
Citation: Holbert, C.E.; Foley, J.R.; Yu,

A.; Murray Stewart, T.; Phanstiel, O.,

IV; Oupicky, D.; Casero, R.A., Jr.

Polyamine-Based Nanostructures

Share Polyamine Transport

Mechanisms with Native Polyamines

and Their Analogues: Significance for

Polyamine-Targeted Therapy. Med.

Sci. 2022, 10, 44. https://doi.org/

10.3390/medsci10030044

Academic Editor: Ravi P. Sahu

Received: 30 June 2022

Accepted: 17 August 2022

Published: 22 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

medical
sciences

Article

Polyamine-Based Nanostructures Share Polyamine Transport
Mechanisms with Native Polyamines and Their Analogues:
Significance for Polyamine-Targeted Therapy
Cassandra E. Holbert 1 , Jackson R. Foley 1, Ao Yu 2, Tracy Murray Stewart 1 , Otto Phanstiel IV 3 ,
David Oupicky 2 and Robert A. Casero, Jr. 1,*

1 Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
2 Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Cancer Center,

Omaha, NE 68105, USA
3 Department of Medical Education, University of Central Florida, Orlando, FL 32827, USA
* Correspondence: rcasero@jhmi.edu

Abstract: Polyamines are small polycationic alkylamines involved in many fundamental cellular
processes, including cell proliferation, survival, and protection from oxidative stress. Polyamine
homeostasis is tightly regulated through coordinated biosynthesis, catabolism, and transport. Due
to their continual proliferation, cancer cells maintain elevated intracellular polyamine pools. Both
polyamine metabolism and transport are commonly dysregulated in cancer, and as such, polyamine
analogues are a promising strategy for exploiting the increased polyamine requirement of cancer cells.
One potential polyamine analogue resistance mechanism is the downregulation of the poorly defined
polyamine transport system. Recent advances in nanomedicine have produced nanostructures
with polyamine analogue-based backbones (nanopolyamines). Similar nanostructures with non-
polyamine backbones have been shown to be transported by endocytosis. As these polyamine-based
nanoparticles could be a method for polyamine analogue delivery that bypasses polyamine transport,
we designed the current studies to determine the efficacy of polyamine-based nanoparticles in cells
lacking intact polyamine transport. Utilizing polyamine transport-deficient derivatives of lung
adenocarcinoma lines, we demonstrated that cells unable to transport natural polyamines were also
resistant to nanopolyamine-induced cytotoxicity. This resistance was a result of transport-deficient
cells being incapable of importing and accumulating nanopolyamines. Pharmacological modulation
of polyamine transport confirmed these results in polyamine transport competent cells. These studies
provide additional insight into the polyamine transport pathway and suggest that receptor-mediated
endocytosis is a likely mechanism of transport for higher-order polyamines, polyamine analogues
and the nanopolyamines.

Keywords: polyamine; polyamine analogue; drug transport; cancer therapy; nanoparticle; polyamine
transport; drug delivery system; nanopolyamine

1. Introduction

Polyamines are small, polycationic alkylamines involved in numerous critical cell
processes including proliferation, cell survival, protection from oxidative stress, and nucleic
acid synthesis and stabilization [1,2]. In cancer, the metabolism of and requirement for
polyamines are frequently dysregulated [3]. As polyamines have the ability to simultane-
ously affect multiple fundamental processes, the intracellular concentrations of naturally
occurring polyamines are normally tightly regulated through coordinated biosynthesis,
catabolism, and transport. While the polyamine biosynthesis and catabolism pathways
have been studied in depth, the mammalian polyamine transport system remains poorly
defined [4–6].
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The naturally occurring polyamines, spermidine (SPD), spermine (SPM) and their
diamine precursor putrescine have a net positive charge at physiological pH and are known
to interact with free radicals and many negatively charged macromolecules including cer-
tain proteins and nucleic acids [7]. This protonation prevents polyamines from undergoing
efficient passive diffusion through cell membranes. Mammalian polyamine transport is
an energy-dependent process that has been biochemically categorized; however, little is
known about the molecular players involved in transport. While extensive progress has
been made in the molecular characterization of the transport system in prokaryotes, yeast
and trypanosomatids, this success has yet to fully transfer to the metazoan sphere.

Currently, there are three putative molecular models for the polyamine transport
system, all of which, in part, correspond to the available biochemical data. Polyamine
transport in yeast and prokaryotes relies on various plasma membrane polyamine perme-
ases (PMPPs). The most well-defined model of metazoan polyamine transport suggests
a two-step process beginning with surface transport by an undefined PMPP followed by
rapid sequestration into polyamine sequestering vesicles (PSVs) [6]. Sequestration into
these acidic PSVs (identical to the late endosomes and lysosomes of endocytosis) utilizes a
proton:polyamine exchange through vesicular H+-coupled polyamine antiporters [6]. A
secondary model, specific only to spermine, suggests that glypican-1 acts as a high-affinity
spermine receptor [4]. Glypican-1 activates receptor-mediated endocytosis, which inter-
nalizes and sequesters spermine into intracellular PSVs from which it can be subsequently
freed through nitric oxide-mediated oxidation [4]. The most recent model was proposed
in gastrointestinal tissues [8]. In this model, putrescine uptake is mediated by caveolar
endocytosis and nitric oxide production, and the solute carrier protein SLC3A2 is impli-
cated in both import and export of putrescine [5,8,9]. Recent advances have identified
additional proteins involved in polyamine transport, including ATP13A2 as a lysosomal
polyamine exporter and ATP13A3 in the import of spermidine and spermine in pancreatic
cancers [10–12]. It is hypothesized that eukaryotic cells do not utilize a singular molecular
mechanism for polyamine transport, and it is possible that all three of these proposed
models are employed in some form.

Dysregulation of polyamine homeostasis is implicated in a variety of disease states
including neurodegenerative, infectious, and cancerous [13–15]. Because polyamines are
absolutely required for proliferation and many oncogene-driven cancers rely on an elevated
intracellular polyamine pool, both polyamine metabolism and transport are frequently
dysregulated in cancer [16]. Many cancer types show a correlation between increased
cell proliferation and an increase in intracellular polyamines through upregulation of
polyamine biosynthesis and transport [3,17,18]. This dependence on increased polyamine
concentration makes polyamine metabolism an appealing target for cancer therapeutics.
Using polyamine analogues to exploit the tight self-regulation of polyamine homeostasis
is a promising strategy for therapeutic benefit in neoplastic conditions. Polyamine ana-
logues can be divided into numerous classes with a main class involving the alkylation
of the primary amine groups of spermine. These compounds are either symmetrically
substituted bis (ethyl) analogues or unsymmetrically substituted and compete with en-
dogenous polyamines for uptake and, upon intracellular accumulation, stimulate the
catabolism of higher order polyamines and reduce polyamine biosynthesis [19]. The cyto-
toxicity associated with these analogues is partially attributable to significant induction
of polyamine catabolism through tumor type-specific induction of spermidine/spermine
N1-acetyltransferase (SSAT) and spermine oxidase (SMOX) activity [16]. Increased SSAT
activity rapidly reduces natural spermidine and spermine content in susceptible cells, and
the byproducts of SMOX activity include the reactive oxygen species precursor hydro-
gen peroxide and the highly toxic aldehyde 3-aminopropanal. Accumulation of these
byproducts leads to ROS-induced apoptosis [16].

Several symmetrically substituted polyamine analogues exhibit polyamine metabolism
modulation in vitro and are efficacious against various cancers both preclinically and clinically.
These compounds include diethyl dihydroxyhomospermine (SBP-101), N1,N12-bis(ethyl)-cis-
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dehydrospermine (PG-11047) and N1,N11-bis(ethyl)norspermine (BENSpm) [20–24]. SBP-101 is
known to influence polyamine metabolism in vitro and in vivo, and is currently being evaluated
for efficacy against pancreatic cancer in a phase 2/3 clinical trial [24–27]. PG-11047 is a second-
generation analogue containing a central cis double bond conformational restriction aimed
at reducing off-target effects seen in clinical BENSpm trials [20–22,28,29]. Preclinical animal
models have shown PG-11047 to delay tumor progression and extend survival; however, the
clinical trials (with potentially suboptimal dosing schedules) to date have only managed to
maintain stable disease [30,31]. Renewed interest in clinically efficacious polyamine analogues
has led to the production of PG-11047 and BENSpm nanoparticles (Figure 1).

Med. Sci. 2022, 10, x FOR PEER REVIEW 3 of 15 
 

 

Several symmetrically substituted polyamine analogues exhibit polyamine metabo-

lism modulation in vitro and are efficacious against various cancers both preclinically and 

clinically. These compounds include diethyl dihydroxyhomospermine (SBP-101), N1,N12-

bis(ethyl)-cis-dehydrospermine (PG-11047) and N1,N11-bis(ethyl)norspermine (BENSpm) 

[20–24]. SBP-101 is known to influence polyamine metabolism in vitro and in vivo, and is 

currently being evaluated for efficacy against pancreatic cancer in a phase 2/3 clinical trial 

[24–27]. PG-11047 is a second-generation analogue containing a central cis double bond 

conformational restriction aimed at reducing off-target effects seen in clinical BENSpm 

trials [20–22,28,29]. Preclinical animal models have shown PG-11047 to delay tumor pro-

gression and extend survival; however, the clinical trials (with potentially suboptimal 

dosing schedules) to date have only managed to maintain stable disease [30,31]. Renewed 

interest in clinically efficacious polyamine analogues has led to the production of PG-

11047 and BENSpm nanoparticles (Figure 1). 

 

Figure 1. Structures of polyamine analogues and nanoparticle derivatives. Both bis(ethyl)nor-

spermine (BENSpm) and PG-11047 are spermine-derived polyamine analogues. DSS-BEN is a na-

noparticle compound synthesized from BENSpm, and Nano11047 is derived from PG-11047. Both 

nanoparticles undergo intracellular thiolytic reduction, subsequently disassembling and releasing 

the parent compound, BENSpm or PG-11047, respectively. 

H2N N
H

H
N NH2

N
H

N
H

N
H

N
H

* O

O

S

S

O N

O

H
N

H
N N

*
n

N
H

N
H

N
H

N
H

*

N N
H

N
H

N O

O

S

S

O *

O
n

spermine

BENSpm

DSS-BEN

PG-11047

Nano11047

Figure 1. Structures of polyamine analogues and nanoparticle derivatives. Both bis(ethyl)norspermine
(BENSpm) and PG-11047 are spermine-derived polyamine analogues. DSS-BEN is a nanoparticle compound
synthesized from BENSpm, and Nano11047 is derived from PG-11047. Both nanoparticles undergo intra-
cellular thiolytic reduction, subsequently disassembling and releasing the parent compound, BENSpm or
PG-11047, respectively.

Single-agent cancer therapeutics are often of limited success due to complexity stem-
ming from tumor heterogeneity and acquired drug resistance. Clinical focus in the polyamine
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field has shifted from single agents to combination therapies in an attempt to utilize more
targeted drug delivery as well as produce longer lasting clinical responses [32–35]. Recent
advances in polymeric nanoparticles have produced polyamine-based self-immolative poly-
cations capable of affecting polyamine metabolism while simultaneously acting as a delivery
system for therapeutic nucleic acids [33,36–38]. Two of these nanopolyamines, Nano11047
and DSS-BEN, are synthesized from PG-11047 and BENSpm, respectively. These dendrit-
ically branched nanopolyamines are similar to other characterized cationic dendrimers
and were previously reported to be transported by endocytosis followed by endosomal
escape and self-immolation to their parent compounds [36,39]. A common mechanism
of resistance to polyamine analogues in cancer cells is the downregulation of polyamine
transport. As these nanopolyamines were anticipated to be accumulated through general
endocytosis as opposed to selective polyamine transport, they were initially thought to
provide a potential method of polyamine analogue delivery into cells that have down-
regulated or lost polyamine transport. We designed the current studies to determine the
efficacy of nanopolyamines in cells lacking intact polyamine transport and to investigate
the potential for overlap with the current models of polyamine transport. Surprisingly, our
results indicate that the nanopolyamines are transported by the same transport system as
the natural polyamines and their monomer analogues.

2. Materials and Methods
2.1. Cell Lines and Culture Conditions

Wildtype A549 and H157 lung adenocarcinoma cells were purchased from ATCC
(Manassas, VA, USA) and were maintained in RPMI 1640 containing 10% bovine calf serum
(Gemini Bio-Products, Sacramento, CA, USA) and penicillin/streptomycin at 5% CO2 and
37 ◦C. A549 and H157 transport-deficient cells (A549R and H157R) and the corresponding
controls (A549G and H157G) were previously developed in our lab [40] and maintained as
listed above with the addition of 250 µg/mL G418, an aminoglycoside antibiotic.

2.2. Cell Viability Assays

A549 or H157 cells were seeded in triplicate wells per condition of a 96-well plate at a
density of 3 × 104 cells/well and allowed to attach overnight. Cells were then treated with
100 µL of fresh medium containing the appropriate concentration of PG-11047, Nano11047,
BENSpm, or DSS-BEN. Following the indicated incubation times, cell viability was deter-
mined using the CellTiter-Blue Cell Viability Assay (Promega, Madison, WI, USA). Fluores-
cence was measured using a SpectraMax M5 (Molecular Devices, San Jose, CA, USA). IC50
values for all treated cell lines were calculated by GraphPad Prism (v. 8.3.1) (GraphPad
Software, La Jolla, CA, USA) using nonlinear regression for a normalized response.

2.3. Polyamine-Based Nanoparticle Synthesis

The synthesis of DSS-BEN and Nano11047 was performed as previously described [37].
Briefly, bis(2-hydroxyethyl) was dissolved in a mixture of dichloromethane (DCM) and
tetrahydrofurane on ice. Next, a solution of 1,1′-carbonyldiimidazole in DCM was added
followed by a 1-h incubation on ice. BENSpm (or PG-11047) in DCM was added and the
reaction was allowed to proceed at 45 ◦C for 18 h. After cooling to room temperature,
the final product was precipitated in 25 mL of diethyl ether, dried under vacuum and
dispersed in 0.1 mM HCl, followed by extensive dialysis against 0.1 mM HCl and then pure
water before lyophilization. The product was characterized by 1H-NMR and size-exclusion
chromatography. The molecular weights, as determined by dynamic light scattering, of
DSS-BEN and Nano11047 are 3.8 kDa and 7.2 kDa, respectively [37].

2.4. Analysis of Intracellular Native Polyamine Concentrations, Polyamine Analogue
Concentrations and Catabolic Polyamine Enzyme Activity

Treated cells were lysed and intracellular polyamine (putrescine, spermidine and sper-
mine) or polyamine analogue (PG-11047 and BENSpm) concentrations were determined by
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reverse-phase high performance liquid chromatography (HPLC) following acid extraction
and pre-column dansylation of the lysate as previously described by Kabra et al. [41]. SSAT
activity was determined as previously described [24].

2.5. DFMO Growth Curves and Nanopolyamine Co-Treatment

To confirm that A549R cells are polyamine transport deficient, treatment with 5 mM
DFMO with and without 2 µM spermidine supplementation was completed over 96 h.
All cells were treated with 1 mM aminoguanidine to inhibit oxidation of spermidine by
serum amine oxidase [42]. Cells were trypsinized and viable cells were counted with an
automated cell counter every 24 h for 96 h. Cell viability was determined by the ability of
cells to exclude trypan blue.

A549 cells were seeded at a density of 4 × 105 cells/T75 and allowed to attach
overnight. The media was then replaced with RPMI supplemented with 5 mM DFMO
(provided by Professor Patrick M. Woster, Medical University of South Carolina). Following
72 h of DFMO pre-treatment, Nano11047 (20 ng/mL) was added directly to the media
(freshly replenished with 5 mM DFMO). Following an additional 48 h of incubation time,
cells were lysed and intracellular polyamine analogue concentrations were determined as
described above.

2.6. Polyamine Transport Inhibition

The polyamine transport inhibitor, trimer44NMe was synthesized as previously re-
ported [43]. A549 cells were co-treated with 75 µM trimer44NMe and either PG-11047 (10 µM),
Nano11047 (20 ng/mL), BENSpm (10 µM) or DSS-BEN (10 ng/mL). Following 48 h of incuba-
tion, cells were lysed and intracellular polyamine analogue concentrations were determined
as described above.

2.7. Statistical Analysis

Statistical analysis was completed with GraphPad Prism (v. 8.3.1) (GraphPad Software,
La Jolla, CA, USA). All data sets passed the Shapiro-Wilk test for normality. Cell viability
was analyzed using the Holm-Sidak method of multiple unpaired t-tests and intracellular
polyamine analogue concentrations were analyzed using a Welch’s unpaired t-test. p-value
indications are as follows: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

3. Results
3.1. Polyamine Transport-Deficient Cells Are Resistant to Nanopolyamine and Polyamine
Analogue-Induced Cytotoxicity

Nanopolyamines were synthesized utilizing spermine analogues linked by a self-
immolative BHED linker [36]. This disulfide linker is readily cleaved in the reductive
intracellular environment and yields unmodified BENSpm or PG-11047 [36,37]. DSS-
BEN is synthesized from bis(ethyl)norspermine (BENSpm), and Nano11047 is derived
from PG-11047, a less-toxic, second-generation spermine analogue (Figure 1). It was
previously reported that treatment with DSS-BEN induces polyamine catabolism and has
anti-cancer activity both in vitro and in vivo [37]. Nano11047 had similar antitumor effects
on polyamine metabolism in lung cancer cell lines.

Transport-competent and transport-deficient derivatives of two human lung adenocar-
cinoma lines, A549 and H157, were used throughout the current studies [40]. The polyamine
transport-deficient lines (A549R and H157R) as well as transport-competent, G418-resistant
controls (A549G and H157G) were used to determine the cytotoxicity of Nano11047 and
DSS-BEN. Cells were treated for 96 h with concentrations ranging from 1 µM to 10 µM of
the parental polyamine analogue (PG-11047 or BENSpm) or 10 to 25 µg/mL of Nano11047
or DSS-BEN. IC50 values were calculated for each treatment (Table 1). PG-11047 caused an
approximately 50% reduction in cell viability following 5 µM of treatment in both A549G
and H157G cells (Figure 2A), while the transport-deficient lines (A549R and H157R) showed
no reduction in cell viability with up to 10 µM of PG-11047 treatment. Cell viability was
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significantly reduced to near 50% following 20 µg/mL of Nano11047 in A549G or 15 µg/mL
of Nano11047 in H157G (Figure 2B). Nano11047 treatment did not result in decreased cell
viability in either A549R or H157R cell lines.

Table 1. IC50 values following nanopolyamine and parent analogue treatment.

Cell Line Drug IC50

A549G

PG-11047
Nano11047
BENSpm
DSS-BEN

7.9 µM
28.4 µg/mL

1.6 µM
19.9 µg/mL

A549R

PG-11047
Nano11047
BENSpm
DSS-BEN

>10 µM
>25 µg/mL

>10 µM
>25 µg/mL

H157G

PG-11047
Nano11047
BENSpm
DSS-BEN

12.8 µM
13.9 µg/mL

2.9 µM
14.65 µg/mL

H157R

PG-11047
Nano11047
BENSpm
DSS-BEN

>10 µM
>25 µg/mL

>10 µM
>25 µg/mL
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Figure 2. Polyamine transport deficient cells evade nanopolyamine cytotoxicity. Polyamine
transport-competent (G) and polyamine transport-deficient (R) cell lines were treated for 96-h with
increasing concentrations of nanopolyamines or their parental polyamine analogue. Only cells capa-
ble of transporting polyamines exhibited cytotoxicity following treatment with PG-11047 (A) and
BENSpm (C). Similarly, nanopolyamines Nano11047 (B) and DSS-BEN (D) reduced cellular viability
only in cell lines with intact polyamine transport. Red asterisks indicate results of t-tests between
A549G and A549R, while blue asterisks indicate results of t-tests between H157G and H157R. p-value
indications are as follows: * p < 0.05; *** p < 0.001; **** p < 0.0001.
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Similarly, treatment with 5 µM of BENSpm was sufficient to reduce H157G cell viability
to 50% and eliminate A549G viability (Figure 2C), while BENSpm treatment had no effect on
transport-deficient cell lines up to 10 µM. DSS-BEN treatment markedly reduced viability
(80%) in transport-competent cell lines, whereas treatment caused only a limited decrease
in viability in transport-deficient cell lines (Figure 2D). These results indicate that these two
nanopolyamines are not cytotoxic to cells incapable of transporting polyamines.

3.2. Polyamine Transport-Deficient Cells Are Unable to Accumulate Nanopolyamines or Their
Parent Compounds

Once accumulated by transport-competent cells, the nanopolyamines immediately
undergo intracellular thiolytic reduction by GSH, subsequently disassembling and releas-
ing their respective parent compound [37]. The intracellular concentrations of these parent
compounds, PG-11047 and BENSpm, can then be quantified by high performance liquid
chromatography (HPLC). Cells were treated for 72 h with either 10 µM of PG-11047 or BEN-
Spm, 20 µg/mL of Nano11047, or 10 µg/mL of DSS-BEN and collected for HPLC analysis.
Following PG-11047 and Nano11047 treatment, H157G cells had accumulated intracellular
PG-11047 concentrations of 18 nmol/mg protein and 8 nmol/mg total protein, respectively
(Figure 3A). PG-11047 and Nano11047 treatment in A549G cells yielded an average concen-
tration of 12 nmol/mg protein following either treatment. Neither polyamine-transport
deficient cell line accumulated intracellular PG-11047 following treatment with either the
parental compound or Nano11047 (Figure 3A). The intracellular concentration of BENSpm
in H157G cells following treatment was 11 nmol/mg, while DSS-BEN treatment resulted
in an accumulation of approximately 4.5 nmol/mg BENSpm (Figure 3B). Treatment with
either BENSpm or DSS-BEN yielded an intracellular accumulation of 6 nmol/mg BENSpm
in transport-competent A549 cells. Similar to results with PG-11047 and Nano11047, no
intracellular BENSpm accumulation was detected in polyamine-transport-deficient cells
treated with either BENSpm or DSS-BEN (Figure 3B).

Upon intracellular accumulation, polyamine analogues influence polyamine metabolism
and lead to an overall decrease in intracellular polyamine levels [16]. Following 24 h of
BENSpm or DSS-BEN treatment, cells were lysed, and intracellular polyamine content was
determined. A549G and H157G cells showed a complete reduction in putrescine to below
detectable levels following BENSpm treatment and more than 70% reduction in putrescine
content following DSS-BEN nanopolyamine treatment (Figure 4A). Neither transport-
deficient cell line exhibited any reduction in putrescine content following treatment with
either BENSpm or DSS-BEN. Spermidine levels were decreased by approximately 50% fol-
lowing BENSpm or DSS-BEN treatment in A549G cells (Figure 4B). Their transport-deficient
counterpart, A549R, displayed no change in intracellular spermidine content. Similarly,
treatment with BENSpm or DSS-BEN decreased spermidine levels dramatically in H157G
cells but produced little effect in H157R cells. Spermine levels were reduced in A549G and
H157G cells following treatment with either DSS-BEN or its parent analogue, BENSpm,
while A549R and H157R cells exhibited no intracellular spermine reduction (Figure 4C).
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Figure 3. The parental analogues of nanopolyamines do not accumulate in cells deficient in polyamine
transport. Following 48-h treatment with either a nanopolyamine or the parental polyamine analogue,
intracellular concentrations of the parental compounds were measured by via N-dansylation and high-
performance liquid chromatography (HPLC). PG-11047 is detectable intracellularly following treatment
with either PG-11047 or Nano11047 (A) in transport-competent cells (A549G/H157G). Transport-deficient
cells (H157R/A549R) do not accumulate PG-11047 following either PG-11047 or Nano11047 treatment
(A). Similarly, only transport-competent cells accumulated BENSpm following treatment with either BENSpm
or DSS-BEN (B). p-value indications are as follows: *** p < 0.001; **** p < 0.0001.
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Figure 4. Intracellular polyamine content is reduced by polyamine analogues and nanopolyamines
only in the presence of intact polyamine transport. Following 48-h treatment with either polyamine
analogue BENSpm (10 µM) or its nanopolyamine DSS-BEN (10 µg/mL), cells were lysed and intracellular
polyamine content was determined by HPLC. Treatment with BENSpm in both transport-competent cell
lines, A549G and H157G, produced a complete reduction in putrescine to below detectable levels (A).
DSS-BEN treatment also resulted in decreased putrescine levels in these cells, but neither treatment reduced
putrescine levels in transport-deficient cell lines A549R and H157R. Similarly, BENSpm and DSS-BEN
treatment reduced spermidine (B) and spermine levels (C) in transport-competent cell lines but had no
effect on transport-deficient cell lines. * indicates no detection/below level of detection.

3.3. Effects of Polyamine Transport System Modulators on Uptake of Nanopolyamines

Polyamine transport can be biochemically altered using a variety of compounds. While
the direct target of polyamine transport inhibitors is unknown, they are still valuable tools
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for studying polyamine uptake. Trimer44NMe is a polyamine transport inhibitor known
to block the uptake of the natural polyamines in mammalian cells [43]. Trimer44NMe
alone shows limited toxicity in vitro but inhibits the uptake of exogenously supplemented
putrescine, SPD, and SPM [43]. α-Difluoromethylornithine (DFMO) is an irreversible
inhibitor of ornithine decarboxylase (ODC), one of the rate-limiting steps of polyamine
biosynthesis [44–47]. The inhibition of ODC by DFMO triggers a compensatory response
that upregulates the transport of exogenous polyamines. This has limited the success
of DFMO as a monotherapy, but trimer44NMe and DFMO have shown success in vitro
and in vivo as a combination approach to polyamine-based cancer therapy [43]. Both
inhibitors provide opportunities to further investigate the role of polyamine transport in
polyamine-based nanoparticle uptake.

We used wildtype cells with intact polyamine transport systems to determine the
effects of trimer44NMe or DFMO on uptake of nanopolyamines. Cotreatment of wild-
type A549 cells with trimer44NMe and DSS-BEN reduced the intracellular concentration
of BENSpm from 6.3 nmol/mg protein to 0.12 nmol/mg protein (Figure 5). Cotreat-
ment of H157 cells significantly reduced the intracellular concentration of BENSpm from
9.1 nmol/mg protein to below the detectable limit (Figure 5). Cotreatment of trimer44NMe
and Nano11047 exhibited a similar trend. Cotreatment decreased intracellular PG-11047
levels from 12.4 to 0.29 nmol/mg protein in A549 cells and from 13.15 to 0.13 nmol/mg
protein in H157 cells.
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Figure 5. Pharmacological inhibition of polyamine transport is sufficient to block analogue accu-
mulation following nanopolyamine treatment. Lung adenocarcinoma cell lines, H157 and A549,
were co-treated for 48 h with trimer44NMe, a polyamine-transport inhibitor (A), and either DSS-BEN
or Nano11047. The intracellular concentration of the parent compound (BENSpm or PG-11047, re-
spectively) was measured by HPLC following treatment. Parent compound accumulated in wildtype
H157 and A549 cells following DSS-BEN or Nano11047 addition, but co-treatment with trimer44NMe
(75 µM) blocked this accumulation (B). p-value indications are as follows: ** p < 0.01; **** p < 0.0001.
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DFMO is known to induce cytostasis in some tumors and treatment of cells in vitro
reduces cellular growth rate [48,49]. Normal growth, however, can be achieved with
exogenous polyamine supplementation [50,51]. Spermidine supplementation of transport-
competent A549G lung adenocarcinoma cells was sufficient to rescue DFMO-induced
growth inhibition (Figure 6), but the A549R transport-deficient cell line did not exhibit
growth rescue following spermidine supplementation. Consistent with its known ability
to upregulate polyamine transport, DFMO pre-treatment upregulated Nano11047 uptake
three-fold in A549G; however treatment of transport-deficient A549R cells with DFMO had
no effect on the uptake of Nano11047 (Figure 6).

Med. Sci. 2022, 10, x FOR PEER REVIEW 11 of 15 
 

 

three-fold in A549G; however treatment of transport-deficient A549R cells with DFMO 

had no effect on the uptake of Nano11047 (Figure 6). 

 

Figure 6. DFMO does not upregulate nanopolyamine uptake in transport-deficient cells nor can 

DFMO-induced cyto-stasis be rescued by exogenous polyamines in transport-deficient cells. 

Cells were treated with 5 mM DFMO +/− 2 μM spermidine and counted every 24 h for 96 h. All cells 

were treated with 1 mM aminoguanidine to inhibit serum amine oxidase. DFMO treatment slowed 

the growth of transport competent A549G cells, but normal growth was restored with the addition 

of exogenous spermidine (A). The growth of DFMO-treatedA549R transport-resistant cells was not 

rescued with spermidine supplementation (B). Following 72 h of DFMO pretreatment, A549 cells 

were treated for 48 h with Nano11047. Cells were lysed and intracellular PG-11047 content was 

determined (C). A549R cells showed no accumulation of the parent compound, PG-11047, regard-

less of DFMO treatment. A549G cells accumulated approximately 15 nmol/mg PG-11047 when 

treated with Nano11047 alone. Intracellular PG-11047 accumulation increased 3-fold when cells 

were pre-treated with DFMO to upregulate transport. 

4. Discussion 

Cancer cells depend on aberrant polyamine metabolism to maintain the increased 

intracellular polyamine requirement necessary for continuous proliferation [16]. Many 

cancers increase intracellular pools through upregulation of the polyamine biosynthetic 

pathway and/or upregulation of polyamine import [16]. Attempts have been made to in-

hibit biosynthesis enzymes, most notably the inhibition of ODC by DFMO; however, the 

difficulties associated with monotherapeutic enzyme inhibition have led to expanded in-

terest in compounds that further regulate polyamine metabolism. Polyamine analogues 

are recognized and transported by the polyamine transport system but are dissimilar 

enough in structure that they are unable to functionally replace the natural polyamines 

resulting in cytotoxicity [13]. Numerous polyamine analogues have been developed, in-

cluding PG-11047 and BENSpm, that inhibit tumor growth and exhibit cytotoxicity in 

Figure 6. DFMO does not upregulate nanopolyamine uptake in transport-deficient cells nor can
DFMO-induced cyto-stasis be rescued by exogenous polyamines in transport-deficient cells. Cells
were treated with 5 mM DFMO +/− 2 µM spermidine and counted every 24 h for 96 h. All cells
were treated with 1 mM aminoguanidine to inhibit serum amine oxidase. DFMO treatment slowed
the growth of transport competent A549G cells, but normal growth was restored with the addition
of exogenous spermidine (A). The growth of DFMO-treatedA549R transport-resistant cells was not
rescued with spermidine supplementation (B). Following 72 h of DFMO pretreatment, A549 cells
were treated for 48 h with Nano11047. Cells were lysed and intracellular PG-11047 content was
determined (C). A549R cells showed no accumulation of the parent compound, PG-11047, regardless
of DFMO treatment. A549G cells accumulated approximately 15 nmol/mg PG-11047 when treated
with Nano11047 alone. Intracellular PG-11047 accumulation increased 3-fold when cells were pre-
treated with DFMO to upregulate transport.
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4. Discussion

Cancer cells depend on aberrant polyamine metabolism to maintain the increased
intracellular polyamine requirement necessary for continuous proliferation [16]. Many
cancers increase intracellular pools through upregulation of the polyamine biosynthetic
pathway and/or upregulation of polyamine import [16]. Attempts have been made to
inhibit biosynthesis enzymes, most notably the inhibition of ODC by DFMO; however,
the difficulties associated with monotherapeutic enzyme inhibition have led to expanded
interest in compounds that further regulate polyamine metabolism. Polyamine analogues
are recognized and transported by the polyamine transport system but are dissimilar
enough in structure that they are unable to functionally replace the natural polyamines
resulting in cytotoxicity [13]. Numerous polyamine analogues have been developed,
including PG-11047 and BENSpm, that inhibit tumor growth and exhibit cytotoxicity in
preclinical models. Unfortunately, with the dosing schedules used to date, the best clinical
outcome with either drug as a monotherapy has been stable disease in a limited number of
patients [13,21,30].

The current study describes the requirement of intact polyamine transport in order to
uptake the newly synthesized nanopolyamines, Nano11047 and DSS-BEN. It was previ-
ously shown that the transport of other polycationic-based nanoparticles occurs through
generalized endocytosis. Therefore, to evaluate the efficacy of the nanopolyamines as a drug
delivery system in polyamine transport-deficient cells, we designed the current studies.
Utilizing lung adenocarcinoma cells with polyamine transport deficiencies, we determined
that the nanopolyamines, similarly to their associated parental analogue compounds, only
exhibited cytotoxic effects on cells with intact polyamine transport machinery. This was
directly correlated with the uptake and subsequent disassembly of the nanopolyamines as
determined by HPLC analysis. Significant intracellular analogue accumulation occurred
in cells capable of polyamine transport, while the transport-deficient cell lines had poor
accumulation of the analogues following nanopolyamine treatment. Polyamine transport-
competent cells accumulated both parent analogues and their nanopolyamine counterparts,
resulting in reduction of intracellular polyamine levels. Transport-resistant cell lines were
impervious to the influence of polyamine analogues and nanopolyamines on polyamine
pools because the cells were unable to uptake the compounds from the media.

A limitation to the transport-deficient lung adenocarcinoma cell line models is that the
underlying molecular mechanism for their transport deficiency is not known [40]. However,
we confirmed the results obtained in the transport-deficient cells using the alternative
method of pharmacologically inhibiting polyamine transport as well as pharmacologically
upregulating transport through DFMO. Uptake of nanopolyamines and the accumulation
of their parental analogue was completely prevented in cells treated with trimer44NMe,
a polyamine transport inhibitor, thus confirming that the nanopolyamines use the same
transport system as do their parent monomer analogues and the natural polyamines.
Similarly, DFMO, which is known to stimulate polyamine import, enhanced uptake of the
nanopolyamines in wild type, transport competent cells.

While various substituted polyamines are known to utilize polyamine transport, it
was anticipated that, due to their size and the behavior of similar nanoparticles, polyamine-
based polycationic nanoparticles would bypass polyamine transport machinery and be
accumulated by generalized endocytosis [36,39,52,53]. This study demonstrates, however,
that the nanopolyamines utilize the same polyamine transport machinery for entry into
mammalian cells as do the native polyamines and polyamine analogues. The data associ-
ated with polycationic nanoparticles similar to Nano11047 and DSS-BEN, as well as the size
of the nanopolyamines, suggest that a form of endocytosis is the most likely mechanism of
cellular uptake of these nanopolyamines [39,54–57]. If this hypothesis proves to be true,
the data from these studies indicate that the natural polyamines are also taken up by a
form of endocytosis, supporting the models of metazoan polyamine transport that involve
endocytosis as the method of cell entry [4,8]. The glypican-1 model described previously
suggests endocytosis followed by PSV sequestration. This model is specific for spermine,
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making it highly relevant for our purposes since both of the studied nanopolyamines are
synthesized from spermine analogues. As the glypican-1 model agrees most with the
known transport of other polycationic nanoparticles, future investigation into the role of
glypican-1 in nanopolyamine transport is warranted. Additionally, as an alternative line
of experimentation, caveolin-mediated endocytosis as a mechanism for nanopolyamine
transport should be evaluated [8].

While the data from this study may indicate limited efficacy of nanopolyamines in
polyamine transport-resistant cells, their utility as a combined polyamine metabolism
and nucleic acid therapy remains. Their ability to induce polyamine catabolism and ROS
damage are the molecular basis of their antitumor mechanism of action and fundamental to
their activity. This will hopefully lead to renewed interest in moving forward, ultimately re-
sulting in clinical trials for the new formulations of these novel polyamine analogues. Most
importantly, this study provides evidence that endocytosis, possibly receptor-mediated en-
docytosis, is the likely mechanism responsible for the transport of higher order polyamines
and their analogues. What now remains is the task of identifying the possible receptors
and the other molecular players mediating polyamine transport.

5. Conclusions

Polyamine analogues are a promising therapeutic for modulating aberrant polyamine
metabolism in cancerous cells. The nanopolyamines developed from the analogues PG-11047
and DSS-BEN provide a novel form of polyamine analogue metabolic modulation and the
potential to simultaneously introduce a secondary therapy as drug delivery vesicles. This
study found that nanopolyamines were incapable of accumulating in polyamine transport-
deficient cells and subsequently were unable to modulate their polyamine metabolism.
These data indicate that while much larger in size, the nanopolyamines utilize the same
polyamine transport as the parental analogues. While this discovery may limit the efficacy
of nanopolyamines in cancer cells that have gained analogue resistance through polyamine
transport downregulation, this information provides new evidence that endocytosis is a
likely mechanism for higher order polyamine and analogue transport in mammalian cells.
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