 9 20 34 2.16
Caudate R 14 6 7 2.67

mPFC B 0 51 32
dACC L −6 17 34 2.49

vmPFC L −11 45 17
ACC R 9 39 20 2.15

vlPFC R 34 32 7 2.28
vmPFC R 9 51 16

dACC L −6 17 34 2.50
OFC L −46 10 14 2.22
pINS L −30 −14 1 2.53

FDR < 0.05 corrected in cluster level, and uncorrected < 0.05 in connection level. DMN, default mode network;
CON, cingulo-opercular network; aINS, anterior-insula; pINS, posterior-insula; SFG, superior frontal gyrus;
dACC, dorsal anterior cingulate cortex; ACC, anterior cingulate cortex; mPFC, medial prefrontal cortex; vmPFC,
ventro-medial prefrontal cortex; vlPFC, ventro-lateral prefrontal cortex; OFC, orbito-frontal cortex.
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4. Discussion

The current study shows that an increase in brain functional connectivity after cognitive training may
improve the cognitive abilities of MCI patients. In particular, the improvement in the functional connectivity
between the DMN and CON was closely associated with enhanced cognitive functions, including executive,
memory, decision-making, and motivation functions. Although several neuroimaging studies have already
reported the effects of CCT on the brain activity of older adults [16,17,42], the interpretation of these effects
on the alteration of resting state, functional network connectivity among DMN, CON, and FPN in MCI
patients has thus far not been conclusive.

From our neurobehavioral analysis, we conclude that, after six weeks of cognitive training using
the CCT system, participants showed an improvement in their verbal short-term and long-term
memory abilities, with increased scores in digit span A/B and verbal delayed recall tests. In addition,
participants showed significant improvements in visual span B and visual delayed recall tests, which
assess the visual short-term and long-term memory functions. The participants also showed increased
scores in the trail-making test, which evaluates the visuo-motor coordination function.

The improved cognitive functions revealed by the neurobehavioral tests were highly correlated
with alterations in the functional connectivity between DMN and CON (Figure 2). From the functional
connectivity analysis, the INS regions showed increased connectivity with PCC/precuneus, SFG,
and vmPFC after 6 weeks of cognitive training. The pINS–SFG connectivity showed a positive
correlation with the digit span A test, suggesting an improvement in motivational ability after
cognitive training in our study. This result was consistent with those of a previous study where
the increase in motivational ability improved participants’ performance in the digit span test [43].
In addition, the aINS–PCC connectivity was positively correlated with the scores in the digit span B
test, which evaluates the verbal short-term memory function. Because the aINS–PCC connections
were positively correlated with the executive and memory functions [44,45], we propose that cognitive
training may strengthen the connectivity between these brain structures and thus improve the executive
and memory functions. We also showed that the pINS–SFG connectivity positively correlates with
the scores in the digit span A test. Because the pINS–SFG connections were previously linked to
motivational ability [46,47], our result is consistent with the observation that an increased motivational
ability can improve the performance on the digit span test [43].

After CCT training, the mPFC and vmPFC regions also showed an increased connectivity with the
ACC and OFC regions, respectively. In addition, the connectivity of vmPFC–vlPFC, PCC–thalamus,
SFG–daCC, and SFG–caudate increased after training. The vmPFC–vlPFC connectivity was correlated
with the MMSE score, whereas the vmPFC–daCC connectivity was correlated with the digit span B
scores. These correlations suggest that an improvement in comprehension and judgment is the reason
for a higher MMSE score and that the increase in the ability to integrate information positively affects
the verbal short-term memory function. The PCC–thalamus connectivity was positively correlated
with the scores in the visual span B test, which is related to visual short-term memory function.
Because the PCC–thalamus connections were previously associated with semantic memory, executive,
and visuo-spatial functions [20,48], the increased positive correlation between these two regions upon
CCT suggests that cognitive training may strengthen their connectivity, resulting in improved executive
and visuo-spatial functions.

Notably, our study contains some limitations. First, the sample size (n = 15) is small. Future
studies measuring the resting functional connectivity in larger sample sizes are warranted to support
the findings of the present study. Second, the association between neurobehavioral performance
and functional connectivity was extrapolated by taking into consideration a correlation analysis.
In future studies, more detailed analyses are required to investigate the suggested association between
behavioral and functional imaging measurements. Third, participants performed cognitive training for
six weeks only, which is not enough for investigating dynamic changes in brain connectivity. We thus
need to expand the current study to longer periods to investigate the permanent effect of CCT on
cognitive ability and brain functional connectivity. Finally, in this study, there was no active control
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group. Therefore, the performance gains shown in participants should be considered as relative gains
and the lack of an active control group should be noted as a limitation of this study.

5. Conclusions

We observed that cognitive training in participants with MCI increased the brain functional
connectivity between different brain networks that are strongly associated with cognitive functions.
In particular, the increase in functional connectivity between DMN and CON was closely associated
with neurobehavioral improvements, including executive, memory, decision-making, and motivation
functions. Therefore, our findings suggest that cognitive training may strengthen the connectivity
between core cognitive brain structures and that this can, in turn, improve their associated
cognitive functions.
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