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Abstract: Interpreting paleoenvironmental conditions by means of n-alkane biomarker analyses is
challenging because results depend on different influencing factors. Thus, regional calibration of
n-alkane patterns is needed because of different plant chemo-taxonomic behavior. We investigated
for the first-time leaf wax-derived n-alkane biomarkers from modern plants, litter, top soils, and
two recently discovered loess-paleosol sequences (LPSs) in Armenia (Lesser Caucasus). Our results
on modern samples show a promising discrimination power based on n-alkane chain length
nC33 (probably nC31)) for grasses and herbs versus nC29 for deciduous trees, despite the large
interplant variability within vegetation groups. In contrast with other Loess records in Europe, where
Late Pleistocene environments are ranging from tundra-like (glacial) to deciduous forest habitats
(interglacial), our results from two Armenian LPSs suggest a transition from humid-steppe biome or
forest-steppe vegetation dominating during interglacial periods, to semi-desert shrubs species more
adapted to the enhanced aridity during glacial periods.
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1. Introduction

Armenia has already reported evidence of climate change over the past years. Future climate
projections predict that, because of global warming, the average temperature will further rise by
2–3 ◦C and rainfall will decrease by 10–15% within the next 50–100 years [1]. This continuous climatic
aridification is likely to cause shifts in ecosystems affecting particularly species, which are least
tolerant to drought [2] and cause significant negative impacts on agriculture and water resources. To
improve our understanding of this critical environmental situation, and to predict the consequences
of future climate change, it seems important to intensify investigations on paleoclimate changes and
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its paleoenvironmental consequences. During the Quaternary, a series of glacial–interglacial cycles
occurred in the Lesser Caucasus region and have played an important role in determining ecosystems
and biodiversity of Armenia. However, such climate changes and related environmental impacts
have been rarely studied in detail so far. Previous studies on continental deposits often refer to long
past Quaternary periods, such as the studies conducted on Quaternary paleo-lake sediments situated
near the town of Shamb in southern Armenia [3–5], or to very recent periods (e.g., Leroy et al. [6]).
Recently, continuous loess-paleosol sequences (LPSs) were discovered in northeastern Armenia, they
are assumed to reflect at least the last three glacial–interglacial cycles [7]. This promising terrestrial
archive offers an excellent opportunity to study past Quaternary climate fluctuations and its effects on
paleoenvironmental conditions. Wolf et al. [7] have published first stratigraphic results on northeastern
Armenian loess sections. In a next step, we aim to use suitable proxy information in order to gather a
more detailed paleoenvironmental characterization of these LPSs.

Over the last decades, different proxy-data have been used for obtaining paleoclimatic and
paleoenvironmental information from LPSs (e.g., high-resolution grain size data, different weathering
indices, or results of organic carbon analyses) [8–11]. However, only very few proxy-data are unaffected
by dust accumulation rates that can strongly complicate interpretations [12,13]. Information that
can be interpreted largely independent from accumulation rates results from the analysis of leaf
wax-derived lipid biomarkers [14–17]. Wax lipids are inherent to all leaves of higher land vegetation
and serve as the plant’s first barrier from atmospheric interaction, inhibiting the loss of water via
evapotranspiration [18–20], and providing ultraviolet light protection to leaf tissue [21]. Among
wax lipids, n-alkanes became very popular leaf-derived biomarkers because of their relatively high
persistence against degradation (insolubility in water and chemical inertness) and their potential to
serve as molecular proxies for paleovegetation and paleoclimate reconstruction [22,23]. Extensive
research has been devoted to identifying, quantifying, and interpreting leaf wax n-alkanes in modern
plants, often with the goal of using them for chemotaxonomic fingerprinting. It has been suggested
that specific vegetation types produce distinct n-alkane patterns. Hence, n-alkanes have the potential
to indicate vegetation changes, predominantly in terms of differentiating between relative proportions
of grasses versus trees (e.g., [24–26]). Regarding n-alkane patterns, the homologs C27 and C29 were
identified to generally predominate in leaves of tree and shrub vegetation, whereas the homologs C31

and C33 were identified to generally predominate in grasses and herbs [17,25,27]. However, a recent
study by Bush and McInerney [28], that aimed at testing n-alkane patterns in modern plants from
all over the world, showed no discrimination power for vegetation reconstruction at a global scale.
Therefore, for robustly applying n-alkane distributions as paleoenvironmental biomarkers, regional
calibration studies based on a survey of n-alkane patterns in modern plants and top soils are required.

In this study, we focused on the analysis of n-alkane patterns of the drought-adapted vegetation
of Armenia (Lesser Caucasus), where lipid patterns neither of recent vegetation samples nor of
paleo-vegetation have been described so far. We aimed at testing whether n-alkane abundances and
chain length distributions are suitable to discriminate between different modern vegetation types and
if respective n-alkane patterns are likewise transferred to the top soils below.

Moreover, we evaluate the potential of n-alkane biomarkers to reconstruct paleo-vegetation and
paleoenvironmental conditions based on n-alkane patterns in LPSs of northeastern Armenia.

2. Materials and Methods

2.1. Geographical Settings and Sampling

Armenia is a landlocked country located in the southern Caucasus region. About 77% of its area
is between 1000 and 2500 m above sea level (a.s.l.) with an average altitude of 1830 m [29]. Its climate
ranges from dry sub-tropical to cold alpine. The average annual temperature (1960–2015) is 7.6 ◦C,
varying from −8 ◦C in the high mountains to 14 ◦C in low valleys. Armenia receives about 524 mm of
precipitation per year (1960–2015). More than 40% of rainfall is concentrated in between April and
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June, while the second half of the summer is dry. Low-land areas have mean annual precipitation
(MPA) of between 200 and 250 mm, and higher altitudes receive precipitation of between 800 and 1000
mm [2]. Mountain steppes represent the dominant ecosystem of Armenia and occur throughout the
country at altitudes between 1200 and 2000 m (sometimes as high as 2500 m). In comparison with
other countries of the Lesser Caucasus region, Armenia has fewer forests. Less than 10% of its territory
is covered by forests, mostly concentrated in the North-East (62%) and in the South [30], while only 2%
corresponds to the central area and the Lake Sevan Basin [2]. Armenian forests are predominantly
broadleaved (98.6%), dominated by oak, beech, and hornbeam trees. Dry scrub forests are to be found
at altitudes of between 900 and 1000 m in northern parts of the country but occur at much higher
altitudes in the southern parts (1800–2000 m). These forests harbor around 80 species of xeric trees and
shrubs, all of which are drought tolerant and light-loving [31,32].

The studied loess-paleosol sequences (LPSs) are situated in the northeastern part of Armenia, at
the northern flanks of the Lesser Caucasus. All sections are located close to the town of Sevkar north of
Ijevan the capital of Tavush province (41◦ N, 45◦10′ E; see Figure 1) at an altitude of between 680 and
960 m a. s. l. These loess deposits form elongated ridges up to 14 m thick, 150 m wide, and 1–2 km
long [7].
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Figure 1. Overview of the study area. The red rectangle marks the loess area near Ijevan, Tavush
province NE-Armenia.

The present climate of the loess area is characterized by annual precipitation of between 450 and
550 mm, and a mean annual temperature of about 11 ◦C. Nowadays, the area is intensively used for
agriculture. However, the potential natural vegetation according to recent climate points to forest
associations (mesophytic deciduous broad-leaved and mixed coniferous-broadleaved forests) [33].
Accordingly, mesophilic and diversely mixed forests set in as soon as the relief becomes too steep for
agricultural activity. A few kilometers to the north, the flanks of the Lesser Caucasus change over
into the Transcaucasian depression, a lowland basin that is drained by the Kura River. This transition
is related to a natural vegetation change leading over to steppic and dwarf semi-shrub desert plant
communities [33]. A spatial shift of this vegetation line, especially during moister or dryer climatic
conditions of the late Quaternary period should be considered.
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In order to identify late Quaternary vegetation changes in our study area, we investigated two
LPSs based on the analysis of leaf-wax derived n-alkane patterns. For getting a key to interpret these
n-alkane patterns, we established a modern reference data set of n-alkane patterns. Therefore, we
collected 40 samples of fresh plant material as well as six litter samples and six topsoil samples (0–5 cm).
Top soils were collected as mixed samples from below the dominant vegetation (2 in grasslands and 4
in sites with deciduous trees/ shrubs). Most sampling sites were situated nearby the studied LPSs in
northeastern Armenia, and in the region of Maghavuz in the Republic of Artsakh (Nagorno-Karabakh)
where new loess sections were recently discovered. Our approach was to sample plants that are very
widespread nowadays, with the assumption that they may have been widespread during similar
climate phases in the past as well. As coniferous trees are well known to produce very low n-alkane
concentrations, which do not contribute significantly to paleo-records [28,34,35], we refrained from
sampling and further considering coniferous trees in our approach. For the studies on the LPSs, two
loess sections with a thickness of 28 m (Border line (BL) section) and 21 m (Achajur (AJ) section) were
selected to carry out n-alkane analysis (Figure 2). In total, we took 120 samples from the first section
(BL) to include all relevant layers and soil horizons that represent at least three glacial–interglacial
cycles [7]. Moreover, we took 40 samples from the well-differentiated upper part of the second profile
(AJ) that particularly reflects the last glacial period.
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2.2. Stratigraphic Patterns of the Loess-Paleosol Sequences

A detailed description of the BL section is already published in [7]. To introduce the new Achajur
(AJ) section, a brief description of the stratigraphic succession is given below. The stratigraphic order
of the sedimentation units and the pedo-complexes in the two profile sections were quite similar. They
were subdivided into different sequences, which could incorporate loess material, loess-derived soils,
soil complexes, colluvial layers, and tephra. From the bottom to the top we differentiated:

• Sequence 5 (17.7–28.5 m in BL profile)

Sequence 5 starts with a thick succession (about 10 m) of strongly weathered dark-brown loams.
The occurrence of strong enrichment of secondary carbonate indicates in situ soil formation in the
depth of 23.5–26.7 m and 19.8–21.2 m. Each soil is linked to clay contents between 40% and 60%
and strong reddish-dark brown to blackish-brown colors. The top of the sequence (until 17.7 m) is
characterized by the formation of a blackish soil with high clay contents (>50%), high organic carbon
contents (~0.8%), and intense illuviations into drying cracks or root channels.
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• Sequence 4 (16–17.7 m in BL profile)

Sequence 4 shows neither strong weathering nor intense loess accumulation. Instead, alternating
phases of sediment redistribution and subsequent soil formation occurred, leading to blackish horizons
rich in organic carbon (pedocomplex (P-3), after Wolf et al. [7]. In the AJ profile, a definite allocation of
Sequence 4 seems too uncertain at the moment.

• Sequence 3 (11.5–16 m in BL profile; 14.7–20 m in AJ profile)

Sequence 3 represents a succession of loess deposits for both profiles, ending up with the formation
of another pedocomplex (P-2). Below the P-2 pedocomplex, another weakly developed brownish soil
is interposed between the loess layers in both sections. The pedocomplex (P-2) extends from 11.8 to
14.2 m in the BL section and from 15.2 to 18.5 m in the AJ section. The lower part of P-2 starts with a
strong blackish-brown soil and pedogenic carbonate enrichment that is more intensely developed in
the BL profile. In the upper part of P-2, the BL profile shows a black soil with low clay contents but the
highest content of organic carbon in the whole sequence. In contrast, the soil in the upper P-2 in the AJ
profile is characterized by strongly weathered reddish-brown material; however, the contribution of
slope processes is indicated by numerous clasts and rock fragments. Sequence 3 ends up with a greyish
colluvial layer including dark relocated soil material (clay pebbles) that covers the pedocomplex P-2.

• Sequence 2 (5.3–11.5 m in BL profile; 6–14.7 m in AJ profile)

Sequence 2 is characterized by the deposition of thick layers of loess material with low clay
contents and bright colors pointing to just limited weathering processes. A pale blueish tephra layer
(9.7–10.1 m in BL profile; 12.5–12.9 m in AJ profile) interrupts these loess layers. While in the BL profile
the tephra is covered by homogeneous ochre-colored primary loess, the AJ profile clearly points to syn-
or post-sedimentary relocation processes that are evidenced by small rock fragments and numerous
thin layers of reworked tephra material. In the upper part of sequence 2, a pedocomplex P-1 (Sevkar
soil complex) has been formed during marine isotope stage (MIS) 5 as indicated by first OSL-dating [7].
P-1 extends from 5.3 to 7.9 m in BL profile and 6.2 to 9.5 m in AJ profile. It consists of a succession of
three palaeosoils and shows a transition from brown clayey soils in the lower part to more blackish
and crumby soils in the upper part, which seems quite comparable with the pedocomplex P-2 in the
BL profile.

• Sequence 1 (0–5.3 m in BL profile; 0–6m in AJ profile)

Sequence 1 is characterized by a succession of loess deposits with interposed palaeosoils and has
been formed during the last glacial (MIS 4 to MIS 2). This sequence shows a very different appearance
in both profiles. In general, the loess material seems to be more weathered comparing to the layers
below. But in the BL profile, this sequence is divided by two relatively strongly weathered brown
soils, while the AJ profile is characterized by up to five weakly-developed and less-intense colored
palaeosoils. So far, and without the support by micromorphological analyses, we are not able to
identify these soils without a doubt. But it is already evident that, in contrast to the BL profile that
experienced most probably two pronounced stability periods during the last glacial, the AJ profile
was characterized by stronger sedimentation and relocation dynamics and influenced by less stable
conditions. At the top of the sequence, a Holocene soil (P-0) has been developed (0.5–1.5 m in BL
profile and 1.3–1.9 m in AJ profile) that is covered by Holocene colluvial deposits in both sections.

2.3. Leaf Wax Analyses and Calculation of n-Alkane Indices

Leaf wax analyses were carried out in the laboratories of the Soil-Biogeochemistry Group of
the Martin Luther University in Halle-Wittenberg. Total lipids from modern plants, top soils, and
loess sections were extracted with organic solvents DCM:MeOH (9:1), using Soxhlet apparatuses for
24 h. After concentration by rotary evaporation, each total lipid extract was passed over a pipette
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column filled with aminopropyl silica gel. The aliphatic fraction, containing the n-alkanes, was eluted
with 3 mL n-hexane, whereas the polar fraction (e.g., alcohols) and the acid fraction were obtained
by DCM:MeOH (1:1) and 5% acid in diethyl ether, respectively. Quantification of the n-alkanes was
performed on a gas chromatograph coupled to a flame ionization detector (GC-FID). External standards
(nC8–nC40) were run with each sequence for identification and quantification.

Total n-alkane concentration (TAC) in plant and soil samples was calculated as the sum of
individual n-alkane concentrations from nC25 to nC35 (odd as well as even ones) and was given in µg/g
dry weight (dw).

Odd-over-even predominance (OEP) was used as a proxy for degradation and was determined
after Hoefs et al. [36]. Low values (<5) indicated an enhanced state of degradation [8,16].

OEP =
nC27 + nC29 + nC31 + nC33
nC26 + nC28 + nC30 + nC32

(1)

The average chain length (ACL) of n-alkanes, which is the weighted average of the different
carbon chain lengths, was calculated by modifying the equation of Poynter et al. [37].

ACL =
27∗nC27 + 29∗nC29 + 31∗nC31 + 33∗nC33

nC27 + nC29 + nC31 + nC33
(2)

The normalized n-alkane ratios are:

(nC31+nC33)/(nC27+nC29+nC31+nC33) and nC33/ (nC29+nC33)

3. Results and Discussion

3.1. Total n-Alkane Concentrations (TAC), Indices (OEP, ACL), and Patterns of Modern Plants

The investigated samples showed total n-alkane concentrations between 29 and 2655 µg/g plant
dry weight (dw) (Figure 3a). These values were in the lower to middle range of the interval that
has been reported for n-alkane concentrations of herbaceous and woody plant species worldwide
(0.4–7115 µg/g dw [27,28,34,38–40]). Grasses and herbs produced slightly higher amounts of n-alkanes
with a mean value of 666 µg/g dw compared to deciduous trees and shrubs, with a mean TAC value of
491 µg/g dw (see Supplementary Materials). For deciduous trees, the highest n-alkane concentration
was produced by Hawthorn trees (Crataegus spp.; 2655 µg/g dw) followed by oak trees (Quercus spp.;
1359 µg/g dw) and beech trees (Fagus spp.; 651 µg/g dw). The latter two species were the most common
ones in Armenian forest communities. The long-chain n-alkanes of all investigated modern plant
samples revealed a strong odd-over-even predominance (OEP). This is typical for epicuticular leaf
waxes of terrestrial higher plants [22]. For deciduous trees and shrubs, about 50% of the samples
showed an OEP ranging from 11 to 20, with a minimum value of 8 and a maximum of 30. Grasses
and herbs showed quite similar middle values ranging between 9 and 17, with a minimum of 8
and a maximum of 38 (Figure 3b). The OEP is generally considered as a proxy for the preservation
status of the leaf-wax derived n-alkanes [41–44], with high values being characteristic of not- or just
little-degraded n-alkanes [34,45]. Thus, OEP values from Armenian plant samples were typical for fresh
plant material. The average chain lengths (ACL) of the n-alkanes indicated a little difference between
the two vegetation groups: Grasses and herbs yielded a slightly higher median value compared to
trees and shrubs (Figure 3c). Moreover, nC29 and nC31 tended to be the most abundant n-alkanes in all
investigated plant samples (Figure 4a). Our results showed that grasses and herbs generated an equal
predominance of both nC29 and nC31. However, deciduous trees produced a slightly higher proportion
of nC29. In contrast, nC33 did not represent a dominant pattern but, overall, was produced in higher
amounts by grasses and herbs. In different regions, a predominance of the chained homologs nC31 and
nC33 has been found to be related with herbaceous species [46,47], whereas a higher abundance of the
homologs nC27 and nC29 would be associated with deciduous trees and shrubs [46–48].
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Similar patterns are also reported by a recent study conducted in Eastern Georgia [49], a region that
is adjacent to our study area. However, such a clear chemotaxonomic character in n-alkanes production
was not detectable in Armenian modern plant samples. Indeed, likewise in Armenia differences
based on C33 vs. C29 appeared to be a promising tool for differentiating between grasses/ herbs and
deciduous trees/shrubs, but this relation is still not confirmed by each sample. This might point to
some interplant variability in n-alkane production within the same vegetation groups (Figure 3d).
Furthermore, we assume that interplant variability and environmental stress may be responsible for
the different n-alkane patterns between Armenia and Georgia. Nowadays, the climate in NE-Armenia
is relatively drier, which represents a stress factor to vegetation and may be expressed in deviating
n-alkane production. The same observation, albeit with less intensity, has been made in Georgia,
where some local hydroclimatic effects and changes in humidity and temperature altered the n-alkane
patterns of some plants [49]. Indeed, it has been repeatedly discussed in the literature [28,34,50,51] that
local environmental conditions and related physiological stress could influence the patterns of n-alkane
production between members of vegetation groups and within the same species, too. Leaf waxes are
the plant’s first barrier to the atmosphere. Thus, it is reasonable to hypothesize that their composition,
including n-alkanes, could be controlled to some degree by environmental adaptation [28,52]. Some
species exhibit a high degree of genetic controls over their n-alkane patterns, such as the almost
exclusive production of nC27 by Fagus sylvatica leaves [28,53–56], a pattern also confirmed by our
analyses to some extent (see Supplementary Materials). In contrast, leaf wax patterns of other plant
species may be strongly altered by local environmental parameters, for example temperature and
precipitation [37,38,42,56], radiation, nutrient and water availability, salinity, or pollution [52,57].

In a recent study, covering a large set of modern vegetation n-alkane data, Bush and McInerney [28]
highlighted that the discriminant power based on the chain lengths nC27 and nC29 vs. nC31 and
nC 33 is never better than 75% for any geographical position. For the temperate zone, which also
includes Armenia, they even showed that the discriminant power remains only correct for about 49%
of the studied woody angiosperm species [28]. Actually, the temperate zone is strongly divided into
smaller climate zones, with more variety in temperature and humidity over the year and stronger
seasonality changes depending on continentality and highland–lowland effects. In that way, plants
may record higher annual and/or monthly variability in produced n-alkane patterns, which possibly is
demonstrated by the large standard deviations of the n-alkanes from modern plant material in Armenia.
In view of this high variability within fresh plant material, the analysis of topsoil samples may have
the advantage of integrating over the whole ecosystem and implicitly considering such variability [27].

3.2. Total n-Alkane Concentrations (TAC), Indices (OEP, ACL), and Patterns of Litter and Topsoil Samples

The total n-alkane concentrations for litter and topsoil samples were 79% and 98% lower,
respectively, than those of fresh plant material (Figure 3a). OEP values declined notably from modern
vegetation to litter and top soils (Figure 3b), and the ACLs tended to shift towards shorter values
(Figure 3c). The considerable decrease in leaf wax n-alkane concentrations and OEP values in top
soils as compared to fresh plant material were to be expected and indicated effects of degradation
and microbial reworking of organic matter (OM) [8,27,58]. The n-alkane distribution of forest top soil
samples was quite similar compared to leave patterns of deciduous trees and shrubs with both nC29

and nC31 dominating the sites (Figure 4b). However, in grassland top soils, nC31 slightly increased and
predominated over the other n-alkanes (Figure 4b). In addition, nC33, which is indicative of grasses
and herbs as discussed above, tended to be higher in grassland top soils, too (Figure 4b). Thus, there is
a tendency to distinguish top soils of grasslands from top soils of deciduous forest sites by a slight
predominance of nC31 compared to nC29, higher amounts of nC33, and thus slightly higher ACLs
values in general (Figure 3c). Such an observation offers a promising base to distinguish between sites
that were dominated by grasses and herbs or trees and shrubs (Figure 3d, Figure 4). However, the
differences are not high, and this relation should be confirmed by enlarging the data set.
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3.3. Total n-Alkane Concentrations (TAC), Indices (OEP, ACL), and Patterns in Armenian
Loess-Paleosol Sequences

All samples from the LPSs BL and AJ were characterized by the dominance of long-chain n-alkanes
with an odd-over-even predominance (OEP), which indicated their leaf wax origin. Total alkane
concentrations in both LPSs were relatively low (Figures 5a and 6a) in comparison with other loess areas
in Europe, such as the central European loess region [59] and the Carpathian Basin [16,60], where TACs
generally exceed 4 µg/g. The reason might be either a lower input (production) or stronger degradation.

Figure 5. Section of BL profile with differentiation of sub-sequences and pedocomplexes [7]. Depth
profiles are sketched for (a) total n-alkane concentration (TACµg/g dw), (b) odd-over-even predominance
(OEP), (c) average chain length (ACL), (d) n-alkane ratios: nC33/(nC29 + nC33) and (nC31 + nC33)/(nC27
+ nC29 + nC31 + nC33), (e) Percentage of grass-derived n-alkane for central Europe and Caucasus
models. Sampling points with no available data are indicated with orange bars.
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Figure 6. Section of AJ profile with differentiation of sub-sequences and pedocomplexes [7]. Depth
profiles are sketched for (a) total n-alkane concentration (TACµg/g dw), (b) odd-over-even predominance
(OEP), (c) average chain length (ACL), (d) n-alkane ratios: nC33/(nC29 + nC33) and (nC31 + nC33)/(nC27
+ nC29 + nC31 + nC33), (e) percentage of grass-derived n-alkane for central Europe and Caucasus models.

The last glacial loess and the soil complex P-1 showed slightly higher n-alkane concentrations.
An increase in TAC values occurred with the changeover of soil properties within P-1, leading from a
brown soil, towards a black-brown soil, and finally to a pure black soil. This might point to a higher
bio-productivity or preservation under steppic conditions (Figures 5b and 6b). OEPs along the profiles
showed a varying degree of preservation, with lower values pointing to enhanced degradation in
some paleo-units. However, there was no general correlation between OEP and TAC. This could be
explained by TAC being controlled by both n-alkane production and degradation, whereas OEP is
primarily controlled by degradation only.

A clear synchronic fluctuation of the average chain length (ACL) and the n-alkane ratios
nC33/(nC29+nC33) and (nC31+nC33)/(nC27+nC29+nC31+nC33) took place along the studied profiles
(Figures 5d and 6d). High values that refer to the predominance of the homologs nC31 and nC33

were attributable to P-0, P-1, P-2, P-3, a strong blackish soil in the depth of 20 m (BL), and a strongly
weathered Kastanozem-like soil at the depth of 23 m (BL). In contrast, a lower ACL and decreased
n-alkane ratios pointed to the predominance of nC29, which can be mainly associated with glacial
periods (e.g., at the depth of 2–5 m, 8–11 m, and ~16 m).
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3.4. Paleoenvironmental Reconstruction

As a general tendency in the production of n-alkane patterns, the chain lengths nC31 and/or
nC33 are assumed to be predominantly produced by grasses and herbs, while nC27 and/or nC29 are
mainly formed by trees and shrubs. This is suggested by several studies that have been especially
undertaken in Central Europe [16,27,59]. Moreover, this discrimination is confirmed by modern
n-alkane data sets from eastern Georgia as well as promising observations in the study in hand. If
we now hypothesize that the pattern in Armenian LPSs follows the same rule, the changes in ACL
and the n-alkane ratios would suggest that grasses and herbs dominated the ecosystem during the
formation of the pedo-complexes (inter-glacial periods), whereas trees and shrubs mainly prevailed
during glacial periods (Figures 5 and 6). However, below pedocomplex P-1, concentrations, as well
as OEP values, were very low in certain paleo-units. Therefore, it must be considered that just weak
changes (e.g., by OM degradation) may result in big changes in the displayed curves.

Although n-alkanes are chemically quite inert, various degrading bacteria can utilize them
as carbon and energy sources. Thus, the detected signal is probably prone to degradation. Such
observations were also discussed by other studies, which highlighted considerable effects of the
ongoing degradation of OM in sediments and soils [8,16,17]. In order to prevent misinterpretations
and ensure a reliable reconstruction of paleo-vegetation, it seems crucial to minimize possible effects
that arise from degradation processes, which could lead to preferential losses of the most dominant
alkane homologs. To this objective, Zech et al. [12,16,61] described a correction procedure (“end
member model”) in more detail. Based on a modern n-alkane data set of plant, litter, and topsoil
samples from central and southeastern Europe, the model compares the normalized n-alkane ratio
(nC31+nC33) / (nC27+nC29+nC31+nC33) with the OEP to differentiate between vegetation groups and
integrate the degradation impact at the same time. In brief, “degradation lines” for n-alkanes derived
from grasslands and forests are calculated by plotting n-alkane ratios against OEP values. Fossil
sediments or soil samples formed under grasslands and deciduous forests should plot along the
degradation lines of samples from modern data. Furthermore, the contribution of grasses/herbs versus
deciduous trees/shrubs to the n-alkane signal can be estimated. The percentage of grass vegetation can
be calculated by the following formula:

% grass =
n− alkane ratio (sample) − equation (degradation line trees)

equation (degradation lines grass) − equation (degradation lines trees)
∗ 100 (3)

Grass percentages that exceed 100% illustrate the uncertainties and limitations of the end-member
modeling approach because percentages are just semi-quantitative estimations.

Bliedtner et al. [49] integrated n-alkane results of modern plant and topsoil samples collected
from eastern Georgia into the dataset of Central Europe [59] and recalculated the degradation lines.
They further suggest that these adjusted equations could be used to calculate the relative vegetation
contributions of grasses vs. deciduous trees in paleo-records from the southern Caucasus and
close regions.

After correction, the percentage of grass/herb-derived n-alkanes for both the central-European and
the adjusted Caucasus models were calculated. (Figures 5e and 6e). Even after correcting the results
by taking into consideration OM degradation effects, no major changes were found. Both models
showed that it is very likely that herbaceous species were not the predominant source producing
n-alkanes during the glacial/stadial periods and that deciduous trees and shrubs did not contribute
significantly to n-alkanes patterns extracted from paleosols. Such findings do not match with the
traditional paradigm of the treeless cold steppic environment during glacial conditions and developed
deciduous forests in interglacial periods.
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3.4.1. “Vegetation Source” versus Environmental Control of Detected n-Alkane Signals

In the same line with recent vegetation patterns, fossil n-alkane patterns may also have been
controlled by stressful local environmental conditions (e.g., aridity, temperature). Such effects are
widely observed in literature and likewise confirmed by the analysis of modern plant material in
Armenia. Rinna et al. [61] demonstrated, in a study conducted on marine sediments from the
Atlantic and Pacific ocean, that a possible relationship between fossil n-alkane chain lengths and
latitudinal/altitudinal factors exists. They furthermore suggested that chain lengths of nC31, nC33,
and nC35 correlate with warmer and drier, or possibly more irradiated environments. In that way,
patterns from pedo-complexes in Armenian LPSs pointing to the dominance of nC31 and nC33 chain
lengths might be a response to a stressful environment (e.g., pronounced irradiation or very dry warm
summers), boosting the production of the longer n-alkane chain lengths nC31 and nC33. Likewise, it
may be expected that, during glacial conditions, a shortening of the n-alkane chain length produced by
grasses and herbs may occur due to a decrease in temperature and the enhanced aridity [62]. Thus,
the detected fossil n-alkane signal could reflect environmental conditions rather than the vegetation
source itself.

However, the question remains to which extent stressful environments may globally control
the production of n-alkane pattern and change plants chemotaxonomic characters based on the
predominant formation of nC27 and nC29 by trees and shrubs and of nC31 and nC33 by grasses and
herbs (see, e.g., [63]).

3.4.2. Deciduous Trees Refugia during Glacial Periods

According to the observed n-alkane patterns in the LPSs of NE-Armenia, one could argue that
glacial periods in our study area have been linked to tree vegetation, while interglacial periods were
characterized by treeless vegetation. Zech et al. [12] experienced similar n-alkane patterns in LPSs from
the southeastern Carpathian Basin. They attributed such findings to ecologically-effective moisture,
suggesting that low soil humidity, as a result of high evapotranspiration during interglacial periods,
limited the survival of trees. In contrast, reduced evapotranspiration occurred under cooler climatic
conditions favoring tree growth during glacial periods. Thus, it is assumed that parts of southeastern
Europe may have served as refugia for deciduous trees during the glacial periods [63,64]. One pivotal
question is whether such hydrological relations would be conceivable with respect to our study area
in NE-Armenia as well. In general, the interpretation of higher moisture during glacials and drier
conditions during interglacials strongly contradicts our interpretation based on stratigraphic and
pedogenic results. Based on geomorphological principles, thick unaltered loess layers rather indicate
high aridity, while strongly weathered paleosoils that are rich in clay and humic substances evidence
more humid conditions.

Further environmental evidence may arise from a comparison with other studies from a regional
context. However, such studies are rare in the Caucasus region. Some pollen studies that have been
conducted on Early to Middle Quaternary deposits (e.g., Shamb section—paleo-lake sediments in
southern Armenia: [3]; North Caucasus and Kazakhstan: [65]) have suggested that the Pleistocene
climate was characterized by an alternation of wet conditions during glacial periods and dry conditions
during interglacial periods. Other, more modern pollen studies based on precise chronologies (Shamb
section in southern Armenia: [5]; Dmanisi (Georgia): [66]; Lake Urmia (NW-Iran): [67]; Lake Van
(Eastern Turkey): [68,69]) contradict this interpretation and suggest that glacial periods have been dry
and cold and predominantly linked to a vegetation cover composed of grasses and herbs. In view
of the high heterogeneity of hydrological conditions during glacial–interglacial cycles that must be
expected for the mountainous Caucasus region, a comparison with these faraway paleoenvironmental
archives will probably not lead to reliable statements. For this purpose, the analysis of a considerably
closer Quaternary archive, such as the Lake Sevan in central-eastern Armenia would be needed. This
also means that, for the moment, we have hardly any comparative information and all indications
regarding paleoenvironmental conditions originate from the LPSs themselves.
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One important hint on vegetation cover appears in the lowermost paleosoil of pedocomplex
(P-1) that corresponds to the last interglacial period. Here, up to 5 cm thick root channels have been
refilled with clay–humic material indicating the prevalence of tree vegetation. Moreover, the largely
unaltered loess units contain no expressions of higher moisture during glacial periods. Low clay
contents, low organic contents and bright colors [7] point to mostly absent weathering dynamics that,
in turn, indicates very dry environmental conditions with strongly reduced soil humidity. Since such
results strongly challenge the interpretation based on n-alkane patterns, more future activities are
required to derive independent proxy data from the LPSs in order to achieve a valid reconstruction of
paleoenvironmental conditions.

3.4.3. Grasses and Herbs as Indicators of Humid Conditions Rather Than of Drier Ones

A closer look to the pedocomlex (P-1) reveals that total n-alkane concentrations increased in
correlation with a changeover of soil properties. Starting from a coarsely aggregated brown soil,
leading to a black-brown soil, and finally to a crumbly pure black soil (steppe soil), an increasing TAC
points to higher production and/or better preservation of alkanes under steppic conditions. The fact
that appearance and characteristics of the brown paleosoils at the base of P-1 give evidence of intense
weathering fits well with the indication of stronger alkane degradation in these paleosoils. However,
the ACL did not change noticeably within the pedocomplex. Since the ACL and further alkane
ratios indicate grass-dominated vegetation cover across all soils of the pedocomplex, the following
conclusions may be drawn. As soon as environmental conditions became slightly wetter, incipient
pedogenesis has been accompanied by the establishment of steppe vegetation that is indicated by the
increase of grass-derived n-alkanes. Probably there was hardly any forest composed of deciduous
trees, instead, high grasses dominated. For the last interglacial period, certain indications of tree
vegetation were detected such as the filled root channels, but the observed n-alkane signal still refers
to predominant grass vegetation. A forest steppe environment may explain such findings because
the biomass of grasses and herbs might be remarkably higher thanks to a longer growing season and
higher growth rates compared with biomass produced by trees [63]. In the same direction, likewise,
pollen analyses that were conducted in sediments of the Shamb paleo-lake in southern Armenia [5],
demonstrate that steppe elements were always abundant at Shamb, even during interglacial periods
and nowadays.

Later, when it became drier during glacial/stadial periods, a transition from humid grass biome to
semi-desert shrub communities may have taken place, leading to the production of alkanes with the
dominant chain length nC29 (probably nC27, too). An ecological state transition from grasslands to
dominated shrublands ecosystem are very common in arid regions nowadays (in Armenia too) and are
usually attributed to various factors relating to pronounced aridity and limited precipitation [70–72].
With increased aridity there is a competition between grasses and shrubs. Certain shrubs have the
ability to perform photosynthesis for a longer period of the growing season thanks to deep and
laterally-extensive root systems that access deeper groundwater [73]. This limits the establishment of
grass vegetation and promotes the growth of semi-desert shrub species. However, lower temperatures
during glacial periods may have exerted considerable stress on shrubs growth, but probably positive
temperature feedbacks may have occurred. Some modern research in the Chihuahuan Desert grasslands
in the USA focusses on grasses–shrubs transition nowadays and demonstrates an increase of bare soils
in shrub biomes. Resulting larger open spaces absorb greater amounts of solar radiation, which is
transformed into thermal energy and stored in the ground, and later warms up the near-surface air
layer close to the shrublands [74,75]. The authors show that increased nocturnal air temperatures may
reduce juvenile mortality and favor continuing shrub growth and survival during cold periods [74,76].

To summarize, patterns of n-alkane production in NE-Armenian LPSs might indicate a transition
from humid high steppe biome or forest steppe occurring during periods of soil formation
(interglacial/interstadial) to semi-desert shrub species more adapted to enhanced aridity during
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glacial periods. This also implies that n-alkane-based grass signals may be seen as an indication of
more humid environmental conditions, rather than of dry conditions as widely supposed.

4. Conclusions

Within this study, n-alkane biomarker analyses were applied to modern plants and top soils, as
well as two recently discovered LPSs in NE-Armenia for the first time. Investigations on modern
samples demonstrate that, despite the large interplant variability within vegetation groups that is
mainly attributed to changes in local environmental conditions (e.g., changes in temperature and
aridity), a promising discrimination power based on nC33 (probably nC31 as observed in grassland top
soils) for grasses and herbs versus nC29 for deciduous trees is detected.

The results from Armenian LPSs suggest three hypotheses:

(1) In the same line with recent observations, stressful environments could globally control the
production of n-alkane patterns and alter the plant’s chemotaxonomic character. On the one hand,
pronounced irradiation or very dry warm summers might boost the production of the n-alkanes
chain length nC31 and nC33, even by deciduous trees during interglacial periods. On the other
hand, a shortening of the n-alkane chains produced by grasses and herbs might occur due to the
enhanced aridity and temperature decrease during glacial/stadial periods.

(2) The study area may have been an important glacial refuge for deciduous trees leading to
tree survival even during glacial periods thanks to higher ecologically effective moisture (i.e.,
including effects of reduced evapotranspiration). However, recent pollen analysis from a wider
Caucasian region together with certain soil and sediment features in Armenian LPS challenge
such an interpretation.

(3) A transition took place from humid-steppe biome or forest-steppe vegetation that was dominant
during periods of soil formation (interglacial/interstadial) towards aridity-adapted semi-desert
shrub species during glacial periods. In that case, n-alkane-derived grass signals would not
be an indication of dry environmental conditions as widely supposed, but rather of a more
humid situation.

At the moment we do prefer the third hypothesis as it seems to be likewise supported by gastropod
analyses on the investigated LPS (Richter et al., in prep). The analysis of n-alkane biomarkers is still a
promising tool to reconstruct paleoenvironmental changes. However, we think that it is very advisable
to combine this analysis with the survey of further proxy information such as pollen compositions,
land snail assemblages, or isotope measurements (e.g., 15N), in order to boost interpretation.
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