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Abstract: On 15th November 2017, the Pohang earthquake (Mw 5.4) had strong ground shaking
that caused severe liquefaction and lateral spreading across the Heunghae Basin, around Pohang
city, South Korea. Such liquefaction is a rare phenomenon during small or moderate earthquakes
(MW < 5.5). There are only a few examples around the globe, but more so in the Korean Peninsula.
In this paper, we present the results of a systematic survey of the secondary ground effects—i.e., soil
liquefaction and ground cracks—developed during the earthquake. Most of the liquefaction sites
are clustered near the epicenter and close to the Heunghae fault. Based on the geology, tectonic
setting, distribution, and clustering of the sand boils along the southern part of the Heunghae Basin,
we propose a geological model, suggesting that the Heunghae fault may have acted as a barrier to
the propagation of seismic waves. Other factors like the mountain basin effect and/or amplification
of seismic waves by a blind thrust fault could play an important role. Liquefaction phenomenon
associated with the 2017 Pohang earthquake emphasizes that there is an urgent need of liquefaction
potential mapping for the Pohang city and other areas with a similar geological setting. In areas
underlain by extensive unconsolidated basin fill sediments—where the records of past earthquakes
are exiguous or indistinct and there is poor implementation of building codes—future earthquakes
of similar or larger magnitude as the Pohang earthquake are likely to occur again. Therefore,
this represents a hazard that may cause significant societal and economic threats in the future.

Keywords: Pohang earthquake; South Korea; ground effects; liquefaction; geological control; fault
barrier; seismic hazard

1. Introduction

Most of the damages that occurred during an earthquake across the sedimentary basins around
the world are mainly due to strong shaking and amplification of soft sediments, which are commonly
associated with earthquakes of magnitudes (M) more than 6 [1–9]. The more recent 2015 Nepal
earthquake or the 2018 Palu earthquake in Indonesia are good examples of such phenomenon.
Post-earthquake field survey and its documentation can help us understand the cause and mechanism
involved, as well as future hazard predictions [6]. In the past and in recent history, several studies [10–23]
have been conducted to understand the mechanism and factors controlling the liquefaction of related
hazards. Almost all of these studies are associated with large magnitude earthquakes. However,
the liquefaction and associated damages due to moderate to small magnitude earthquakes like the
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2009 Olancha earthquake in the United States (Mw 5.2), 2011 Yunnan earthquake in China (Mw 5.4),
2011 Mineral Virginia earthquake in Canada (Mw 5.8), 2012 Emilia earthquake in Italy (Mw 6.1),
2011 Sikkim earthquake in India (Mw 6.9), 2016 Manipur earthquake in India (Mw 6.7), and the recent
2017 Pohang earthquake in South Korea (Mw 5.5) indicate that moderate earthquakes need a similar
kind of attention as large magnitude earthquakes in terms of seismic hazard.

Actually, reporting on the phenomena and processes involved for the liquefactions associated
with earthquakes of M ≤ 5.5 is only four to five cases so far [24–27]. Thus, the ability and exposure
towards understanding of the causes of liquefaction during Mw ≤ 5.5 earthquake from a geological
perspective still remains poor, especially in the Korean Peninsula, where this is the first ever recorded
liquefaction phenomena in the history of instrumental seismicity in South Korea.

The Korean Peninsula has been considered to be seismically stable in comparison to neighboring
countries such as Japan and Taiwan [28]. Thus, the earthquake was a shock even to the Korean geologists
as well as to the public. During the Mw 5.4 Pohang earthquake on 15th November 2017, a widespread
liquefaction was observed in and around the Pohang area, especially around the Heunghae Basin
composed of recent alluvial sediments. The liquefaction caused ground failures such as sand boils and
cracks; it also damaged the engineering structures like school buildings and residential apartments.
The documentation of liquefaction features may be useful from both geological and geotechnical point
of view in terms of seismic hazards [6].

Internationally adopted empirical procedures for the prediction of liquefaction potential are
completely based on field observations from large magnitude earthquakes, except in one case of less
than Mw ≤ 6 [2,4,29,30]. This approach may overestimate or underestimate the hazards posed by
a potential liquefaction. Therefore, proper liquefaction analyses associated with moderate earthquakes
like the Pohang or Olancha earthquakes may help to properly estimate the potential liquefaction
hazard in areas with similar geological settings. Most of the liquefaction potential analyses that have
been conducted in Korea [31–33] are mainly based on these empirical relationships and considering
earthquake scenario of MW 6.5. Thus, it is necessary to check the reliability of the procedures used so
far and to propose a better liquefaction boundary curve for medium size earthquakes in Korea.

In this paper, we are presenting field evidences of secondary ground effects [34] i.e., mainly
liquefaction and its localized distribution within the Heunghae basin. Based on the analyzed data,
we propose a possible mechanism from the geological perspective and a conceptual model with
geological structures to explain the localized sand boil occurrences. In addition, we have discussed the
role of geological factors such as the fault barrier zone and mountain basin effect, which is helpful for
future liquefaction hazard mapping in the study area and similar geological settings around the world.

2. General Characteristics of the Pohang Earthquake on 15th November 2017

On 15th November 2017, a moderate earthquake (MW 5.4) occurred in Pohang (36.065◦ N, 129.269◦ E)
at 2:29 p.m. (Local time). The focal depth was about 4–6 km and associated with a NE-SW striking
reverse dominant oblique-slip fault (Figure 1). The main shock was followed by more than 65 aftershocks
of magnitude ranging from MW 2 to MW 4.6. The Peak Ground Acceleration (PGA) measured by
the nearby seismic station was about 0.58 g, which is very large and almost equivalent to Modified
Mercalli intensity (MMI) of VIII to IX (Korean Meteorological Administration (KMA) report [35]).
Due to Pohang City’s poor subsoil condition, the seismic wave was amplified while passing through
the alluvial soil, making the damage somewhat heavier than the previous Gyeongju earthquakes
(ML 5.8; 12th September 2016). There is also no permanent seismic station within the Heunghae basin.
Other seismic stations show the following PGA values: Pohang 0.29 g, 10 km from the epicenter;
Deokjeong-ri 0.035 g, 29.3 km from the epicenter; and Cheongsong 0.042 g, 49 km away from the
epicenter. Because there are no permanent stations close to the epicenter, we have analyzed the
temporary stations installed by KMA around the epicenter area after the Main shock to analyze the
Horizontal and Vertical Spectrum ratio (HVSR) and the subsoil characteristics. The lower shear wave
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velocity (120 m/S to 275 m/S, [35]) and higher frequency indicates higher amplification within the
Heunghae basin (See Figure S1, Table S1; modified from [35]).
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Pohang earthquake is the most damaging earthquake in the Korean Peninsula since 1978, which 
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Although no primary surface rupture was reported during the Pohang earthquake [36], 
numerous liquefactions and related phenomena were witnessed by local people such as differential 
settlement of buildings and lateral spreading [36]. Because the liquefaction phenomenon occurred 
during this earthquake is the first reporting since 1978, it can provide useful information of 
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community and geotechnical engineers to consider liquefaction in the seismic hazard assessment for 
such basins in the near future. Since liquefaction is a rare phenomenon in the Korean Peninsula, 
understanding the factors (like geological structures) controlling the distribution of liquefaction
zone should be taken into consideration for liquefaction zonation mapping. 
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Figure 1. (A) InSAR image showing the deformation (~3–4 cm uplift) in the epicenter area, previously
reported faults and the regional stress condition with focal mechanism (National Research Institute
for Earth Science and Disaster Resilience (NIED), United States Geological Survey (USGS), Korean
Meteorological Administration (KMA), and Korea Institute of Geoscience and Mineral Resources
(KIGAM). (B) General Modified Mercalli intensity (MMI) distribution of Pohang earthquake, according
to USGS. KMA suggested intensity of VIII to IX in the epicenter area.

Due to its epicenter within the basin, shallow depth (5 km) and the presence of thick alluvial soil,
the earthquake caused severe amplification of the seismic wave and caused extensive damages around
the epicenter area. According to the Ministry of the Interior and Safety of South Korea, the Pohang
earthquake is the most damaging earthquake in the Korean Peninsula since 1978, which caused injuries
to more than 90 people and estimated property damage was about USD 52 million [35]. The earthquake
caused damages to 2165 private houses, 227 school buildings, many roads, and 11 bridges.

Although no primary surface rupture was reported during the Pohang earthquake [36], numerous
liquefactions and related phenomena were witnessed by local people such as differential settlement
of buildings and lateral spreading [36]. Because the liquefaction phenomenon occurred during this
earthquake is the first reporting since 1978, it can provide useful information of liquefaction associated
with paleo-earthquakes and future earthquakes in the areas of similar geological settings around
the Korean Peninsula. It is also a good opportunity for the geological community and geotechnical
engineers to consider liquefaction in the seismic hazard assessment for such basins in the near
future. Since liquefaction is a rare phenomenon in the Korean Peninsula, understanding the factors
(like geological structures) controlling the distribution of liquefaction zone should be taken into
consideration for liquefaction zonation mapping.
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3. Geological, Geomorphological, and Tectonic Setting of the Area

The Korean peninsula lies on the margin of the Eurasian Plate. During the opening of the East
Sea (Japan Sea) (30–15 million years ago), several back-arc basins including Pohang Basin were
developed in southeast Korea and adjacent offshore areas [28,37,38]. These basins are bounded by
several NNE~NNW-striking strike-slip faults and NNE-NE-striking normal faults. Some of these
faults have been reactivated as strike-slip or thrust faults due to the ongoing compression of the Korean
mainland [28,37,38].

The Pohang basin is composed of middle Miocene non-marine to deep marine sedimentary
deposits of (~20 million years ago) up to ~200–400 m deep. The middle Miocene sedimentary deposits
is covered at surface by the recent alluvial deposits (<10 m). The basement of the Pohang basin is mainly
composed of Cretaceous to Eocene sedimentary and volcanic rocks ~1000 m thick (Figure 2) [39–41].
The previous studies [42–45] suggested that Pohang basin is bounded by several normal faults and
transfer faults (Figure 2) [38,39]. These normal faults divided the Pahang basin into several small sub
basins. The epicentral area which is known as Heunghae basin is a small sub-basin within the Pohang
Basin [42–45] and mainly composed of fluvial deposits.

Recent paleoseismic studies suggested Pohang basin is having seismic threats from the Yangsan
fault which one of the prominent dextral strike slip fault around the study area [36] (Figure 2).
A recent study reported Paleo-liquefaction features in epicenter area of the Pohang earthquake [40],
which indicates that the area has undergone repeated liquefactions. Therefore, it is necessary to explore
the role of regional structures in liquefaction phenomenon and distribution characteristics.
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4. Coseismic Damages Within the Meizoseismal Area

4.1. Mapping of Liquefaction and Related Features

Major striking features associated with the Pohang earthquake were the occurrence of severe
liquefaction, structural damages including residential and academic buildings, as well as lateral
spreading/ground cracks. Because this is the first earthquake related liquefaction in the modern
seismic history of Korea, the field survey and mechanism involved will help to guide us for the
future liquefaction hazard analysis and assessment [36]. For the detailed documentation of ground
deformation features (sand boils, cracks, damaged buildings, etc.), we have used Pleiades high
resolution satellite images with a spatial resolution of 0.5 m, which was taken one day after the
earthquake and provided by the International Charter [36]. The data collected from the Pleiades
satellite were complemented by a five-week field survey and Unmanned Air Vehicle (UAV) images
taken by Phantom 4 UAV images. The high-resolution UAV images taken from the Heunghae basin
were merged using Pix4D software, and high-resolution Digital Surface Model (DSM) of ~2.5 cm
resolution has been constructed using ArcGIS 10.0.
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During the field work, we performed a detailed field survey that catalogued sand boils, lateral
spreading, and damaged buildings. In addition, an interesting phenomenon i.e., waterlogging from
the rice fields around the epicenter area was observed immediately after the earthquake. To observe
the ground water level fluctuation associated with the earthquake, we have collected the hourly basis
ground water data for a span of 11 days (before and after the earthquake) from the ground water
monitoring wells installed by the Korea Rural Community Corporation, which monitors the quantity
and quality of ground water and provides the information to the general public. In the following
section, we have provided an overview of the coseismic ground deformations observed during the
Pohang earthquake.

4.2. Liquefaction Features, Building Damages, and Ground Cracks

Our field survey area covers a zone of 8 km length in E-W direction and 3 km wide in N-S direction
around the epicenter. We have incorporated an integrated survey for the present study, which includes
the use of high-resolution satellite images, UAV images, and detailed field survey.

The Pleiades image (0.5 m resolution) and UAV images were used for the mapping of sand
boils/ground cracks that are larger than the spatial/ground resolution of the images. It was confirmed
by the field survey and additional small features during the five-week detailed field survey. Within the
epicenter area, most of the sand boils and lateral spreads were observed in the agricultural land or
along the cracks between the concrete canal walls and agricultural lands having a gentle slope (≤5%)
(Figure 3). Most of the sand boils are confined between the Gokgang River and Chogok River where the
area is generally composed of Quaternary deposits. Eyewitnesses reported water and sand spouting
from those cracks, isolated sand boils within the agricultural lands, and some of the riverbeds.

Field observations and DSM images allow us to identify several kind of liquefaction features
such as liquefaction in gravelly soil, isolated circular to semicircular sand boils, aligned sand boils,
en-echelon patterned sand boils, and linear sand boils along artifacts (Figure 4). We have collected data
sets for more than 600 liquefaction related features and phenomena, out of which more than 70% data
sets were assigned to liquefaction, 23% were assigned to cracks/liquefaction, and 7% were assigned to
building damages due to liquefaction or shaking.

The individual sand boil diameter ranges from few centimeters to more than 2 m. The orientation
of the linear chains of the sand boils measured in the field are plotted on the rose-diagram,
which shows three main directions of ejection (Figure 4). From the rose diagram of liquefaction
features, two preferential trends can be inferred, i.e., NNE-SSW and NE-SW (our datasets combined
with [40], Table S2; [40]). Based on the surface expression of the sand boils, the liquefaction features
can be classified into two categories: (a) solitary or clustered very flat in nature (diameter from
a few cms to 1–2 m) or (b) water and sand/gravel mixtures ejected using preexisting cracks as their
pathways to the surface induced by seismic shaking (Figure 5). Similar types of sand boils have
been reported during 2005 Kashmir earthquake in India (Mw 7.6), 2008 Wenchuan earthquake in
China (Mw 7.9), 2011 Yingjiang earthquake in China (Mw 5.4), and 2011 Tohoku in Japan (Mw 9.0)
earthquake [16,46–48], respectively.

The farthest liquefaction feature observed during the Pohang earthquake is 15 km away from the
epicenter, which is relatively far away, but is probably related to the shallow focal depth. Considering
this point, it is more or less consistent with the empirical relationship developed on the basis of
recorded liquefactions from global earthquakes, including both large and some moderate earthquakes.
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Figure 3. Google Earth image showing the major faults around the study area with the collected
liquefaction features during the MW 5.4 Pohang earthquake. Most of the liquefaction features were
clustered in the southern part of the Heunghae Basin and to the south of the Heunghae Fault (Sand boil
data sets used in this diagram were collected ourselves and also taken from [40]). The red line indicates
the location of geophysical profile taken across the Heunghae Fault.
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Figure 4. Unmanned Air Vehicle (UAV) images and field photographs showing typical liquefaction
features observed during the Pohang earthquake. (A–C) UAV images showing the distribution of
sand boils and rose diagram showing two preferential trends: NNE ~SSW and NE-SW. (D–F) Field
photographs showing typical isolated and series of sand boils observed in the agricultural field.
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field. (C) Sand/gravel mixtures ejected using preexisting cracks.

The presence of more than 600 liquefaction features within a radius of 3 km from the epicenter
during a moderate magnitude earthquake (MW 5.4) indicates that the Heunghae basin and the Pohang
area are susceptible to liquefaction. More detailed liquefaction hazard mapping is required for this
area [25,27,47,49–51].

During the field work after the earthquake, we collected ejected sand samples from the sand boils
and from the drilled borehole conducted by Pusan National University, in order to analyze and classify
grain sizes. We have taken the representative sand samples from one of the biggest sand boils and
from the bore hole, which was drilled within the sand boil observed at the center of the Heunghae
basin. Both the sand samples were collected within the 500–700 m radius of the epicenter area.

The grain size analysis of the ejected soil samples and sand samples collected from the borehole
has been carried out as standard ASTM D6913. The analyzed grain sizes were plotted on the curve
proposed by Tsuchida [52] for the possibility of liquefaction (Figure 6). The grain size analysis suggests
that sand samples from the ejected sand boils and borehole have an identical nature with more than
90% of grain size between 4.75–0.075 mm and fall within the zone of most liquefiable soil in the
potentially liquefiable soil range. Thus, liquefaction hazard zonation study is required for the soils of
the Heunghae Basin.

Differential settlement and lateral spreading were most widely observed phenomena during this
Pohang earthquake like other earthquakes around the world. The lateral spreading was observed
around the levees, shore lines and reclaimed lands for construction purposes, road embankments with
soft soil and some portions of agricultural lands (Figure 7). The dimension of the cracks varied from
a few meters to 10 s of meters in length. Most of the cracks developed in the N-S direction.
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The Pohang earthquake caused damages to more than 2000 individual houses and school buildings.
Some of the houses close to the epicenter were tilted about 15 cm towards the north and the balcony of
the ground floor got subsided more than 30 cm. Referable to the tilting of the building, some of the
doors in the ground floor got buckled (Figure 8). Additionally, a church building near the epicenter
area got tilted about 10 cm due to ground subsidence, accompanied by liquefaction.
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Figure 8. Photographs showing (A) a titled residential building due to differential settlement
(the building was titled about 15 cm); (B) separation of water pipeline due to titling of the building;
(C,D) differential settlement observed in the basement of the residence buildings in the epicentral area
(he basement of the building settled almost 15–30 cm).

One of the field photographs of the titled apartment building shows that the two ends of the
gas pipeline connected to the apartment got separated about more than 15 cm due to the titling
(Figure 8B). The liquefaction and lateral spreading damages to residential buildings and schools during
this earthquake indicate that the Korean building code needs to be revised and should include the factor
of safety against liquefaction (FSL) as an important parameters of seismic resistant building design.
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4.3. Liquefaction of Gravelly Soil

During the recent Mw 5.4 Pohang earthquake, we have observed evidences from the field of
gravelly soil liquefaction in the river bed and in the agricultural land (Figure 9). The diameter of ejected
gravel varies from 1 cm to < 4 cm. Liquefaction of sand or silt during an earthquake is common,
but liquefaction of gravelly sand is very rare, specifically during an earthquake of magnitude Mw < 5.5,
such as the Pohang earthquake. This phenomenon has been reported by a few earthquakes in recent
history, such as the 1976 Friuli earthquake in Italy (Mw 6.5), 1983 Borah Peak earthquake in the USA
(Mw 6.9), 1994 Hokkaido earthquake in Japan (Mw 7.7), 1995 Kobe earthquake in Japan (Mw 6.9),
1999 Chi–Chi earthquake in Taiwan (Mw 7.7), 2008 Wenchuan earthquake in China (Mw 7.9), and 2011
Tohoku earthquake in Japan (Mw 9.0) [7,53–59].
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Figure 9. Field photos showing evidences of the gravelly soil liquefaction. (A) Photographs showing
ejected gravels due to liquefaction through ground cracks; (B) sand boil showing evidence of gravelly
soil liquefaction along a dry river bed; (C) sand boil showing ejected pebbles with fine sand in rice
farm during the earthquake.

4.4. Water Logging and Ground Water Fluctuations

The liquefaction features associated with the Pohang earthquake were mostly confined between
the Gokgang River and Chogok River (Figure 3). It may indicate that the shallow ground water level
and soft sediments around the rivers are the main controlling factors to this liquefaction. The physical
appearances of the ejected soils from the sand boils and borehole (Figure 6) suggest that the soils in the
study area are prone to liquefaction.

The amount and consistency of water spring and logging in the agricultural fields, which lasted
several days after the earthquake [60], indicate the significant rise of the water table during the
earthquake. It is a rare phenomenon during medium scale earthquakes, although a similar water
ejection phenomenon was reported during the Wenchuan earthquake in China, which was a large
magnitude earthquake of MW 7.9. It is likely that the Pohang earthquake must be an unusual case
to raise the water table seriously and cause extensive water logging and liquefaction associated
with a medium scale earthquake. It indicates that the ground water within this area is geologically
highly confined.

To confirm the reason for the water table variation, we have collected and plotted hourly based
ground water data for 11 days from three respective monitoring wells around the epicenter area of
the Pohang earthquake. The variation of the water level from the ground water monitoring stations
(Figure 10) is evident on the date of the earthquake. From the figure, it is evident that the station
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closest to the epicenter and situated within the Heunghae basin (G1) shows a sudden rise in water
level (~0.5 m) during the time of earthquake followed by a decrease in water level and taken several
days to be normalized to the regular level. Other monitoring wells (G3, G5, located at higher elevation
than the G1) shows a sudden drop in water level (~0.3 m) at the time of the earthquake and takes two
days to revert back to the original level. Though there is an interesting ground water response to the
earthquake, it is necessary to do more detailed analysis which is beyond the scope of the present work.
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Figure 10. Changes of ground water levels associated with the Pohang earthquake. The ground water
monitoring stations show the variation of the water levels before and after the 15th November 2017
Pohang earthquake (A) G1, (B) G3, and (C) G5. For the station locations: see Figure 3 (Data taken from
https://www.groundwater.or.kr).
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On the basis of preliminary observation from the water level fluctuations of the monitoring wells
and local residents’ reports, the observed hydrologic phenomenon might be relevance to the earthquake.

It is well known that water wells respond to the seismic activity near field as well as far
field [13,60–62], which depends upon different geological conditions and the location of the monitoring
wells within the epicenter area. Several studies suggest [13,60–65] that the rise or fall in water level in
the monitoring wells is related to the elastic volumetric compression or expansion of the well aquifer
system caused by seismic waves, but steep rise or fall in the water level may also be related to coseismic
changes in the well aquifer media.

Though we have limited ground water data, we think the difference in behavior of the monitoring
wells was controlled by two factors: (1) change in the static stress field and (2) local geological changes
triggered by earthquakes. The ground shaking may cause the rearrangement of unconsolidated
sediments favoring compaction, which has led the rise in the water table (case of G1), as well as the
opening or closing of the deeper aquifer system due to seismic shaking that might have caused the
water level drop or rise (case of the G3 and G5) [63–65]. A similar phenomenon was also observed
around the epicenter area of the 1980 Irpinia earthquake in Italy (Mw 6.9), 1989 Loma Prieta earthquake
in the USA (Mw 7.1), 1998 Pymatuning earthquake in Pennsylvania, USA (Mw 5.2), and 2009 L’Aquilla
in Italy (MW 6.3) earthquake [63–65].

5. Discussion on Geological Aspects of the Mechanism Involved in Liquefaction

The distribution of sand boils, lateral spreading, and cracks allow us to relate the damaging
features to the geological structures in this area. For instance, most of the liquefaction sites were
clustered between the Gokgang River and Chogok River, and towards the south of the Heunghae fault.
The higher concentrations of liquefaction in the southern part of the Heunghae basin suggest that
the ground motion duration or amplification was higher in that area. Liquefaction is one of the main
responses to seismic waves. Furthermore, the clustering of the liquefaction features in this area may
indicate that the seismic waves were also controlled by geological structures. Based on previous studies
and our fieldwork, the Heunghae fault and an inferred blind fault (Figures 1, 3 and 11) generating
this earthquake are the major structures in this basin, which might strongly contribute to releasing the
generated seismic waves.

To examine the role of geological structures, especially related to the Heunghae fault [38,62] in
the liquefaction feature distribution, detailed literature review and field studies have been carried
out. Previous studies [38,66] reported that the Pohang basin is bounded by several E-W trending
faults, which offset the tertiary formations and merged to the Yangsan fault. These faults are named as
Hyongsan fault and Heunghae fault, which divide the Pohang basin into several sub-basins. During the
post-earthquake survey, we were able to find several evidences of NE-SW striking small to medium
scale normal faults in the northern part of the Heunghae basin with a fault gouge of 1-5 cm thick
(see Figure 3 for the location and Figure 11 for the evidences of faults in seismic profile). These faults
probably are subsidiary faults of the E-W trending Heunghae fault, because the structural parameters
of these faults are well matched with the previously mapped Heunghae fault. The main Heunghae
fault might have been covered by the basin fill deposits and was not clearly traced.

To confirm the existence of the main Heunghae fault within the basin, a shallow subsurface seismic
refraction survey has been carried out using OYO McSeis SX 1125 instrument (Tsukuba, Japan) with
24 channel (28 Hz) seismographs. A Sledge Hammer was used for generating seismic waves at the
surface and after recording the data it was processed using SeisImager software. The 1 km long seismic
survey was taken perpendicular to the Heunghae fault towards the western margin of the Heunghae
basin (see Figure 3 for location of seismic survey). The same 1 km long profile has been divided into six
divisions (SP-1 to SP-6). The geophone spacing was taken at 5 m for SP-1 and SP-6, and 7.5 m for SP-2
to SP-5. The data processing of the seismic survey is mainly based on seismic refraction tomography
techniques, as well as inverse travel time modelling of the refracted seismic waves. Using the estimated
velocity (1.6–3.6 km/S), we have detected unconsolidated basin fill deposits lies from surface to 10 m
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deep, and consolidated basin deposits or weathered rock has been detected from 10 m to 80 m deep
(Figure 11).
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On the basis of seismic profile and velocity difference, we have detected two south dipping
normal faults which could be the traces of the Heunghae fault, which is well matched with the field
data collected. The seismic profile and field evidences of normal faulting along the Heunghae fault
is shown in Figure 11. We argue that this fault played a role in the passage of seismic waves and
amplifications within the Heunghae basin and the distribution of liquefaction features. Moreover,
the mountain basin effect may do play an important role in extensive liquefaction within the basin
and the distribution of sand boils (Figures 3 and 11) [11]. On the basis of these observations, we will
discuss the possible mechanism involved in the liquefaction and its distribution within this study area
in the following section.

Possible Mechanisms Involved in Liquefaction Clustering in the South Part of the Heunghae Basin

The cause and distribution characteristics of liquefaction and related damages are associated with
the combined effects of several factors such as earthquake magnitude, duration of shaking, distance
from the epicenter, type of soil content, relative density, drainage condition, degree of consolidation,
thickness of liquefiable sand/silt layer, and depth of groundwater table [5,67]. Sometimes anthropogenic
structures such as clay lining in rice fields and reclaimed land also influence to the severity of the
hazard [5,40].

By analyzing the source of the earthquake and the geological setting of the Heunghae basin area
underwent liquefaction, we argue that the major structural factors for the liquefaction clustering during
the Pohang earthquake might be the combination of mountain basin effect and trapping of seismic
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waves within fault zones. During the 2012 Emilia earthquake (Mw 5.9) in Italy, clustering of liquefaction
features was observed with in the Po-Plain. This indicates that even if the affected area appears to be
homogeneous from a geological point of view there are other local geological factors that controls the
liquefaction susceptibility of the area within a basin or an alluvial plain [68–70]. Furthermore, previous
studies [70,71] observed the mechanism involved in severe liquefaction within basins and suggested
that the wedge shaped basement-to-sediment basin interface, which acted as acoustic lens, caused
localized seismic wave amplification and extensive damage within the basin [7,71–75]. Though the
basin effect is poorly understood and included in the routine seismic hazard assessment, it has been
well evidenced that several large and small magnitude earthquakes (1985 Mexico City earthquake,
Mexico, Mw 8.0; 1994 North Ridge earthquake, USA, Mw 6.7; 1999 Izmit earthquake, Turkey Mw 7.6;
2008 Wenchuan earthquake, China, Mw 7.9; 2009 Olancha earthquake, USA, Mw 5.2; 2011 Tohoku
earthquake, Japan (Mw-9.0); 2012 Emilia earthquake, Italy, Mw 5.9; and 2017 Tripura earthquake, India,
Mw 5.7) [7,75–79].

Other factor which controls the severity and distribution of liquefaction and seismic ground
deformation is the trapping of seismic waves by the major fault zones within the basin. It was suggested
that large faults within the sedimentary basin with fault gouges, fractured rocks and fluids can trap
the seismic waves within the block bounded by fault zones [5], which amplifies the upper bound in
soft sediments of the basin. This amplification could be stronger within the basin surrounded by fault
zones covered by unconsolidated Holocene alluvial deposits (Figures 11 and 12) [7,68,80–84]. A similar
observation was reported during the 2008 Wenchuan earthquake, where most of the liquefaction
features were confined to the recent alluvial deposits close to the range front blind fault, and damaged
buildings were clustered near or top of the Qingchuan blind fault in Sichuan province in China [7].
During the 1994 Northridge earthquake in the USA, (Mw 6.7) [11], the basin structure was an important
factor for the enhancement of liquefaction hazard. In the 2001 Bhuj earthquake in India (Mw 7.7),
most of the liquefaction features were distributed close to the fault [83]. This clustering of sand boils
indicates a fault barrier mechanism for passage of seismic waves within a basin.

The borehole log drilled across the Heunghae basin for the pilot project of the potential CO2

storage site [84] suggests that the Pohang basin has a typical wedge-shaped structure bounded and
dissected by several faults and covered by soft sediments. The previous study [79] for a CO2 storage
project suggests that the Heunghae basin is bounded by the east dipping Gokgang fault to the east
and the south dipping Heunghae fault to the north. The seismic refraction profile and field evidences
about the presence of the two NE-SW/E-W striking and S-SE dipping subsidiary normal faults within
the Heunghae basin help us to suggest the presence of the E-W striking Heunghae fault.

The potential seismogenic fault for the Pohang earthquake is the west dipping thrust fault,
which might be an antithetic fault of the Gokgang fault (Figure 12). On the basis of the geometry and
location of the Heunghae fault and the seismogenic fault, the seismic waves generated during the
earthquake were trapped and caused more amplification in the southern part of the basin than the
northern part. The geophysical and field results suggesting the presence of the E-W trending Heunghae
fault and the field evidence of clustered sand boils along the NE-SW causative fault for the Pohang
earthquake proved the trapping of the seismic waves by fault zones (Figure 3) [40]. The distribution of
sand boils within the Heunghae basin (Figure 3) shows clustered sand boils indicating two preferred
orientations. One set of sand boils shows E-W trend, whereas another set shows NE-SW trend,
which are similar to the trend of the Heunghae fault and the antithetic fault caused the Pohang
earthquake, respectively.

Based on the field observations, geological structures presented in the study area—i.e., spatial
distribution plot of sand boils around the epicenter—it can be inferred that the distribution of
liquefaction features is mostly controlled by the geological structures within the Heunghae Basin
(Figures 3 and 12). Thus, the presence of the Heunghae fault and the antithetic blind fault led the
differential amplification due to trapping of seismic waves within the same basin and the differential
distribution of liquefaction features. Using this, we have proposed a conceptual model (Figure 12) to
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explain the local clustering of sand boils within the Heunghae basin, which is well matched with the
previous observations in Sichuan province, China [7] and San Fernando Valley, USA [11].
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Figure 12. Conceptual models for the clustering of liquefaction during the Pohang earthquake.
(A) Model for the mechanism involved in the localized amplification of seismic waves within a basin
due to mountain basin effect. (B) Model for the mechanism explaining the role of the Heunghae fault in
clusters of sand boils in the southern part of the fault. From the field survey and UAV image (Figure 3),
it was clear that most of the sand boils were clustered densely in the southern part of the fault (model is
not up to the scale).

Many of the liquefactions that have caused damages within sedimentary basins have been
reported in recent earthquakes such as the Sichuan basin during the 2008 Wenchuan earthquake in
China (Mw 7.9), the Kanto basin near Tokyo during the 2011 Tohoku earthquake in Japan (Mw 9.0),
Po-Plain in Italy during the 2012 Emilia earthquake (Mw 5.8), and the Kathmandu valley during
the 2015 Nepal earthquake (Mw 7.8). The observed damages during these earthquakes poses a real
seismic threat to the areas with similar geological settings around the globe. However, the involved
mechanisms of geological aspect have received little to no attention, especially during small to moderate
earthquakes. Although several numerical studies suggested the trapping and amplification of seismic
waves within the basins, geological evidences were very rare and difficult to prove it during a small or
a moderate earthquake.

Currently, the liquefaction during small to moderate earthquakes without any surface ruptures
is another issue (e.g., such as in the 2009 Olancha earthquake in the USA and the 2017 Pohang
earthquake in South Korea), because it can cause serious damages compared to its magnitude. This is
especially true of the effect of geological structures within the basin, which is an important concern in
earthquake hazard assessment. The present study and proposed inferences will help in understanding
the geological phenomenon involved in more localized seismic damages, especially where serious
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liquefaction and related damages compared with its magnitude are reported in a similar geological and
depositional setting. However, it needs more geophysical or seismic data for a conclusive interpretation.

6. Conclusions

The 15th November 2017 Pohang earthquake was the most devastating earthquake with extensive
liquefaction in the modern seismic history of the Korean Peninsula. The MMI Intensity of the Pohang
earthquake was VIII to IX and caused injury to more than 90 people and estimated property damage of
52 million (USD) with many structural damages. The liquefaction and lateral spreading during the
Pohang earthquake provide a very good opportunity to understand the factors involved in liquefaction
during a small to moderate earthquakes, which is a very rare phenomenon in Korea and around the
world. Based on the results of a systematic field survey, we identified several areas showing unusually
extensive liquefaction around the Heunghae basin.

Several kinds of liquefaction features—i.e., liquefaction in gravelly soil, isolated circular to
semicircular sand boil, aligned sand boils, en-echelon patterned sand boils, and linear sand boils along
artifacts—were identified during the field survey. Most of the sand boils were concentrated along the
major faults and especially in the southern part of the Heunghae fault between the Gokgang River and
Chogok River. The grain size analysis suggests that most of the ejected materials can be categorized as
most favorable liquefiable soil to potentially liquefiable soil. The liquefaction associated with a small
to moderate earthquake like the Pohang earthquake could be related to a favorable site condition and
strong ground motion. The borehole data drilled in one of the sand boils suggests that the presence of
shallow water table and sandy layer was a prime factor for the liquefaction.

The PGA recorded from the Pohang earthquake (i.e., 0.58 g) was very high as a large magnitude
earthquake, which may affect to cause a strong ground motion and related to the shallow focus of
the earthquake. Furthermore, we interpreted that the amplification of seismic waves within the basin
bounded by the major fault zones and mountain basin effects have contributed to the intense shaking
and the vast occurrence of liquefaction within the basin. Based on this interpretation, we proposed
a conceptual model showing the Heunghae fault zone acting as a barrier for the passage of seismic
waves, which produced clusters of sand boils along the southern part of the Heunghae fault. This study
suggests that immediate and careful coseismic geological investigation can be effective for proper
earthquake parameter estimation and for seismic hazard evaluation on vulnerability of the particular
area. Moreover, this kind of study can significantly contribute to engineering implications for a realistic
seismic hazard assessment particularly in liquefaction zonation. These aspects need to be considered
in liquefaction hazard mapping for similar geological settings on a local as well as regional scale.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3263/9/4/173/s1,
Figure S1: Google Earth Image showing temporary stations installed by KMA around the epicentral area
immediately after the earthquake to measure HVSR ratio and understand the subsoil conditions. The yellow
square without number indicates temporary stations without any data (modified from [35]); Table S1: Recorded
PGA at different seismic stations around epicentral area of Mw 5.4 Pohang earthquake (KMA Report (modified
from [35]); Table S2: Detailed liquefaction features mapped during Mw 5.4 Pohang post-earthquake field survey
(Our data from the present study combined with [40]).
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