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Abstract: A growing interest appears among public authorities and society in accurate and nearly
real time aftershock forecasting to manage and mitigate post-seismic risk. Existing methods for
aftershock forecasting are strongly affected by the incompleteness of the instrumental datasets
available soon after the main shock occurrence. The deficit of observed events, in the first part of
aftershock sequences, can be naturally attributed to various mechanisms such as the inefficiency of
the seismic network and the overlap of earthquake signals in seismic records. In this review, we show
that short-term aftershock incompleteness can be explained only in terms of the second mechanism,
whereas it is only weakly affected by the quality of the instrumental coverage. We then illustrate how
standard models for earthquake forecasting can be modified to take into account this incompleteness.
In particular, we focus on forecasting methods based on the data available in real time, in which
many events are missing and the uncertainty in hypocenter location is considerable. We present
retrospective tests that demonstrate the usefulness of these novel methods compared with traditional
ones, which implement average values of parameters obtained from previous sequences.

Keywords: catalog incompleteness; seismic hazard

1. Introduction

Even if a still unanswered question is whether or not the accurate, reliable prediction of individual
earthquakes is a realistic scientific goal, the possibility of forecasting future earthquakes exists. The two
major examples concern the estimation of the occurrence probability of large shocks over a very long
temporal interval (decades up to centuries) and the estimation of the aftershock occurrence rate after a
large earthquake. Neither of the two cases is relevant in predicting the occurrence of an impending
large earthquake but both examples provide very useful information on mitigating the impact of
earthquakes that are likely to occur. As a matter of fact, the first example, usually defined as long-term
(LT) seismic forecasting, is probably the most relevant from an engineering point of view, such as
urban planning and building constructions: It allows one to address questions such as the maximum
magnitude expected in a given area for the next years. Concerning the second example, usually defined
as post-seismic Short-Term Aftershock (STA) forecasting, many events (the aftershocks) are always
observed soon after the occurrence of a strong shock (the main shock). Aftershocks can attain sizes
comparable to their triggering mainshock and can be very dangerous since they impact buildings
already damaged by the previous shocks.
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This review is focused on STA forecasting that can be potentially very efficient. Indeed the
organization in time, space and energy of aftershocks follows well established empirical laws such as
the Gutenberg–Richter (GR) and the Omori–Utsu (OU) law [1,2], which can be implemented in
forecasting models. The GR law states that the magnitude distribution of earthquakes is an exponential
function P(m) ∼ exp(−βm), and the OU law characterizes the power law decay of the aftershock rate
as function of the time t since the main shock.

Even if the LT and STA forecasting act on two very different time scales, the two problems
are intimately related. In the most simple description, seismic occurrence can be viewed as the
superposition of two different stochastic processes: background seismicity responsible for mainshocks,
which are the target of the LT forecasting, and aftershock occurrence, which is the target of STA. Hence,
to achieve an accurate LT forecasting method a so-called declustering procedure is necessary, which
allows one to isolate the two processes by means of a detailed knowledge of aftershock features.
A clear example is the Epidemic Type Aftershock Sequence (ETAS) model introduced by Ogata [3]
and probably representing nowadays the most popular model for STA as well as among the most
efficient tools for LT forecasting. Studies of STA forecasting models, such as the ETAS model or more
simple models implementing the OU law, have shown [4–14] that the incompleteness of datasets
strongly affects the estimation of model parameters. This effect is more relevant in the first part of
aftershock sequences when many earthquakes, in particular small ones, are not recorded and therefore
not reported in seismic catalogs. This is mainly caused by the overlap of the signal of individual
earthquakes in the seismic records. At the same time, incompleteness is also produced by the overload
of processing facilities, due to a very large number of events in a narrow temporal window, and the
damage caused by the mainshock to the seismic stations. Because of these difficulties, in many cases,
operational probability forecasts only start more than 24 h after the mainshock [15].

In this review, we explore the problem of incompleteness of instrumental datasets focusing in
particular on the so-called Short Term Aftershock Incompleteness (STAI). This is the main subject
of Section 2. In Section 3, we review recent results on the influence of STAI on the estimation of
parameters of STA forecasting models. Section 4 is then devoted to show that STAI is an intrinsic
property of seismic catalogs which is not related to the efficiency of the seismic network. We conversely
show that the main mechanism responsible for STAI is the overlap of aftershock coda waves with
the waveforms of other events which obscure small aftershocks that occur close in time after larger
ones. In Section 5, we show some approaches recently proposed to take explicitly into account
this “obscuration” effect within the ETAS model. These approaches, however, are not simple to be
implemented in real-time automatic procedures for aftershock forecasting. This is the topic of Section 6,
which presents two different procedures developed to provide accurate STA forecasting, several
minutes after the occurrence of a mainshock: the Omi et al. method [7,9,10] and the Lippiello et al.
method [16,17]. The test of these two methods in retrospective studies is presented in Section 6 and
final conclusions are drawn in the last section.

2. Catalog Incompleteness

Catalog completeness is usually quantified in terms of a magnitude threshold (or lower cut-off) mc

defined as the magnitude above which all events are identified and included in the catalog. An accurate
estimate of mc is fundamental in seismic forecasting. A too high value, discarding usable data, leads to
loss information by under-sampling. Conversely, a too low value leads to an unreliable estimation
of parameter values and thus to a biased analysis because of the incomplete dataset. A standard
way of estimating mc is to find the minimum magnitude above which the best fit with the GR law is
obtained. The value of mc clearly depends on the ability to filter noise and on the distance between the
earthquake epicenter and the seismic stations necessary to trigger an event declaration in a catalog.
Instrumental data from Taiwan seismicity, for example, give [18] at a given location~r, mc(~r)
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mc(~r) = 4.83d0.09 − 4.36. (1)

where d = |~r−~r3| is the distance in kilometers between the epienter and the position~r3 of the third
nearest seismic station. In Figure 1, we present the mc map for the Southern California obtained in [19]
via the method of Amorése [20]. In particular, we observe a region in the central part of Southern
California with a higher density of seismic stations, characterized by mc ≤ 1.4. This region, defined as
Region 1, contains the 36% of m > 2.5 events recorded in the entire catalog. The remaining Southern
California region (defined as Region 2) has a completeness magnitude starting from mc = 1.5 and
becoming as large as mc ' 3 near the borders. A similar behavior is found if mc is evaluated according
to the method of Schorlemmer and Woessner [21].

Figure 1. Magnitude completeness in Southern California. The value of mc can be obtained by the
color bar and triangles identify the location of seismic stations. Green dashed lines define Region 1.
Region 2 is the complement to Region 1 with respect to the entire Southern California (From [19]).

We stress that mc estimated from Equation (1) is a static quantity, controlled by the number
of seismic stations, and we define it as “the static completeness magnitude”. On the other hand,
instrumental data show that the mc value, inside a given region, changes with time reaching much
larger values in the first part of the aftershock sequence. As already anticipated in the Introduction,
the dependence of the completeness magnitude mc(t) on the time t since the main shock occurrence is
usually termed Short Term Aftershock Incompleteness (STAI). Results in [22–24] give a completeness
magnitude mc(t) which depends logarithmically on the time t since the main shock

mc(t, mM) = mM −
1
d

(
log10

(
t

C0

))
, (2)

where mM is the main shock magnitude and d and C0 are fitting parameters. We refer to Equation (2)
as the Kagan–Helmstetter formula with the best fitting parameters d ' 1 and C0 ∼ 10−4 days, when
time is measured in days. In Figure 2, we plot the experimental aftershock magnitude distribution
evaluated for different temporal intervals after the m = 7.3 Landers earthquake, in Southern California.
Experimental results show a magnitude distribution with an about flat for values m < mc(t), whereas
curves appear parallel on a semi-logarithmic scale for m > mc(t) consistently with a GR law with
b ' 1. The crossover magnitude mc(t) is in agreement with Equation (2).
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Figure 2. The number of aftershocks with magnitude larger than mth for the mM = 7.3 Landers
earthquake in Southern California, evaluated in different temporal windows δt from the main shock.
The green dashed line is the exponential behavior expected according to the GR law with b = 1.

In a different approach [5,7,9], STAI is taken into account by considering a magnitude distribution

Pβ,σ(m) ∝ e−βmΦ (m|µ(t), σ) (3)

given by the GR law multiplied by the detection rate function Φ, which is represented by an
error function

Φ(m|µ(t), σ) =
1√

2πσ2

∫ m

−∞
e−

(x−µ(t))2

2σ2 dx. (4)

In the above equation, the function µ(t) represents the 50% detection magnitude and σ represents
the range of the magnitude of partially detected earthquakes, i.e., at time t, only 50% of the events
with m = µ(t) are expected to be detected whereas more the 98% of events are expected to be
detected if m > µ(t) + 2σ. A reasonable definition therefore corresponds to assume mc(t) = µ(t) + 2σ.
In particular, Ogata and Katsura [5] proposed that µ(t) obeys the law

µ(t) = ν0 + ν1 exp
(
−ν2

(
3 + log10(t)

)ν4
)

(5)

where the νi are fitting parameters. On the other hand, in a series of papers, Omi et al [7–10,15]
developed an elegant method to obtain a non parametric fit of the function µ(t) and an estimate of σ

from the occurrence times and magnitudes of all recorded events in a giving learning period.
In Figure 3, we plot the results by Omi et al. [9] for µ(t) and µ(t) + 2σ for three aftershock

sequences in Japan. These results are compared with the Ogata–Hirata formula (Equation (5)) and
the Kagan–Helmstetter formula (Equation (2)). Figure 3 shows that the Omi and the Ogata–Hirata
models give similar behavior for µ(t) and are able to capture the time variation of the detection rate.
In contrast with these two models, since the parameters of the Kagan–Helmstetter formula are fixed
for all sequences, it cannot reproduce the diverse recovering dynamics of the completeness magnitude
that considerably depends on each aftershock sequence. The comparison of the forecasting skill of
these three methods, for 38 Japan aftershock sequences, shows that the Omi method performs slightly
better than the Ogata–Hirata methods and much better than a Kagan–Helmstetter formula [9].
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Figure 3. Examples of the estimated time-varying 50% detection rate µ(t) (solid curve) of magnitudes
and estimated various time-varying completeness magnitudes (dotted curve) as indicated in the inset,
superimposed on the magnitude-time plot of the observed aftershocks during the first day of the main
shock. From [9].

3. The Influence of STAI on Model Parameters

For a complete dataset, one expects that the rate of aftershocks ρ(t, mM, mth) with magnitude
larger than a threshold value mth occurring after a time t following a mainshock of magnitude mM can
be obtained by combining the GR law and the OU law

ρ(t, mM, mth) =
K

(t + c)p e−βmth . (6)

According to the productivity law [25], K depends on the main shock magnitude and Equation (6)
can be written as

ρ(t, mM, mth) =
K0eαmM−βmth

(t + c)p . (7)

As already observed in [2], missing small events in the early stage of the aftershock sequence
causes the instability of the estimate of the parameters K0, α, β, c, p in Equation (6). A problem
which becomes particularly relevant at the beginning of aftershock sequences when the completeness
magnitude after large earthquakes can temporarily increase by several units [4,22,26,27]. For this
reason, long and short term forecasts usually present some corrections which take into account
STAI [6,28,29].

Incompleteness, in particular, can make the c-value measured from instrumental catalogs cmeas

much larger the “true” c-value in the OU law (Equation (6)). Indeed, restricting to aftershocks with
magnitudes larger than a reference value mth, if events with magnitudes m < mc(t) are not recorded,
the measured c-value can be obtained from Equation (2) after setting mc(cmeas) = mth, which leads to

cmeas = C010d(mM−mth). (8)

It is evident that this quantity depends on the parameters of Equation (2) but is not related to
the c-value of the OU law. Alternatively, an estimate of cmeas can be obtained from Equation (5) after
setting µ(cmeas) = mth − 2σ. As a consequence, the incompleteness at short times hides the true value
of c that in turn introduces a strong bias in the evaluation of the parameters K0 and α in Equation (6),
strongly affecting routines for short term aftershock forecasting at time t < cmeas.

3.1. The Influence of STAI on the ETAS Parameters

As anticipated in the Introduction, the ETAS model is probably, nowadays, the most popular
one for STA forecasting. The assumptions of the ETAS model include: (1) yhe background seismicity
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is a stationary Poisson process that depends on the position ~x, µ(~x); (2) every event, whether it is a
background or a triggered one by a previous event, triggers its own off-spring independently; (3) the
expected number of direct off-springs is an exponential function of the magnitude of the mother event
(productivity law); and (4) the time lags between triggered events and the mother event follow the OU
law. According to these assumptions, the occurrence rate of events with magnitudes m ≥ m0 at the
position ~x at time t is given by

ΛETAS(m,~x, t) =

[
N

∑
i=1

Q (|~xi −~x|, t− ti, mi) + µ(~x)

]
βe−β(m−m0) (9)

where the sum extends over all events with magnitude mi, epicentral coordinate ~xi and occurrence
time ti < t and

Q(∆ri, t− ti, mi) =
K0(p− 1)

c
eα(mi−m0)

(
1 +

t− ti
c

)−p
G(∆ri, mi) (10)

with ∆ri = |~xi −~x|, which is the epicentral distance. The function G(∆ri, mi) is a spatial kernel that
explicitly depends on the triggering magnitude mi and µ(~x) is the time independent contribution due
to background seismicity.

The influence of STAI on the estimates of the ETAS parameter was addressed by Zhuang et al. [13]
in the case of the 15 April 2016, Kumamoto earthquake sequence in Japan. Under the assumption that
earthquake magnitudes are independent of their occurrence times, Zhuang et al. [13] replenished the
short-term missing data of small earthquakes by using a bi-scale transformation. They then compared
the maximum likelihood estimate of the ETAS parameters of the recorded dataset in the JMA catalog
with the replenished one, considering only events above a lower magnitude threshold mth = mc.
Results plotted in Figure 4, as function of mc, show that, when the magnitude threshold mc ≥ 3,
which is approximately the static completeness magnitude of the JMA catalog, the estimated ETAS
parameters are about the same for both datasets. Conversely, important differences are found for
values of mc < 3. For the replenished dataset, the estimated background rate µ(x) decreases roughly
exponentially when the cut-off magnitude is increased, consistently to what is expected according to
the GR law ( Figure 4a). The original dataset, conversely, exhibits a flatter behavior, indicating the
absence of small magnitude events. Concerning the other parameters, the most striking feature is that
in the replenished dataset all parameters only weakly depend on mc, as expected, whereas we observe
a non-trivial dependence on mc in the JMA catalog.

The results of Zhuang et al. [13] indicate that the estimate of ETAS parameters from the original
dataset, when one considers a lower magnitude threshold mc < 3, leads to non-correct results. A similar
conclusion was reached by Seif et al. [14] who studied how the ETAS parameters, obtained by the
iterative approach of Zhuang et al. [30], depends on the lower magnitude threshold mth. In particular,
Seif et al. [14] investigated two simulated ETAS catalogs: a complete one which implements the ETAS
parameters estimated from the Southern California catalog and an incomplete one where aftershocks
of mainshocks with mM > 5 were removed if their magnitude was smaller than mc(t) given in
Equation (2). Results plotted in Figure 5 show that for sufficiently larger values of mth, the parameter
inversion procedure does not give the true values of K0 and p used to generate synthetic catalogs.
Seif et al. [14] attributed the observed discrepancy to the fact that aftershocks triggered by events
with m < mth are erroneously identified as direct aftershocks of some previous larger earthquake.
This widens the distribution of direct aftershocks leading to a smaller p-value. At the same time,
because of the anticorrelation between K0 and p, K0 is overestimated. Figure 5, in particular, shows
a striking difference between the estimated parameters in the complete and the incomplete catalogs.
However, this difference tends to disappear for increasing mth indicating that the influence of aftershock
incompleteness is not significant for mth & 3.5.
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Figure 4. Different panels correspond to the ETAS parameters µ, K, A = K
∫ ∞

0 (t + c)−pdt, c, α, p
(see axis labels) estimated from the Kumamoto aftershock sequence with different magnitude thresholds.
The red and black dots are the estimates based on the original and the replenished datasets, respectively.
Unit of measures are day−1, dayp−1, day for µ, K, c respectively and the other quantities are adimensional
except A = K

∫ ∞
0 (t + c)−pdt which represents the productivity from an event of magnitude mc.

From [13].

Results of Figures 4 and 5 indicate that using a lower magnitude threshold mth below the
completeness level, especially for some parameters, can lead to incorrect prediction. Unfortunately,
it is not simple to establish a strict correspondence between the degree of incompleteness of the catalog
and the error expected in the estimate of parameters.

mth mth
Figure 5. The ETAS parameters are plotted against mth for synthetic catalogs simulated with parameters
from Southern California (gray) and compared with the parameter for the incomplete synthetic catalog
(orange). The “true” parameter values are plotted with black dashed lines the grey shadowed region
represents the 95% quantiles of 30 synthetic ETAS catalogs. The orange shadowed region represents
the 95% quantiles of 30 synthetic ETAS incomplete catalogs. From [13].
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3.2. Is STAI Related to the Static mc?

As explained in Section 2 the static mc is a local quantity which depends on the local density
of the seismic network ρS, as illustrated by Equation (1) and Figure 1. The influence of the density
ρS on the STAI was addressed by de Arcangelis et al. [31] by investigating the cmeas-value in the
two sub-regions of Southern California illustrated in Figure 1. As already explained in Section 2,
the inner region (Region 1) comprises a high value of ρS and a static mc ≤ 1.4. Conversely, a small
ρS is present in the external region (Region 2) and the static mc > 1.5, with values of mc ' 3 close to
the borders. To obtain an estimate of cmeas in each sub-region, de Arcangelis et al. [31] measured the
aftershock daily rate ρ(t, mM, mth) defined as the number of aftershocks with magnitude larger than mth
occurring at a temporal distance t after their triggering main shock with magnitude m ∈ [mM, mM + 1),
divided by the number of mainshocks with magnitude m ∈ [mM, mM + 1). Three different values of
mM = (3, 4, 5) and mth = (1.5, 2.5, 3.5) were considered. In this study, mainshock–aftershock couples
were identified according to the Baiesi–Paczusky (BP) declustering criterion [32–34] using the same
parameters adopted by Moradpour et al. [35] and Hainzl [12]. In particular, only aftershocks identified
as direct descendants of the mainshock were included in the analysis.

The results (Figure 6) show that the aftershock rate clearly depends on the magnitude difference
mM − mth in both Region 1 and Region 2. In particular, de Arcangelis et al. [31] divided time by
τ = 10d(mM−mth) obtaining that data for different values of mM and mth, inside each sub-region, exhibits
the scaling collapse ρ(t, mM, mth) = F(t/τ) (Figure 7a). It is evident from Figure 7a that the Omori
decay ρ ∼ t−p sets in when t/τ becomes larger than a given value x0, different between the two regions.
Since the cmeas can be obtained from the time such that the Omori decay ρ ∼ t−p sets in, Figure 7a
gives cmeas = x0τ and one recovers Equation (8) after the identification x0 = C0. In particular the best
fit gives log10(C0) = −3.53± 0.05 and d = 1± 0.03 inside Region 1 and log10(C0) = −3.70± 0.05 and
d = 0.95± 0.03 inside Region 2. This leads to a counterintuitive behavior with a cmeas-value being
larger inside Region 1 even if the static mc is significantly smaller inside Region 1 than in Region 2.
Conversely a smaller cmeas-value is found in Region 2 when the static mc is larger. This result clearly
indicates that cmeas is not related to ρS and that STAI cannot be reduced by increasing the density of
the seismic station thus suggesting that STAI originates from a different mechanism (see next section).
The same conclusion can be also obtained from the measurement of the correlation between magnitude
according to the method proposed in [19,36–38]. This analysis [19,31] has shown significantly larger
magnitude correlations in Region 1 than in Region 2.
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Figure 6. The number of events identified as aftershocks by the BP declustering procedure
with magnitude larger than mth, which occurred at a temporal distance t from events identified
as mainshocks with magnitude m ∈ [mM, mM + 1), is divided by the number of identified
mainshocks and plotted versus t. Different panels correspond to different values of the mainshock
magnitude class m ∈ [mM, mM + 1). Different colors correspond to results for different geographic
regions: Region 1 (open green symbols) and Region 2 (filled magenta symbols). Different symbols
indicate different values of the lower threshold: mth = 1.5 (circles), mth = 2.5 (squares) and
mth = 3.5 (diamonds).
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Figure 7. (Color online) (a) The same data in Figure 6 are plotted as function of t/τ, with τ = 10d(mM−mth)

proportional to cmeas (Equation (8)) with d = 1, for different values of mM and mth. Filled (empty) colored
symbols are used for data of Region 1 (Region 2). The magenta continuous line is the scaling function
F(x) = A log

(
1 + Bx−p) with A = 0.35, B = 70 and p = 1.1, whereas the dashed green line is the

scaling function F(x) = A(x/B + 1)−p with A = 300, B = 7 and p = 1.1. (b) The aftershock density
ρ(t, mM, mth) in the ETASI1 catalog, with a blind time ∆t = 1 min, is plotted as a function of t/τ.
Different values of mM and mth are plotted with different symbols: stars for mM −mth = 2.5, crosses for
mM −mth = 1.5 and plus for mM −mth = 0.5. Different colors correspond to different values of K0

and of the average background rate rB: K0 = 0.035 and rB = 4.38 days−1 (black), K0 = 0.035 and
rB = 8.3 days−1 (green) and K0 = 0.068 and rB = 4.38 days−1 (red). Magenta continuous and green
dashed lines are the same scaling functions F(x) plotted in (a). (Inset) The value of ∆m (Equation (8)) as
function of log10(Ko) for the ETASI model with a blind time ∆t = 1 min (black crosses). The cyan line is
the theoretical prediction (Equation (18)). From [31].

4. The Origin of STAI and the Envelope Function

Results of the previous Section (Section 3.2) suggest that STAI is an intrinsic property of seismic
catalogues not related to density of the seismic stations. This conclusion is strongly supported by the
study of the envelope function µe(t) after several mainshocks that occurred in Greece and Italy in the
last ten years [16]. More precisely, the envelope function µe(t) is obtained from the ground velocity
recorded during the first days after the mainshock. The signal of each component is filtered by means
of a two-pass Butterworth filter in the range [1, 10] Hz, the envelope of each signal is computed and
the signals of the three components are superimposed. µe(t) is finally defined as the logarithm of the
resulting signal. This quantity was introduced by Peng et al. [26] to identify aftershocks not reported
in the JMA catalog during the first minutes after the main shock. The idea is that the occurrence of an
aftershock must produce a double peak in µe(t) corresponding to the coupled pair of P and S arrivals.
The local magnitude of the event is given by m ' µmax + const, where µmax is the maximum in µe

and the constant depends on the epicentral distance from the recording station, related to the S-P
time difference.

Considering the evolution of µe(t) after a mainshock, occurred at the time t0, Lippiello et al. [16]
found that the envelope function never goes below a given value µmin(t) which is a logarithmic
decreasing function of time (Figure 8)

µmin(t) = µM − φ log(t− t0)− ∆µmin. (11)
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As a consequence, even very accurate analyses of post seismic waveforms, even those which
employ sophisticated matched filter detection algorithms [39,40], do not allow one to identify small
events which produce peaks smaller than µmin(t). This reflects a completeness magnitude mc(t) that
depends on the time after the mainshock with a functional dependence similar to µmin(t) and, therefore,
small events cannot found and catalogs are intrinsically incomplete.

To understand the mechanism responsible for the existence of µmin(t), a closer inspection of the
envelope function µ(t) after all mainshocks reveals the existence of two characteristic times: τ and tM.
The first time τ is of the order of some seconds, whereas tM is of order of some minutes, and three
distinct regimes are observed:

• For t− t0 < τ, µe(t) increases to a maximum value µM.
• For τ < t− t0 < tM, µe(t) follows a logarithmic decay as

µe(t) ' µM − q log(t− t0). (12)

• For t − t0 > tM, the average value of the envelope 〈µe(t)〉 is still logarithmic but with
different coefficients:

〈µe(t)〉 = µM − φ log(t− t0)− ∆µ, (13)

with φ < q.

The same three regimes have been found for other mainshocks in Southern California and in
Italy [16]. The first two regimes can be easily associated to the mainshock waveform, which can be
modeled as µe(t− t0) = µM + log[g(t− t0)], where g(t− t0) is the mainshock envelope waveform.
Experimental results suggest an initial linear increase of g(t) [41] followed by a fast decay consistent
with an exponential function g(t) ∼ exp(−Q−1t) [42]. Figure 8 indicates that in the intermediate
regime τ < t− t0 < tM, with tM of the order of few minutes, the envelope waveform is more consistent
with a power law decay as proposed by Lee et al. [43]. Under these assumptions, the behavior of g(t)
up to the time t− t0 < tM can be modeled as g(t) ∼ t(t/τ + 1)−1−q with the time τ representing the
typical duration of the mainshock signal, leading to

µe(t) = µM + log(t− t0)− (q + 1) log ((t− t0)/τ + 1) . (14)

The existence of the third regime, previously enlightened by Sawazaki and Enescu [44], can be
interpreted taking into account that not only the main shock but each aftershock of magnitude mi,
occurred at time ti, produces a signal following the relation µe(t) = µi + log[g(t− ti)] and one therefore
expects a theoretical envelope of the form

µth(t) = log
{

max
ti<t

[10µi g(t− ti)]

}
, (15)

where the maximum must be evaluated for all aftershocks with occurrence times ti < t.

Numerical Generation of the Envelope Function

To verify that Equation (15) reproduces the experimental findings, Lippiello et al. [16] started from
a mainshock with magnitude mM occurring at time t0 and assumed that the aftershock rate follows
the OU law (Equation (6)). Since p-values usually have small fluctuations among different aftershock
sequences [45], Lippiello et al. [16] assumed a fixed value of p (p = 1.1) and after choosing different
values of K and c, they generated an aftershock sequence according to Equation (6) for a temporal
window of three days. To each aftershock is then associated a magnitude randomly extracted from the
GR law. After fitting the value of τ from the experimental µe(t), the key assumption is that a magnitude
mi aftershock, occurring at time ti, generates a seismic signal with envelope A(t) = 10mi g(t− ti) with
g(t) = t(t/τ + 1)−1−q and q = 2.5. The synthetic µth(t) is then obtained from Equation (15) and a
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vertical shift is finally applied in order to have the mainshock peak in µth(t) equal to the experimental
µM. The numerical parameters K, c, implemented in the OU law (Equation (6)) are then tuned in order
to reach a good agreement between µth(t) and the experimental µe(t), according to the procedure
described in Section 6.2. Results of µth(t) plotted as orange lines in Figure 8 show that it is possible to
generate a synthetic envelope reproducing the experimental one in all the three regimes. The above
results indicate that since each aftershock produces its own coda waves which decay as a power law
with exponent q, the overlap of coda waves generated by subsequent aftershocks causes the existence of
a lower signal µmin(t) which decays as a power law with an exponent φ < q (Equation (13)). The same
agreement between µe(t) and µth(t) is recovered for other mainshocks mM > 6 recorded in Greece,
Italy and Southern California [16].

We wish to stress that the mainshock peak µM, as well as aftershock peaks µi in Equation (15),
strongly depends on the distance of the recording station from the mainshock epicenter and on site
effects. In addition, the functional form of g(t) can be different at different stations. As a consequence
both µe(t) and µth(t) are different at different stations but, under the hypothesis that aftershocks
occur not too far from the mainshock hypocenter, the values of K and c providing the best agreement
between µe(t) and µth(t) should be the same for all stations.

1e-06 1e-05 0,0001 0,001 0,01 0,1 1

time from the mainshock (days)
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Figure 8. The quantity µe(t) (green circles) after the the Hector Mine earthquake in California recorded
at the station CIGSC located at a distance of 92 km from the main shock epicenter. The magenta crosses
indicate the (logarithmically binned with bin value 0.1) average value of µ(t), the red continuous
lines represent the results of the logarithmic fit (Equation (13)) for t − t0 > tM. The dashed blue
lines represent the quantity µmin(t) and orange lines are used for results of numerical simulations for
the theoretical envelope µth(t), defined in Equation (15). The values of the best-fitting parameters in
Equation (6) are K = 0.95, c = 0.18 days and τ = 8 s.

5. The ETASI Model

In the previous section, we have shown that STAI is mostly due to the overlap among aftershock
coda waves. This ingredient can be incorporated in the ETAS model by multiplying the ETAS
occurrence rate ΛETAS in Equation (9) by a detection function

ΛETASI (~x, t, m|~xi, ti, mi) = ΛETAS (~x, t, m|~xi, ti, mi)×Φ(m, t, µ(t)|mi, ti). (16)

The detection rate can be still described by an error function as in Equation (4) and we define the
model described by Equation (16) as the ETAS Incomplete (ETASI) model. The main difference with
Equation (3) is that in this approach the detection function Φ(m, t, µ(t)|mi, ti) depends on the history
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of all previous earthquakes {mi, ti}N
i=1, with ti < t. More precisely, in Equation (3), the 50% detection

function µ(t) depends only on the time and magnitude of the main shock whereas in Equation (16) each
event can obscure the recording of subsequent earthquakes.

We observe that the ETASI model differs form the procedure adopted by Seif et al. [14] who
generated incomplete ETAS catalogs by removing only aftershocks of mainshock with m > 5.
In the ETASI model, conversely, any event can obscure subsequent earthquakes independently of
its magnitude.

The simplest choice for the detection function Φ(m, t|mi, ti) was proposed by Hainzl [12] and
corresponds to an error function with σ → 0 and µ(t) = mi if t − ti ≤ ∆t, whereas µ(t) = 0 for
t− ti > ∆t, where ∆t is a constant blind time. This corresponds to the hypothesis that each earthquake
hides all subsequent smaller events occurring at temporal distances smaller than ∆t. Notwithstanding
the simplicity of this functional form of µ(t), as already proposed by Hainzl [12], this model, defined as
ETASI1 in the following, leads to non-trivial temporal patterns of the aftershock occurrence.

The hypothesis of a constant blind time allows one to achieve an analytical evaluation of cmeas [12].
Indeed, the blind time ∆t also represents the minimum temporal distance between two subsequent
earthquakes reported in a catalog and this leads to a maximum detectable rate ρmax ' 1/∆t. As a
consequence, since the “true” aftershock rate is a decreasing function of the time t after the mainshock
occurrence (Equation (6)), the measured ρ(t, mM, mth) corresponds to the “true” aftershock rate only
if ρ(t, mM, mth) < ρmax, a condition which is always fulfilled at large times. Conversely, at small
times, when the “true” aftershock rate is larger than ρmax, the measured ρ exhibits a constant
behavior ρ(t, mM, mth) ' ρmax. Accordingly, the cmeas-value can be identified as the time such as
ρ(cmeas, mM, mth) = ρmax, and assuming α ' b Equation (7) gives

ρ(cmeas, mM, mth) =
K0eb(mM−mth)

(cmeas + c)p = ρmax, (17)

giving cmeas = c + (K0/ρmax)
1/p exp (b/p)(mM −mth), which for c� cmeas coincides with Equation (8):

C0 = ∆m =

(
K0

ρmax

)1/p
, (18)

and d = b/p.
The ETASI1 model can be implemented numerically via a two step process. At the first

step, standard ETAS catalogs are simulated and, at the second step, all events that occurred at a
temporal distance smaller than ∆t after a larger event are removed from the catalog. de Arcangelis
et al. [31] implemented different values of K0 and analyzed the ETASI1 catalog by the same BP
declustering procedure applied to the instrumental catalog. As in Figure 6, the aftershock daily rate
ρ(t, mM, mth) for the ETASI1 catalog has been evaluated for different mainshock magnitudes mM,
different thresholds mth and different K0 values. This study has shown that the cmeas-value follows
Equation (8) with d = b/p as illustrated in Figure 7b where ρ(t, mM, mth) is plotted as a function of
t/τ with τ = 10d(mM−mth) and d = b/p. Data for different mM and mth and the same K0 collapse onto
the same master curve F(t/τ), as for the instrumental catalog (Figure 7a). Concerning the value of
C0, de Arcangelis et al. [31] observed that the larger the value of K0 implemented in ETAS simulations
the larger was the value of C0 fitted from the decay of ρ(t, mM, mth). Results plotted in the inset of
Figure 7b show that −∆m = log10 C0, becomes more positive for increasing K0 confirming the strong
correlation between C0 and K0. In particular, we observe that the dependence of C0 on K0 is consistent
with Equation (18) only for small values of K0. Deviations from Equation (18) can be attributed to the
cascading process implemented in the ETAS model. Indeed, aftershocks of higher order generation are
also followed by a blind time which eventually hides aftershocks of previous generations. This causes
a larger total blind time compared to the situation when higher order generation aftershocks are not
considered, as in Equation (18).
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The comparison between the data collapse observed for the ETASI1 catalog (Figure 7b) with the
one observed for the instrumental Southern California catalog (Figure 7a) suggests that the larger
value cmeas inside Region 1 must be attributed to a larger productivity (larger K0) of that region. This is
in agreement with the behavior of ρ (Figure 6) for times t > cmeas when the “true” OU decay ρ ∼ K/tp

is expected. Indeed, it is evident that, when t > cmeas, ρ in Region 1 is systematically larger than in
Region 2.

We further observe that the scaling function F(x) presents clear deviations from the OU prediction
F(x) ∝ (x + 1)−p in the intermediate temporal regime. We attribute these deviations to the cascading
process which can produce a more gradual decrease of the aftershock number from the initial plateau
compared to the situation when higher order generation aftershocks are not taken into account [12].
A better fit for F(x) in numerical and instrumental catalogs is provided by F(x) = A log (1 + Bx−p)

obtained by Lippiello et al. [46] under a dynamical scaling assumption [38,45,47–51].

5.1. ETASI2

A more refined expression for µ(t) within the ETASI model (Equation (16)) is proposed in [31]
and corresponds to the so called ETASI2 model. The idea is that the 50% detection function follows
the same decay of the envelope function of a single earthquake and according to Equation (12) this
corresponds to the assumption that

µ(t) = max
i:ti<t

(mi − q log(t− ti)− δ0) , (19)

where the maximum is evaluated over all events with magnitude mi occurred at time ti < t. The model
is numerically implemented in [31] taking for the detection rate function Φ an error function as in
Equation (4) with σ→ 0. This corresponds to the two-step procedure illustrated in the previous section
with the removal from the original ETAS catalog of all events with magnitude m and occurrence time t
such that m < µ(t). A finite value of σ is considered in [52].

In de Arcangelis et al. [31], the coefficient q in Equation (19) is taken as a model parameter and its
value has been tuned in order to achieve the best agreement between the organization of aftershocks
in ETASI2 and instrumental catalogs. This study showed that the ETASI2 model provides a more
accurate description of aftershock occurrence, with respect to the ETASI1 model, and in particular it
better captures the correlation between subsequent magnitudes observed in instrumental catalogs.
In particular the agreement between instrumental and ETASI2 catalogs is obtained by setting a K0

value, in the ETASI2 simulations, significantly larger inside Region 1 of Southern California (Figure 1)
than Region 2. As a consequence, de Arcangelis et al. [31] proposed that the value of K0 which provides
the best overlap between ETASI2 and instrumental catalogs can be interpreted as the best estimate for
the true productivity coefficient K0 in each region.

5.2. Dynamical Scaling ETAS Model

A model alternative to the ETASI has been proposed on the basis of a dynamical scaling
relation between time and energy [19,36,38,46,47]. Within this hypothesis, different from the general
assumption of the ETAS model [3,53,54], time and magnitude are not independent quantities but the
magnitude difference fixes a characteristic time scale for aftershock rate relaxation. Deviations from
the GR law are a natural consequence of this assumption with a completeness magnitude depending
on time in agreement with what is observed in experimental data (Equation (2)). The study of the
maximum likelihood [51] has shown that this method provides a more accurate description of the
aftershock rate decay than the ETAS model.

6. Automatic Procedures for Short-Term Aftershock Forecasting

In this section, we present two methods which have been developed in order to provide real-time
aftershock forecasting: The Omi method [7,9,10] and the Lippiello method [16,17]. The idea of
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both methods is to extrapolate the parameters of the OU law, or more generally of the ETAS
model, by means of an automatic procedure which uses the information available up to a time
T2 after the mainshock. The ETASI model, presented in the previous section, is not suitable for this
purpose because it is not possible to apply a maximum likelihood estimation procedure to invert
parameters. For the likelihood evaluation, indeed, one should have access to “obscured” events,
an information by definition unavailable. In this section, we review the retrospective tests performed
with the Omi and the Lippiello methods. Both tests consider the forecasting according to the OU
law (Equation (6)) implementing the parameters K and c estimated for each individual mainshock
sequences, according to the information available in real time. This forecasting is compared to a generic
model where the parameters K and c are taken as average values over many sequences. The results
show that the novel methods outperform the generic model.

6.1. The Omi Method

The Omi method, briefly illustrated in Section 2, has been implemented in a real-time system
for automatic aftershock forecasting in Japan. A systematic test of the efficiency of the Omi method,
using real-time seismic data, was performed by Omi et al. [10] on aftershock sequences of seven inland
mainshocks with magnitudes m ≥ 7 that occurred after the establishment of the Hi-net observation
system. The Omi method is based on the evaluation of the parameters K, p, c in Equation (6) using
the information from an incomplete dataset, including only the recorded aftershocks. More precisely,
Omi et al. [10] considered data in the learning period from two instrumental catalogs: the Hi-net and
JMA catalogs. The results of this method are compared to a standard forecasting approach which uses
fixed parameter values (the generic model) determined based on many aftershock sequences in Japan.
The forecast from the generic model depends only on the main shock magnitude. The performance
is compared by means of the log-likelihood ratio score, which is referred to as information gain I.
The standard error SI of the information gain is also numerically evaluated and, under a Gaussian
approximation, one forecast performs better than the other one, with a probability larger than the 95%,
if I > 1.64SI . More precisely, Omi et al. [10] considered four learning periods corresponding to the
first 3, 6, 12, and 24 h periods of aftershock data to prepare forecasts for the following 3, 6, 12, and 24 h
testing periods, respectively. The results of the test, for the seven Japan aftershock sequences, are
visually represented in Figure 9 that shows the information gain per aftershock, considering separately
data from the Hi-net and JMA catalog, against the generic aftershock model. The error bars correspond
to 1.64SI and, therefore, if their lower bound is greater than zero, the Omi model performs better
than the generic model. Omi et al. [10] separately considered two target magnitudes, the smallest
one Mt = Mc (Figure 9a) and Mt = 3.95 (Figure 9b). Results show that, for the entire forecast period
of 3–48 h, both the Hi-net and JMA forecasts significantly outperform the generic model and that
the same result is valid in all individual forecast periods for the case of the lowest target magnitude
Mt = Mc. Conversely, for Mt = 3.95, because of the small number of m > Mt aftershocks, the scores
tend to have large error bars and, even if the Omi method generally outperforms the generic model,
this is not statistically significant for most cases (Figure 9b).

Another interesting item in Figure 9 is the comparison of the performance of the Omi method
implementing the JMA catalog against the one implementing the Hi-net automatic catalogs. In general,
the results show that the JMA forecast significantly outperforms the Hi-net forecast in the case of
the small target magnitude Mt = Mc, probably because of the better accuracy of the JMA catalog.
On the other hand, the two performances are comparable for Mt = 3.95 indicating that, even if the
automatic Hi-net catalog is less accurate than the JMA catalog, it provides reasonable results for target
magnitudes Mt ≥ 3.95. This is an important result since it is the only catalog available in real time.
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(a)

(b)

Figure 9. Information gain per aftershock of the forecasts based on the Hi-net and JMA catalogs,
respectively, relative to the generic model for the cases with: (a) Mt = Mc; and (b) Mt = 3.95. If the
lower bound of the error bar is greater than 0, the forecast is significantly better than the generic model
with a probability larger than the 95%. From Omi et al. [10].

6.2. The Lippiello Method

Lippiello et al. [16] proposed a method based on the results presented in Section 4, which show
that the instrumental envelope µe(t) can be reproduced by the theoretical envelope µth(t) given in
Equation (15). In particular, µth(t) can be tuned to recover Equation (13) with the same parameters
φ and ∆µ of the instrumental µe(t). The central observation is that the value of the coefficients φ

and ∆µ which describe the logarithmic decay of µth(t) (Equation (13)) depend on the parameters
K and c of the OU law (Equation (6)), implemented in the numerical simulation. This idea has
been applied in a procedure which associates the best-fitting parameters (φ, ∆µ) in Equation (13),
obtained from the experimental signal, to the pair (K, c) used in numerical simulations of the OU law.
The procedure is schematically illustrated in Figure 10. Firstly one evaluates the value of τ which is
the best approximation for µe(t) in Equation (14) during the first 60 s. Fixing p = 1.1, the estimated
value of τ is used to generate many numerical signals µth(t) for different choices of K and c according
to Equation (15). Then, one compares, in the learning period t− t0 ∈ [T1, T2], the average value of the
numerical signal µth(t) with the experimental one µe(t). The slope φ of µth(t) depends fundamentally
on the c-value, whereas K controls its vertical shift ∆µ. As a consequence, after choosing a given
K-value, one varies the c-value until the slopes of µth(t) become similar to the experimental µe(t)
(Figure 10a). The c-value producing this effect is then defined as c and one generates different numerical
catalogs with c = c and different values of K (Figure 10b). The value of K minimizing the difference
between µe(t) and µth(t) in the interval [T1, T2] is defined as K. The pair of values (K, c) is considered
the best representation of experimental data and is used to forecast aftershock occurrence at times
t− t0 > T2, according to Equation (6).
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Figure 10. (Left) Black dotted-lines represent the envelope function µe(t) of the Lixouri earthquake in
Greece recorded at the station LKD2 located at 70 km from the mainshock epicenter. Colored dot-dashed
lines are used for µth(t) with τ = 11 s, K = 1.15 and different values of c ranging in the interval
[0.01, 4.5] days. Black circles represent the logarithmic fit (Equation (15)) in the interval [10, 160] min of
the experimental envelope function, whereas continuous lines are used for the best fit of the numerical
µth(t), with c increasing from 0.01 to 4.5 days from top to bottom. (Right) The same as in the left panel
but plotting numerical data µth(t) with τ = 11 s, c = 1.15 days and different values of K ∈ [0.75, 2.95].
Continuous lines are the the logarithmic fits of numerical data, in [10, 160] min, with K increasing from
bottom to top. From Reference [16].

Test of the Procedure

To test their method, Lippiello et al. [16] considered as target aftershocks all the events producing
in the envelope function µe(t) a peak with amplitude larger than µ0 = µM − 3 and define as N3(t) their
cumulative number in the temporal interval [T2, t− t0], after the mainshock. Similarly, the number
N2(t) is the cumulative number of events producing peaks larger than µ0 = µM − 2.

The quantity N2(t) and N3(t) are plotted in Figure 11 for three mainshocks from three different
geographic regions, for times t > 160 min. Lippiello et al. [16] compared the instrumental number
of N3(t) and N2(t) with those expected according to the OU law (Equation (6)) after implementing
the best values of K and c (K and c) obtained according to the Lippiello procedure. More precisely,
Lippiello et al. [16] considered a learning period [T1, T2] min with T1 = 10 min and different values of
T2. They found that for values of T2 & 160 min the estimate of K and c became quite stable. Therefore
they consider T2 = 160 min and found that at all times t > T2 the Lippiello method predicts with
reasonable accuracy the number of occurred aftershocks. Differences between predicted and observed
aftershock number are typically smaller than 20% and always within the error bars. For comparison,
in the same Figure 11, Lippiello et al. [16] also plotted the expected number N3(t) and N2(t) according
to a generic model which implements in the OU law Equation (7) the value of K0, c and α obtained
as average over all sequences with mM > 5, recorded in Southern California [55]. We observe that
the number of the predicted strong aftershocks according to this generic model is much smaller
(approximately ten times) than the observed one. We wish to stress that the estimate of K and c,
for each specific sequence, on the basis of the earthquakes recorded in the official catalogs up to
the time T2 leads to unreliable results. As an example, in the case of the Lixouri earthquake only
three earthquakes are reported in the Greek catalog in the first thirty minutes after the mainshock.
The situation is a little better after the L’Aquila and Hector mine earthquake when 20 events are
reported in regional catalogs in the first thirty minutes. These numbers are too small to produce a
reasonable estimate of K and c, which, in all cases, would be very biased because of the incompleteness
of datasets as confirmed by the absence of earthquakes with magnitude smaller than m = 3, in official
catalogs in the first thirty minutes.
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Summarizing, results of Figure 11 clearly show that the Lippiello method performs much better
than the generic model providing a reasonable aftershock forecasting. Very recently, Lippiello et al. [17]
proposed a more efficient procedure, still based on the agreement between µth(t) and µe(t), which
produces even more accurate STA forecasting.
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Figure 11. The quantities N3(t) (top) and N2(t) (bottom) are plotted for t − t0 > T2 = 160 min as
green circles for the three main-aftershock sequences of Figure 1: the 26 January 2014 m = 6.1 Lixouri
earthquake (left), the 16 October 1999 m = 7.1 Hector Mine earthquake (middle) and the 6 April 2009
m = 5.9 L’Aquila earthquake (right). Red squares are the expected values according to Equation (6)
using the average values obtained in Reference [55]. The orange curves are the expected values using
in Equation (6) the best parameters K and c inverted from the experimental fit of τ, φ and ∆µ. The error
bars in each plot incorporate both the uncertainty in the estimate of (∆µ, φ) and fluctuations in the
aftershock number for given values of K and c. From Reference [16].

6.3. Comparison between the Omi and the Lippiello Methods

The Omi method needs as an earlier stage an automatic routine for real-time automatic detection.
The only assumption is that the GR law holds up to the lower considered magnitude mc, that is a
widely accepted idea within the seismological community. Conversely, the key assumption of the
Lippiello method is that the theoretical envelope (Equation (15)) reproduces the instrumental one
µe(t). This hypothesis is less consolidated but allows one to evaluate seismic hazard directly from the
envelope function µe(t) without any information on occurrence times, magnitude and locations of
earthquakes producing the observed signal. Overcoming all problems related to event identification
and location, the Lippiello method presents some advantages:

(i) It is faster. Indeed, aftershock localization is a non-trivial routine involving the elaboration of at
least the seismic signal from three different seismic stations.

(ii) It works when only few events are identified by the automatic detection routine whereas the Omi
et al method needs that at least ∼30 aftershocks must be identified [15].

(iii) It provides the in-situ occurrence probability by simply installing a seismic station in the site of
interest. This could be particularly useful in areas with a very low dense seismic network and
where automatic detection routines are not efficient.

(iv) It provides directly in output the probability of peaks of the local ground velocity and therefore
it overcomes the large amount of uncertainty [56], which is present in the attenuation relations
necessary to convert aftershock occurrence probability to the local ground motion intensity.

Summarizing, the two methods appear as two complementary approaches to the same problem
and can be simultaneously adopted.
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We finally remark that in the OMI method the spatial dependence of the aftershock occurrence
probability can be easily included by multiplying the OU law (Equation (6)) for a decreasing function
of the distance from the mainshock epicenter. However, the parameters controlling this decay are very
difficult to be inverted from the on-going specific sequence and average quantities must be considered.
On the other hand, in the Lippiello method the spatially dependence is, at least in part, implicitly
considered. Indeed, the method does not give in output the probability to have a given magnitude
aftershock but the occurrence probability of events which produce peaks in the envelope µe(t), in the
position where the station is located, larger than a reference value µ0. This probability, therefore, clearly
depends on the distance of the station from the mainshock epicenter.

7. Conclusions

In this review article, we show that, in the first part of aftershock sequence, incompleteness
is an intrinsic property of seismic data. Indeed, the overlap of seismic signals makes the envelope
function always greater than µmin(t). This lower threshold µmin(t) can be related to the minimum
aftershock magnitude mmin(t) identifiable at time t since the main shock and indicates that it is feasible
to obtain more accurate catalogs but it is impossible to reach completeness levels below mmin(t).
This result also provides an explanation for the dependence of mc(t) on the time elapsed from the main
shock occurrence. We illustrate how the incompleteness affects the estimate of the parameters of STA
forecasting models and we present some models which take it explicitly into account. In particular, we
present an interpretation of the mechanisms responsible for the existence of µmin(t) in terms of the
overlap of coda-waves generated by each individual aftershock: The combination of the decay of the
aftershock rate (OU law) with the power law relaxation of coda waves produces an envelope function
µe(t), which, on average, depends logarithmically on the time since the main shock. We illustrate the
bias induced in the estimate of model parameters because of the incompleteness of the instrumental
catalog. A deeper investigation is necessary to establish a quantitative relationship between the
expected error in the estimate of model parameters and the degree of incompleteness of the catalog.

We also show that the parameters of the logarithmic dependence of µe(t) appear strictly related
to the parameters of the OU. We then describe a procedure based on this observation and developed
in [16] to extract the OU law parameters from a fitting procedure applied to the experimental µe(t).
This approach overcomes all problems related to event identification and location since seismic hazard
is evaluated directly from the envelope function µe(t) without any information on occurrence times,
magnitudes and locations of earthquakes producing the observed signal.

We also illustrate the Omi method [7,9,10,15] proposed to overcome the problems of STA
forecasting caused by the incompleteness of instrumental data. We show that the method, based on
the detection rate function, provides reliable aftershock forecasting on the basis of incomplete
instrumental catalogs.

Summarizing, we review very recent proposals to develop real-time systems for automatic
aftershock forecasting. The above procedures have been up to now tested retrospectively but appear
already suitable to be implemented in prospective tests. These methods apply the OU law or the
ETAS model without taking into account the spatial variability of seismicity. Future developments
should correspond to space-time models providing a space dependent forecasting, particularly useful
in aftershock sequences with a complex spatial distribution.
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