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Abstract: The sub-Saharan African coast is experiencing fast-growing urbanization, particularly
around major cities. This threatens the equilibrium of the socio-ecosystems where they are located and
on which they depend: underground water resources are exploited with a disregard for sustainability;
land is reclaimed from wetlands or lagoons; built-up areas, both formal and informal, grow without
adequate urban planning. Together, all these forces can result in land surface deformation, subsidence
or even uplift, which can increase risk within these already fragile socio-ecosystems. In particular,
in the case of land subsidence, the risk of urban flooding can increase significantly, also considering the
contribution of sea level rise driven by climate change. Monitoring such fast-changing environments
is crucial to be able to identify key risks and plan adaptation responses to mitigate current and
future flood risks. Persistent scatterer interferometry (PSI) with synthetic aperture radar (SAR) is
a powerful tool to monitor land deformation with high precision using relatively low-cost technology,
also thanks to the open access data of Sentinel-1, which provides global observations every 6 days
at 20-m ground resolution. In this paper, we demonstrate how it is possible to monitor land
subsidence in urban coastal areas by means of permanent scatterer interferometry and Sentinel-1,
exploiting an automatic procedure based on an integration of the Sentinel Application Platform
(SNAP) and the Stanford Method for Persistent Scatterers (StaMPS). We present the results of PSI
analysis over the cities of Banjul (the Gambia) and Lagos (Nigeria) showing a comparison of results
obtained with TerraSAR-X, Constellation of Small Satellites for the Mediterranean Basin Observation
(COSMO-SkyMed) and Environmental Satellite advanced synthetic aperture radar (Envisat-ASAR)
data. The methodology allows us to highlight areas of high land deformation, information that is
useful for urban development, disaster risk management and climate adaptation planning.

Keywords: land subsidence; PSInSAR; persistent scatterers; coastal Africa; disaster risk management;
Sentinel-1; TerraSAR-X; COSMO-SkyMed; Envisat-ASAR

1. Introduction

Roughly 10% of the world’s population lives in low elevation zones, which, under climate change
and rising sea levels, are at increasing risk of flooding [1]. Sea level has been rising by an average
of 1.7 ± 0.3 mm/year since 1950 [2] and from the 1990s this has sped up, reaching a velocity of
3.3 ± 0.4 mm/year [3]. On average, this has led to a rise of more than 10 cm in about 60 years,
with projections of future sea level rise of 1 m or more by 2100 [4,5]. The two main causes of sea
level rise are connected to the thermal expansion of seawater due to ocean warming and water input
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from land ice melt [6]. In some coastal areas, sea level rise associated with storm surges can increase
the magnitude and frequency of coastal flooding events. The impacts of these events can be locally
amplified by anthropogenic processes like oil or groundwater extraction leading to land subsidence,
expansion of built-up areas and variation in groundwater characteristics, due to, for example, saline
intrusion [7,8].

Because of poverty and rapid urban growth rates characterized by high levels of informality,
coastal cities in sub-Saharan Africa are extremely vulnerable to the detrimental effects of sea level rise,
storm surges and coastal erosion [9,10]. Flooding is the most frequent disaster in Africa, with the largest
social and economic impacts in urban areas. The sub-Saharan African coast accounts for 148,000 km2

of low elevation coastal zones, with an exposed population of around 45 million people [9].
In many areas of the world, subsiding land is more of an immediate problem for coastal cities

than sea level rise. Compared to megacities in Asia, Africa is not experiencing similar levels of
subsidence but increasing land urbanization and the projected increase of water demand might lead to
groundwater overexploitation, which could rapidly evolve into subsiding land and increasing flood
risk. For example, land subsidence is already documented in Lagos and other urban agglomerations
in the Niger Delta [11], where individual households are increasingly using private boreholes to
compensate for public utility deficiencies in the water supply.

The urban population of sub-Saharan Africa is projected to double over the next 25 years as
more migrants are pushed to cities from the countryside, with the largest cities growing as fast as 4%
annually [12]. Consequently, the urban population living in low elevation coastal zones (LECZs) in
Africa, areas 10 m below sea level, will double by 2030 and increase fourfold by 2060, reaching 160
million people [9].

Because of poverty and high levels of urban informality, it is most likely that new low-income
dwellers will settle in areas at risk, such as flood plains and live in houses that cannot resist hazard
shocks. Moreover, it is likely that without appropriate adaptation measures, due to sea level rise,
people living in rural areas might be forced to relocate to urban areas, adding to the problem [13].

While extensive research on sea level rise is already available, land subsidence in coastal Africa
is still poorly investigated, although some evidence is already available. This study aims to start
filling this gap, analyzing possible land deformation by means of synthetic aperture radar (SAR)
interferometry in order to identify land subsidence locations in selected cities in Africa.

This research work was developed within the City Coastal Resilience Africa (CityCORE) project,
which aims to improve the resilience and capacity of selected coastal cities in sub-Saharan Africa by
improving knowledge on climate change and disaster risk. It allowed us to test a newly developed
software package called snap2stamps [14], which performs differential interferometric SAR (InSAR)
processing automatically based on the European Space Agency (ESA) Sentinel Application Platform
(SNAP) and whose output is fully compatible with the Stanford Method for Persistent Scatterers
(StaMPS) [15].

New developments in Earth observation (EO) opened up new opportunities within the framework
of urban monitoring. New constellations of satellites, such as the Sentinels of the European
Commission’s (EC) Copernicus program [16], provide free data that allow observation of the whole
Earth’s surface with unprecedented frequency and by means of different sensors, both optical and radar.

EO can be employed to monitor several anthropogenic processes interlinked with global
environmental changes, from surface water analysis to deforestation and urban growth [17]. Thus,
hotspots of change and vulnerability can be exposed and used in support of disaster risk reduction
(DRR) and climate change adaptation (CCA) plans [18] and the 2030 agenda for sustainable
development [19].

With global coverage, these new sources of EO data can be useful also for African coasts, which can
be monitored in detail. In fact, it is known that African coastal areas went through enormous changes
during the last decades, with cities experiencing tremendous growth in terms of population and urban
extent [20,21].
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In particular, SAR, on board the Sentinel-1 (S1) constellation, can be used for monitoring land
deformation with high precision, exploiting InSAR [22–24]. S1 can observe the whole Earth every
6 days at a ground resolution of 20 m, an unprecedented frequency of observation that allows the
monitoring of land changes with systematic continuity. S1 acquires images with a stable geometry,
that is, always with the same incidence angle, an important requirement for detecting changes on the
land surface and therefore also to investigate land deformation. A standard S1 image covers an area of
250 by 170 km, allowing the monitoring of wide areas [25].

InSAR, by measuring phase changes between different images acquired at different times but
with the same geometry of observation (so-called interferograms), is able to measure deformations in
land surface [22–24].

InSAR has been applied for decades to analyze land deformation associated with different
phenomena, employing all kinds of available SAR sensors. InSAR methods based on multitemporal
analysis can be differentiated into two main categories: (i) persistent scatterer interferometry (PSI),
based on the use of a single master image and the selection of stable and highly coherent scatterers in
the time series [23,26]; and (ii) small baseline subset (SBAS) interferometry, which combines multiple
computed interferograms, choosing pairs characterized by small spatial separation between orbits
(baselines) to limit the spatial decorrelation effect [27–29].

From the original PSI method proposed by Ferretti et al. [23], several approaches were
proposed in subsequent years [26,29–34]. These methods have been used for monitoring land
deformation using European Remote-Sensing (ERS) and Environmental Satellite (Envisat) data [35],
S1 data [36–38], by means of a multitrack PSI technique using the Advanced Land Observation
Satellite phased array type L-band synthetic aperture radar (ALOS PALSAR) data in China [38] and
with a multisensor approach employing TerraSAR-X (TSX), Radarsat-2 and S1 [39]. They have also
been used for monitoring subsidence induced by mining activities using Radarsat-2, S1 and ALOS-2
data [40], subsidence induced by water depletion in aquifers using ERS-1/2 and Envisat data [41],
land deformation using Constellation of Small Satellites for the Mediterranean Basin Observation
(COSMO-SkyMed, CSK) over the historic center of Rome [42], building deformation using TSX [43,44],
landslides using CSK and Envisat data [45], volcano crustal deformation using ERS-1/2 data [15,46]
and extraction of hydrocarbons and groundwater [47,48]. Finally [49], ascending and descending
orbits of Envisat data were combined in order to derive vertical and horizontal land deformation
components in the city of Los Angeles.

InSAR analysis is computationally very expensive. An example of wide-area monitoring by means
of the SBAS technique using 400 GB of Envisat data was presented in References [50,51], where they
used a cloud computing service to perform the analysis. In our case, the analysis of a single study
area involved the use of up to 100 single look complex S1 images (~400 GB). The wide swath of S1
usually covers a much bigger area compared to the area of interest. On average, from the raw images
made of 27 bursts, we selected only three, significantly reducing the amount of data to analyze by
about one-ninth. Despite the reduction of data, using a machine with eight central CPUs at 2.5 GHz
with 52 GB of RAM, it took us an average of 30 h of processing time to compute the multitemporal
InSAR analysis.

Figure 1 shows the 18 cities in sub-Saharan coastal Africa that were analyzed by InSAR to detect
possible land deformations, in particular land subsidence. The study was conducted using mainly two
sources of data: (i) Envisat-ASAR data on board the European Space Agency’s Envisat, active from
2002 to 2012 [52]; and (ii) S1 data active from late 2014 to today.

The use of both datasets allows investigating land deformation over a period of 15 years. However,
ASAR data were acquired sparsely and for some cities no data (or not enough data) were available to
perform an InSAR analysis. Instead, S1 data are acquired frequently allowing a more precise analysis
but also imposing more challenges in terms of data processing, which requires more computation and
storage capacity given the size of each image (roughly 2 to 4 GB per single compressed image) and the
number of images for each city (up to 100 or more per city).
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The aims of this paper are (i) to present the methodology we developed and tested to efficiently
analyze such a large number of cities and process a large amount of data (about 4 TB of raw data)
based on the integration of SNAP and StaMPS; and (ii) to present the results obtained for the city of
Banjul, the Gambia, for which also high-resolution data (3 m) from the Italian Space Agency’s CSK
were available and for the city of Lagos, Nigeria, for which high-resolution data (3 m) from the German
Aerospace Center’s TSX were available.

The paper is organized as follows: Section 2 (Materials and Methods) describes the data used
and the methodology employed for the analysis; Section 3 (Results and Discussion) presents the
results obtained for the two case studies and discusses the findings and the developed methodology;
and Section 4 (Conclusions) draws conclusions.
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Figure 1. Case studies for which land subsidence was assessed within the City Coastal Resilience project.

2. Materials and Methods

2.1. Case Studies

Table 1 shows all the cities considered within the CityCORE project. They all lie on the African
coast and are threatened by sea level rise. The scope of the study was to detect land deformation that
could worsen the risk profile of these cities.

In this paper, we present the results obtained for 2 case studies: (i) Lagos, Nigeria and (ii) Banjul,
the Gambia. For both cities, detecting and monitoring land subsidence are key in a framework of DRR
and CCA. They were selected among the 18 cities because of their interest within the operation of the
CityCORE project and because a quota of high-resolution SAR data were available: TSX for Lagos and
CSK for Banjul.
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Table 1. Summary of analyzed cities in coastal Africa, datasets employed and short information about
the outcomes. Envisat, Environmental Satellite; S1, Sentinel-1; TSX, TerraSAR-X; CSK, Constellation of
Small Satellites for the Mediterranean Basin Observation (COSMO-SkyMed).

City Dataset Results

1. Lagos, Nigeria Envisat/S1/TSX Subsidence Detected

2. Abidjan, Ivory Coast S1 Subsidence Detected

3. Nouakchott, Mauritania Envisat/S1 Subsidence Detected

4. Saint Louis, Senegal Envisat/S1 Subsidence Detected

5. Stone Town, Zanzibar S1 No Subsidence

6. Banjul, the Gambia Envisat/S1/CSK Subsidence Detected

7. Lomé, Togo S1 Subsidence Detected

8. Cotonou, Benin Envisat/S1 Subsidence Detected

9. Accra, Ghana Envisat/S1 Subsidence Detected

10. Monrovia, Liberia Envisat/S1 Subsidence Detected

11. Luanda, Angola Envisat/S1 Subsidence Detected

12. Mombasa, Kenya S1 Subsidence Detected

13. Nacala, Mozambique S1 Subsidence Detected

14. Quelimane, Mozambique S1 Subsidence Detected

15. Mogadishu, Somalia S1 Subsidence Detected

16. Dar Es Salaam, Tanzania S1 Subsidence Detected

17. Conakry, Guinea S1 Subsidence Detected

18. Douala, Cameroon S1 Subsidence Detected

2.1.1. Lagos, Nigeria

Lagos is Nigeria’s largest city and busiest industrial and commercial center, built over a network of
wetlands, swamps, creeks and islands around a lagoon and sitting an average of 1.5 m above sea level.
The urban area is rapidly growing, estimated to have surpassed Cairo as the most populated city in
Africa. The city’s more than 20 million inhabitants live in densely populated neighborhoods averaging
over 20,000 persons per square kilometer [53]. Urban sprawl into the wetlands has been unplanned
and today about two-thirds of the city’s population lives in vulnerable informal settlements with
limited access to basic infrastructure. These residents face inadequate and absent sewage, drainage
and water systems and lack the capacity to manage or maintain existing networks. Water access is
unregulated and many households have sunk their own boreholes to tap into Lagos’s high groundwater
table [53,54]. Flooding is pervasive during the rainy season (May to July and September to October),
with climate change expected to increase annual rainfall and subsequent flood events for the city.
Lagos also faces periodic storm surge events, which will increase in magnitude and frequency as
tropical storms intensify [53]. Land reclamation and urban development have destabilized soils in key
areas of the coast and north of the city. Around Lagos Lagoon and the floodplains of the Ogun River,
sand filling extends real estate for housing developments. These new plots are built about 2 m above
sea level and are vulnerable to rising sea level as a result of climate change. Lagos State has made
efforts to reinforce Lagos’s key beaches. However, urban development is growing faster than urban
planning can regulate. Sand mining, river damming and obstruction and vegetation destruction are
also linked to Lagos’s quickly eroding shores [55,56].

2.1.2. Banjul, the Gambia

About one quarter of the Gambia’s total population lives in the greater Banjul area, which includes
the cities of Banjul and Serrekunda and the municipality of Kanifing. Banjul city rests on a low-lying spit
of coastal land at the mouth of the Gambia River, which, with anthropogenic factors such as unplanned
urban expansion and deforestation, leaves its inhabitants vulnerable to climate-related hazards [57].
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These areas have expanded without adequate stormwater management and drainage infrastructure
and suffer heavy losses of life and property during annual rains and storms [58]. Flash floods and
stormwater runoff are devastating to the urban coast, affecting 40,000 people every year [59]. Improper
urban planning and management increase Banjul’s susceptibility to flood and wind. Additionally,
land use zoning is ignored and housing construction and deforestation in flood-prone areas along the
riverbank contribute to flood-related mortality and property damage. These unplanned settlements
are expected to increase as urban populations grow. Many families must repair their houses annually
or move to temporary locations following storms. A rise in sea level of 1 m would devastate greater
Banjul, submerging over 90 square kilometers of land in the coastal zone and inundating the capital
and its port [1,60]. A sea level rise of this magnitude would increase salinity levels along the river and
in groundwater sources, diminishing freshwater supplies from coastal aquifers [61].

2.2. Data Used

There are several satellites with a SAR sensor on board and therefore acquiring suitable data
for InSAR. Table 2 gives an overview of past and currently operational SAR missions. The main
disadvantage of old missions, such as the European Space Agency’s ERS and Envisat, is the sparse
acquisition of images, which limits the applicability of InSAR methodologies. Another limitation is the
geometry of acquisition. For example, the Italian Space Agency’s CSK [62] is a constellation providing
numerous images but with the limitation that on certain occasions the satellite is tilted to fulfill users’
requests or to respond to emergencies. InSAR cannot be applied to images acquired with different
geometry, therefore the CSK archive cannot always be fully exploited for this purpose. However,
the catalogue is very rich in InSAR time series for many of the cities analyzed in this study and it can
be a very useful instrument to perform in-depth analysis.

Table 2. Synthetic aperture radar (SAR) missions overview. Envisat-ASAR and Sentinel-1 (highlighted
in blue) were considered for all case studies. TerraSAR-X, highlighted in green, was considered
only for Lagos, Nigeria and COSMO-SkyMed, highlighted in yellow, for Banjul, the Gambia. ESA,
European Space Agency; ASAR, advanced synthetic aperture radar; DLR, German Aerospace Center;
ASI, Italian Space Agency; ALOS-PALSAR, Advanced Land Observation Satellite phased array type
L-band synthetic aperture radar; JAXA, Japanese Aerospace Exploration Agency; CSA, Canadian
Space Agency.

Mission Name
(Agency) Start–End Date Free Frequency Repeat Cycle (Days) Incidence Angle

(Mid-Range)
Resolution

(m)

ERS-1 (ESA) July 1991–Mar 2000 Yes C 3/35/168 23◦ ~20
ERS-2 (ESA) Apr 1995–Sep 2011 Yes C 3/35 23◦ ~20

Envisat-ASAR
(ESA) Mar 2002–Apr 2012 Yes C 35 7 image swaths from

19◦ to 43.85◦ ~20

TerraSAR-X (DLR) Jun 2007– No X 11 20◦–55◦ 16/3/1
TanDEM-X (DLR) Jun 2010– No X 11 20◦–55◦ 16/3/1

COSMO-SkyMed
(ASI) Jun 2007– No X

16 (1 satellite) 4 (full
constellation) <12 h
(emergency mode)

22.5◦–54.75◦ 3/1

ALOS-PALSAR
(JAXA) Jan 2006–May 2011 No L 46 9.9◦–50.8◦ 100/30/20/10

ALOS-PALSAR 2
(JAXA) May 2014– No L 14 9.9◦–60.8◦ 100/10/6/3

Radarsat-1 (CSA) Nov 1995–Mar 2013 No C 24 7 image modes,
23.5◦–47◦ 100/10

Radarsat-2 (CSA) Dec 2007– No C 24 7 image modes,
23.5◦–47◦ 100/3

Sentinel-1 (ESA) Sep 2014– Yes C 6 3 image modes,
33.725◦–43.875◦ ~20

Iceye Jan 2018 No X 1 15◦–35◦ 10/3/1

S1 represents a revolution in InSAR since it provides very frequent acquisitions (6-day repeating
cycle) with a stable acquisition geometry, an ideal scenario for InSAR analysis. Moreover, S1 data are
easily and freely accessible through the Copernicus Science Hub [16].
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In the analysis presented here, we made use of Envisat-ASAR data for monitoring land
deformation from 2002 to 2010 and S1 from 2015 to today. Both ASAR and S1 data have a resolution of
~20 m, while the swath is about 100 km for ASAR and 250 km for S1.

Concerning the two case studies presented, for Lagos we were also able to access the TSX dataset
and for Banjul we had access to CSK data. This allowed us to perform a higher-resolution analysis,
given the 3 m resolution of these products.

Figure 2 shows the distribution of data available for the 2 case studies relative to the different
sensors employed, while Table 3 provides a summary of details for the datasets employed.

It is clearly evident that the S1 and CSK archives allow for a more continuous analysis, given the
homogeneous distribution of data throughout the whole time series, with the difference that CSK is
not a freely accessible dataset. Regarding CSK data, there were more scenes available compared to the
one reported. We could access only these images due to a free quota limit.
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Table 3. Summary of data availability for the two case studies presented.

Case Study Sensor Number of
Images

Analysis Start
Date

Analysis End
Date Orbits

Lagos, Nigeria Sentinel-1 98 March 2015 November 2018 1 Ascending
TerraSAR-X 23 December 2009 May 2013 71 Ascending

Envisat-ASAR 20 January 2004 September 2010 22 Descending
Banjul, the Gambia Sentinel-1 100 March 2015 September 2018 133 Ascending

COSMO-SkyMed 60 May 2011 September 2018 Descending
Envisat-ASAR 18 January 2004 December 2008 266 Descending

2.3. PSI Analysis by Means of SNAP and StaMPS

In PSI, among the available (n+1) images, one is selected as the master image. Interferograms
are formed between the master and the n available slaves acquired on different dates. Each one is
characterized by a certain perpendicular baseline, that is, the perpendicular distance between the 2
satellite positions. Knowing the precise position of the satellite on the 2 acquisition dates allows us to
subtract from the interferogram phase the components related to the perpendicular baseline (flat earth
and topographic components).

In an urban environment, manmade structures appear as persistent scatterers (PSs), since they
reflect most of the energy sent by the SAR directly backwards or in a double-bounce mechanism (i.e.,
from the ground to a perpendicular structure and back to the sensor).

In PSI, the deformation phase is separated from the atmospheric phase and noise by filtering
in time and space. In fact, deformation is correlated in time, while the effects of atmosphere are
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correlated in space but not in time (i.e., they are recognizable in one single interferogram but they are
not correlated with other interferograms since the atmosphere changes randomly from one date to
another). Finally, noise is uncorrelated in space and time.

PSI can associate deformation to a specific scatterer, allowing very high-resolution monitoring
of infrastructures.

As shown in Figure 3, the first step was to create a subset of the n available S1 images. S1 images
were divided into 3 sub-swaths. In most of the cases, the city of interest was contained in a single
sub-swath. Each sub-swath is composed of several bursts (longitudinal portion of the image). Therefore,
to create the subset, we selected the sub-swath containing the area of interest and the bursts covering
exactly the area of interest [25]. This allowed us to reduce the size of data and speed up the processing.
The second step was to compute individual interferograms, combining the master image with the
remaining n slave images. Subset and interferogram computation was performed using SNAP
open source software [63]. The stack of n individual interferograms was given as input for the
PSI analysis (third step), where PSs are identified and analyzed. This step was performed using
the StaMPS open source toolbox [46,64] for Matlab®. The toolbox gives as output the map of mean
velocity of deformation for all the PSs in the area of analysis, as well as their deformation on each
date of observation and the mean standard deviation of the velocity of deformation throughout the
whole time series. Additionally, for the atmospheric phase removal of the data, we employed the
Toolbox for Reducing Atmospheric InSAR Noise (TRAIN) [65] and applied the linear approach (phase
versus elevation).
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Figure 3. Workflows (i) and (ii) for Sentinel-1 data. In workflow (i), S1 images are processed within the
Sentinel Application Platform (SNAP) to compute interferograms. In workflow (ii), the interferogram
series is analyzed within the Stanford Method for Persistent Scatterers (StaMPS) to retrieve a PS land
deformation map.

To automate the process of interferogram formation, we developed a set of scripts called
“snap2stamps,” which, based on the setting of a few parameters (sub-swath of S1 images to be
processed, bounding box of the area of interest, path to the data folder, path and name of the master
image, parameters regarding the computational resources to employ, etc.), automatically compute
interferograms. These scripts are Python wrappers that employ SNAP as the InSAR processor and
provide output compatible with StaMPS to perform PSI analysis. Such sets of scripts are available as
open source [14]. The last unofficial version can be found on the GitHub repository [66].

The overall analysis was composed of 3 main workflows: (i) single master interferogram
processing using SNAP, (ii) PSI processing using StaMPS and (iii) results analysis in a geographic
information system (GIS) environment.

In workflow (i), the first step is to identify the master image using the “InSAR Stack Overview”
command of SNAP. After that, the area of interest (AOI) inside the master image has to be identified
and used to split the master image using the SNAP graphical user interface (GUI). In this way, a single
image swath is selected along with the bursts needed to cover the AOI. This operation reduces
data volume and optimizes processing time and resources. At this point, we can make use of the
snap2stamps scripts to prepare the slave images and compute the interferograms. The scripts sort
the slave images by acquisition date, place them in subsets based on the master extent, co-register
each of them with the master image and compute the interferograms, which are finally exported for
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analysis in StaMPS. For details about these operations, refer to the documentation of the snap2stamps
package [14].

In workflow (ii), the first step is to prepare the exported data to be analyzed in StaMPS using
the mt_prep_snap script. Next, within Matlab®, StaMPS can be run from steps 1 to 7 as described in
the StaMPS user manual [64] using TRAIN for the APS mitigation using the aps_linear approach to
perform the PS analysis. The output is a map containing points bearing the land deformation values
throughout the time series.

In workflow (iii) (Figure 4), the land deformation maps are loaded in a GIS, where points showing
deformation greater than or equal to ±2 mm/year are selected and analyzed. For each area showing
interesting behavior (AOI), 3 plots are produced: (i) a plot showing the distribution of velocity of
deformation values for all the analyzed points, (ii) a plot showing the distribution of the standard
deviation values of the velocity of deformation for all the analyzed points and (iii) a plot showing
the deformation trend of each point measured at each time step of the time series. The plots allow us
to understand the average behavior of the points inside the AOI. The first plot indicates the average
deformation (subsidence, uplift or stability), the second indicates the stability of velocity of deformation
values and the third shows the trend of deformation along the time series.
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with creation of plots to understand the deformation of areas of interest (AOIs).

The data processing for all the cities analyzed within the CityCORE project was performed within
the virtual environment provided by the ESA Research Support System (ESA RSS) CloudToolbox
service [67], with 8 vCPUs, 52 GB RAM and 4 TB disk space available.

3. Results and Discussion

For both case studies, we present the results obtained using Envisat-ASAR and S1 data. In addition,
we also made use of TSX data for Lagos and CSK data for Banjul, both at 3 m resolution. The results
show maps of velocity of land deformation in mm/year during the period of observation for the PSs
identified in each time series. The velocity of deformation can be negative, meaning land subsidence
or positive, meaning land uplift. The deformation values refer to the line of sight (LOS) of the satellite
and can have both a vertical and a horizontal component. Given that the incidence angle is less than
45◦ for all the acquisitions employed in the study, it is more likely that the dominant component is the
vertical one. To discriminate the two components, we would need field measurements, not available at
this stage or acquisitions from a different orbit, not available for every case study and not analyzed
at this stage of the research. However, a different incidence angle would influence the magnitude of
the detected displacement in LOS; specifically, the lower the incidence angle, the higher the measured
LOS, given the same vertical displacement. To analyze our results, we had to bear in mind the different
incidence angles of the datasets. In particular, ASAR has an average incidence angle of about 20◦, S1 of
about 38◦, CSK of about 27◦ and TSX of about 40◦. Therefore, taking S1 results as a reference, for the
same vertical displacement, ASAR would show a displacement about 15% higher, CSK 10% higher
and TSX 5% lower.

With the aim of highlighting significant deformations, the results were filtered, excluding points
indicating mean velocity of land deformation between −2 and 2 mm/year, values considered as noise.
This interval was chosen based on values found in the literature and on the characteristics of the
data employed in the study. In fact, Sabater et al. [68] compared the results of ground deformation
measurements obtained with different sensors. They found that using C band (5.6 cm), used by ASAR
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and S-1, the precision is 1.1 mm, while using X band (3.1 cm), used by TSX and CSK, the precision is
0.6 mm. This justified the interval chosen, which was suitable for all the data employed. Moreover,
movements below 2 mm/year can be considered as not critical within the deformation of a city.

At the same time, we had to bear in mind that these differences in terms of precision must be
considered when analyzing the results [69]. Finally, the sensitivity to surface change, higher for X
band, also must be considered in analyzing the results.

For each case study, five AOIs were selected and analyzed in detail. For each AOI, we produced
three plots: (i) the distribution of the values of velocity of deformation, (ii) the distribution of the
values of standard deviation of the velocity of deformation and (iii) the trend of deformation for
each point analyzed through the whole time series, which shows also the overall mean velocity of
deformation, that is, the mean of the mean velocity of deformation of each PS within the AOI and its
standard deviation, that is, the standard deviation computed on the mean velocity of deformation of
each PS within the AOI. The plots allow us to understand the magnitude of the deformation (velocity),
its reliability (standard deviation) and its evolution over time (trend). In the case of ASAR data,
the standard deviation was not computed (plot ii)).

3.1. Lagos, Nigeria

Figure 5 shows the results obtained for Lagos, Nigeria, using ASAR data for the period 2004–2010,
TSX data for the period 2009–2012 and S1 data for the period 2015–2018. The points showing
deformation between −2 and 2 mm/year were filtered out of the image as they are considered
noise, as explained at the beginning of the section. Five areas of interests (AOIs) were considered for
detailed analysis: northeast Lagos, east coast, city center, airport and northwest.
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Figure 5. Land deformation results for Lagos, Nigeria, obtained using ASAR data for the period
2004–2010 (b), TerraSAR-X data for 2011–2012 (c) and Sentinel-1 data for 2015–2018 (d). Points showing
deformation between −2 and 2 mm/year were filtered out of the image as they are considered noise.
Five areas of interest (AOIs) were considered for detailed analysis, as shown in (a): northeast Lagos,
east coast, city center, airport, northwest.

Regarding the datasets (Figure 2), the distribution of the 20 ASAR acquisitions is suboptimal,
with sparse acquisitions from the beginning of 2004 to the end of 2010. Most of the acquisitions (12) are
concentrated between the second quarter of 2009 and the third quarter of 2010. Instead, the distribution
of the 98 S1 images is optimal, with acquisitions very well distributed from April 2015 to November
2018. Finally, the 23 TSX images are optimally distributed from November 2011 to November 2012.

The results derived from ASAR data (Figure 5b) show that most of the city was stable for that time
period, with only some areas of significant subsidence (from −2 to −5 mm/year) in the northern part
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of the city, a small area on the east side and some areas on the south side close to the coast. Given the
distribution of ASAR images, we can attribute this deformation to the two years between mid-2008
and mid-2010. Despite a lower sensitivity to displacement of C band, ASAR shows points covering the
whole city with a magnitude within the ±2 mm/year noise threshold, indicating a stable land surface.

The analysis obtained with TSX data (Figure 5c) shows significant differences from previous
results. If the southern coast shows similar behavior, the central-northern part of the city shows strong
signals of land deformation not detected by ASAR in previous years. Moreover, the northern and
eastern sides of the city, where we detected subsidence using ASAR data, do not appear in the map,
indicating stable behavior during the period of analysis. As will be described in more detail in the
following, TSX results are affected by a strong fluctuation of values along the time series and the mean
velocity of deformation is affected by a high standard deviation (more than 2 mm/year, in many cases
more than 5 mm/year). This is partly due to a higher sensitivity to displacements of X band.

The analysis based on S1 data (Figure 5d) shows similarities with ASAR and TSX results,
in particular on the northern and southern sides of the city, where we can notice subsidence consistent
with that detected by ASAR and TSX.

To better understand the results, five AOIs (Figure 5a) were selected and analyzed in detail,
based on the land deformation signal they showed and their importance within the city.

The analysis carried out for the northeast AOI is shown in Figure 6. This area (Erunkan) has been
developed in the past 15 years on reclaimed land. Therefore, many buildings are of new construction,
with many still under development as shown by Google Earth Street View. The results obtained
with the three datasets all show land subsidence but with some differences. Using ASAR data,
we detected PSs showing land subsidence in many cases greater than 5 mm/year, with an overall
subsidence of 4.8 mm/year (standard deviation of 2.4 mm). The subsidence is shown to have a constant
rate throughout the time series. Most of the points are on the north side of the AOI. This is due
to the development of the neighborhood, which occurred toward the south side after 2010 and is
impossible to capture by ASAR. Using TSX data, we were able to obtain only one PS, which is not
enough to infer information about the area. Using S1, we obtained PS points in the entire AOI.
Especially on the south side, we can observe a strong signal of land deformation. Most of the PSs show
subsidence with magnitude greater than 3 mm/year and for hundreds of PSs greater than 5 mm/year.
These values appear to be precise given the low value of the standard deviation (the majority below
1 mm/year). The trendline plot, despite some fluctuations, shows land subsidence with a constant
rate, with a mean velocity of 9.4 mm/year (standard deviation of 5.4 mm/year among all the analyzed
points). The observed subsidence is most likely due to compaction of the land under the weight of the
new buildings.

The analysis carried out for the east coast AOI is shown in Figure 7. This area (Lekki) went
through significant development in the past 10 years, with land reclamation and new construction (see
Google Earth Street View). Using ASAR data, we detected hundreds of PSs showing land subsidence
with a distribution of values centered around −2 mm/year. The overall subsidence is 1.8 mm/year
(standard deviation of 2.4 mm). The subsidence appears to have a constant rate throughout the time
series. Most of the points are on the west side of the AOI. This is due to the development of the
neighborhood, which occurred toward the east side after 2010 and is impossible to capture by ASAR.
Using TSX, we obtained tens of PSs mainly on the west side of the AOI. They also indicate a general
subsiding trend (1.9 mm/year mean subsidence) but with more fluctuations throughout the time
series leading to an important standard deviation value of 3.8 mm. Despite being consistent with
the other results, these do not seem to be reliable. Using S1, we obtained thousands of PSs in the
entire AOI. Most of these PSs show subsidence with a magnitude greater than 2 mm/year and for
several thousands of them, greater than 5 mm/year. These values appear to be reliable given the
low value of the standard deviation (the majority below 1 mm/year). The trendline plot, despite
some fluctuations, shows constant land subsidence, with a mean velocity of 3.0 mm/year (standard
deviation of 2.0 mm/year among all the analyzed points).
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The analysis carried out for the city center AOI is shown in Figure 8. This area (Ijora) appears to
be quite stable in terms of development in the past 15 years. Using ASAR data, we detected tens of PSs
(few compared to other datasets) showing a slight trend of land subsidence with a distribution of values
centered around −1 mm/year. The overall subsidence is 1.4 mm/year (standard deviation of 1.4 mm).
The subsidence shows a constant rate throughout the time series. Using TSX, we obtained thousands
of PSs indicating a general subsiding trend (3.7 mm/year mean subsidence) but with fluctuations
throughout the time series (standard deviation of 2.8 mm). Using S1, we obtained thousands of PSs
showing subsidence with magnitude greater than 1 mm/year, for several hundreds of them greater
than 5 mm/year. These values appear to be reliable given the low value of the standard deviation (the
majority below 1 mm/year). The trendline plot, despite some fluctuations, shows land subsidence
with a constant rate, with a mean velocity of 1.9 mm/year (standard deviation) of 2.5 mm/year among
all the analyzed points).

The analysis carried out for the airport AOI is shown in Figure 9. The results obtained with the
three datasets show varying behavior, most probably because different periods of analysis experienced
different deformation patterns. Using both ASAR and S1 data, we detected only a few PSs, most of them
outside of the airstrip. In both cases, the distribution of values of velocity of deformation is centered
around an uplift of 1 mm/year, for S1 with standard deviation below 1 mm/year. The trendlines show
a mean uplift of 0.8 mm/year for ASAR and 0.4 mm/year for S1. However, the standard deviations
of this mean uplift among all the analyzed points are 1.3 mm/year for ASAR and 2 mm/year for S1,
indicating considerable variability.

On the contrary, using TSX, we detected thousands of PSs, many falling within the main airport
strip, showing a strong signal of subsidence. Most of the PSs show subsidence with magnitude greater
than 4 mm/year, for hundreds of PS greater than 6 mm/year. These values appear to be not very precise
given a standard deviation centered around 2.8 mm/year. The trendline plot, despite considerable
fluctuations, shows land subsidence with a constant rate, with a mean velocity of 3.8 mm/year
(standard deviation of 2.3 mm/year among all the analyzed points).

The analysis carried out for the northwest AOI is shown in Figure 10. This area (Egbe and
Ejigbo) does not show any significant change in the past 15 years. The results, as in the previous
case, show varying behavior, with ASAR and S1 detecting few PSs, with a predominant slight uplift
in the case of ASAR (0.3 mm/year mean deformation) and a predominant land subsidence in the
case of S1 (−0.5 mm/year mean deformation) but with 2.4 mm/year standard deviation among the
mean deformation of all the PSs. Using TSX, we detected thousands of points showing a strong
signal of subsidence, with a distribution peak between −2 and −3 mm/year, hundreds of points
with deformation greater than −5 mm/year. The distribution of the standard deviation in this case is
centered around 3 mm, indicating some uncertainty in these measurements. This is also confirmed by
the trendlines, showing a mean deformation of −2.7 mm/year with 2.5 mm standard deviation.

By looking at these results, we can immediately notice how higher resolution can bring more
details. In fact, TSX is able to detect a higher density of PSs compared to S1 and ASAR, allowing the
detection of deformation at building scale in case of good coherence throughout the whole time series.
However, the big advantage brought by S1 is the frequency of acquisition, which increases the ability
to detect PSs and the precision of measuring their velocity of deformation. This is evident by the
distribution of the standard deviation values. On the contrary, ASAR, which allowed the analysis of
land deformation in the past, has coarser resolution and few images not continuously acquired and not
well distributed throughout its acquisition life. TSX, which has the advantage of higher resolution but
is not freely accessible, also has a longer and discontinuous frequency of observation, which strongly
affects the InSAR analysis.
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The higher resolution of TSX allows for increased details in the analysis, as is evident in the city
center and airport AOIs but seems to introduce more uncertainty to the measurements, as shown by the
fluctuations on the trendlines. This may be due to the characteristics of the area, made up of unstable
buildings and by the X band signal that can be strongly affected by the atmosphere, quite important in
this area of the world.

S1 data appear to be a very good compromise given the level of detail they can provide and the
stability of the measurements and they are freely accessible.

3.2. Banjul, the Gambia

Figure 11 shows the results obtained for Banjul, the Gambia, in particular those obtained with
ASAR data for the period 2004–2008, CSK data for the periods 2011–2014 and 2015–2018 and S1 data
for the period 2015–2018. The points showing deformation between −2 and 2 mm/year were filtered
out of the image as they are considered noise. Five AOIs were considered for detailed analysis: Banjul
city, new Parliament, port area, resort north coast and north coast.
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Figure 11. Land deformation results for Banjul, the Gambia, obtained using ASAR data for the period
2004–2008 (b), COSMO-SkyMed data for 2011–2014 (c) and 2015–2018 (d) and Sentinel-1 data for
2015–2018 (e). Points showing deformation between −2 and 2 mm/year were filtered out of the image
as they are considered noise. Five AOIs were considered for detailed analysis, as shown in (a): Banjul
city, new Parliament, port area, resort north coast and north coast.

Regarding the datasets (Figure 2), the distribution of the 17 ASAR acquisitions is suboptimal,
with sparse acquisitions (4 images) from the beginning of 2004 to the end of 2005. Most of the
acquisitions (13) are concentrated between the third quarter of 2007 and the fourth quarter of 2008.
On the other hand, the distribution of the 100 S1 images is optimal, with acquisitions very well
distributed from April 2015 to September 2018. Concerning the CSK data, the availability of acquisitions
in the catalogue was optimal from 2011 until the end of 2018. However, given the limited number of
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scenes we could obtain, we selected a total of 60 images. Given the changes that occurred in the city of
Banjul in between 2011 and 2018 (for example, construction of the new national assembly building),
to capture deformations of the new constructions, we decided to analyze the images in two groups:
15 images covering the period May 2011 to December 2014 with an average distribution of 1 image
per quartile and 45 images covering the period January 2015 to September 2018 with an average
distribution of 1 image per month.

The results derived from ASAR data (Figure 11b) show that the majority of the city is stable,
with only some areas of significant subsidence (from −2 to −4 mm/year) in the old city of Banjul.
Given the distribution of ASAR images, we can attribute this deformation mainly to the years 2007
and 2008.

The analysis performed with CSK data for 2011–2014 (Figure 11c) shows similar results,
highlighting some interesting land subsidence in the old city of Banjul (−2 to −4 mm/year) with
a higher density of PSs. This is also confirmed by the analysis carried out using CSK data for 2015–2018
(Figure 11d). In this case we obtained a lower density of PSs but some of them indicated stronger land
subsidence (<−4 mm/year). As for TSX data over Lagos, shown in the previous section, the results
obtained using CSK data are also affected by a strong fluctuation of values along the time series and
the mean velocity of deformation is affected by a high standard deviation (more than 2 mm/year).
Given that CSK also uses X band, these stronger fluctuations can be linked to the higher sensitivity of
X band to displacement.

Finally, the analysis performed with S1 data (Figure 11e) shows a scattered presence of subsiding
points in the Serrekunda area and, once again, a concentration of points in the old city, indicating
subsidence (mainly between −1 and −3 mm/year).

To better understand the results, five AOIs (Figure 11a) were selected and analyzed in detail,
based on the land deformation signals they showed and their importance within the city.

The analysis carried out for the Banjul city AOI is shown in Figure 12. This old area did not
experience much development in recent years, with the exception of few new constructions. The area
is basically a sand island on the mouth of the Gambia River, which makes it an unstable environment
in terms of land deformation. The results obtained with the four datasets all show land subsidence
with similar magnitude. The densities of PSs are different, with S1 and CSK (2011–2014) detecting
several hundreds and ASAR and CSK (2015–2018) just over 100. Their distribution over the city is
different depending on the dataset used, therefore depending on the period of analysis. This will be
clearer in the following, where we analyze subsets of this area.

Using ASAR data, we detected PSs showing land subsidence mainly between 0 and −3 mm/year,
with an overall subsidence of 1.3 mm/year (standard deviation of 1 mm). The subsidence shows
a constant rate throughout the time series.

The results derived from CSK (2011–2014) show very similar subsidence supported by many
more PSs, with an overall magnitude of 2 mm/year (standard deviation of 0.7 mm). However, the PSs
show a high value of standard deviation, with a distribution centered at 2 mm but with tens of PSs
reaching 3 mm.

The results obtained from CSK (2015–2018) exhibit fewer PSs (about 100 in total) with a similar
subsidence magnitude. However, in this case, we found PSs showing a stronger subsidence signal
(<−4 mm/year). The analysis shows an overall subsidence of 2.4 mm/year but with a much stronger
fluctuation of values (standard deviation of 2.6 mm). Despite a continuous trend of land subsidence
recognized in the time series, the fluctuation of the values makes this analysis less reliable.

Using S1, we obtained several hundreds of PSs in the entire AOI, some detecting a strong signal
of land deformation (<−4 mm/year). Most of the PSs show subsidence in the range of −1 and
−3 mm/year. These values appear to be very precise given the low value of the standard deviation
(the majority below 1 mm/year). The trendline plot, despite some fluctuations, shows land subsidence
with a constant rate, with a mean velocity of 1.4 mm/year (standard deviation of 1.6 mm among all
the analyzed points).
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The analysis carried out for the new Parliament AOI is shown in Figure 13. Construction of this
new building ended in 2014, which is why, using the ASAR and CSK (2011–2014) datasets, we were
able to find only one PS, which of course does not bring any information about the land deformation
of this area. We were expecting to find many PSs using the CSK (2015–2018) dataset, which detected
only 10 PSs that did not fall within the main building itself. The overall deformation reported is a land
uplift of 1.1 mm/year (standard deviation of 0.8 mm). However, the distribution of standard deviation
of the velocity of deformation values is between 1.5 and 2 mm, making these measurements unreliable.
Using S1 data, we detected about 50 PSs falling over the new national assembly building. In this
case, the land subsidence trend is clear, with the distribution of velocity of deformation showing that
all PSs have a land deformation lower than –1 mm/year. The distribution of the standard deviation
values is centered around 1 mm, indicating a reliable measurement. The trendlines show clear land
deformation, with a constant rate throughout the time series, with an overall mean land subsidence of
4.1 mm/year (standard deviation of 1.8 mm among all the analyzed points). The observed subsidence
is most likely due to compaction of the land under the weight of the new building or the settlement of
the structure itself.

The analysis carried out for the port area AOI is shown in Figure 14. This area experienced some
development in the past 15 years, with extensions of existing piers and construction of buildings.
The results obtained with the three datasets all show a trend of land subsidence. Using ASAR
data, we detected only five PSs but they show a clear land subsidence trend, with an overall mean
velocity of deformation of −4 mm/year (standard deviation of 1.4 mm among all the analyzed points).
The subsidence appears to have a constant rate throughout the time series but the very low PS density
cannot tell us much about the deformation in this area. Using CSK (2011–2014) data, we obtained
12 PSs all showing land subsidence, mainly concentrated between −3 and −4 mm/year. However,
the distribution of standard deviation values is centered between 2 and 3 mm, indicating considerable
variability. The trendlines show a constant trend of subsidence throughout the time series, with the
exception of the acquisitions in 2014, which show high variability. The overall mean land deformation
is −3 mm/year (standard deviation of 0.7 mm among all the analyzed points). Similarly, using CSK
(2015–2018) data, we detected only six PSs, showing land subsidence between −5 and −7 mm/year,
with a distribution of standard deviation values centered at 2 mm. The trendlines show a constant
trend of subsidence throughout the time series, with overall mean land deformation of −6 mm/year
(standard deviation of 0.7 mm among all the analyzed points). The few detected PSs, unfortunately,
cannot tell much about the entire area. Instead, using S1, we detected about 100 PSs showing land
subsidence between −1 and −6 mm/year, with distribution of standard deviation values centered at
0.5 mm, indicating very precise measurement. Despite some fluctuations, the trendlines show a clear
land subsidence trend, which appears to intensify in the second half of the time series. The overall mean
velocity of deformation is −2.4 mm/year (standard deviation of 1 mm among all the analyzed points).
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The analysis carried out for the resort north coast AOI is shown in Figure 15. As in the case
of AOI 2, this is a very small area and we were expecting few PSs. Using ASAR data, we detected
only three PSs, showing subsidence between −1 and −3 mm/year. The trendlines show a constant
rate of land subsidence with an overall mean velocity of deformation of −2.1 mm/year (standard
deviation of 0.7 mm among all the analyzed points). Using CSK (2011–2014) data, we obtained 15 PSs,
all showing land subsidence between −1 and −3 mm/year, with a distribution of standard deviation
values centered at 2 mm. The trendlines show a constant trend of subsidence throughout the time
series, with the exception of the acquisitions in 2014, which show high variability. The overall mean
land deformation is −1.7 mm/year (standard deviation of 0.4 mm among all the analyzed points).
Using CSK (2015–2018) data, we detected no PSs. Instead, using S1, we detected about 40 PSs showing
land subsidence mainly between −1 and −3 mm/year, with distribution of standard deviation values
centered at 0.8 mm, indicating very reliable measurement. Despite some fluctuations, the trendlines
show a clear land subsidence trend. The overall mean velocity of deformation is −1.9 mm/year
(standard deviation of 0.8 mm among all the analyzed points).

The analysis carried out for the north coast AOI is shown in Figure 16. Using ASAR data,
we detected 10 PSs, showing subsidence between −1 and −3 mm/year. The trendlines show a constant
rate of land subsidence between 2007 and 2008, with an overall mean velocity of deformation of
−2.1 mm/year (standard deviation of 2.5 mm among all the analyzed points). Using CSK (2011–2014),
we obtained more than 100 PSs showing mostly land subsidence between −1 and −4 mm/year,
with a distribution of standard deviation values centered at 1.4 mm. The trendlines show a constant
trend of subsidence throughout the time series, with the exception of the acquisitions in 2014,
which show high variability. The overall mean land deformation is −1.9 mm/year (standard deviation
of 1.4 mm among all the analyzed points). Also using CSK (2015–2018) data, we detected more
than 100 PSs, with a land subsidence between −1 and −4 mm/year. The distribution of standard
deviation values is centered at 1.6 mm. The trendlines show an overall trend of land subsidence
characterized by strong fluctuations. The overall mean land deformation is −2.4 mm/year (standard
deviation of 1.2 mm among all the analyzed points). Using S1 data, we detected more than 100 PSs
showing a predominance of land subsidence mainly between −1 and −2 mm/year. The distribution of
standard deviation values is centered at 0.5 mm, indicating very reliable measurement. Despite some
fluctuations, the trendlines show a land subsidence trend with an overall mean velocity of deformation
of −1.4 mm/year. The standard deviation is 2.2 mm among all the analyzed points, high as expected
given the presence of many points indicating land uplift. As this area is a productive site, the land
deformation exhibited in all four analyses makes it important for further monitoring.
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The results show an overall agreement between the deformations measured employing different
datasets. As in the case of Lagos, we notice that, in general, a higher resolution can lead to a higher
density of PSs. However, the results based on CSK in some cases show a lower density of PSs. This is
due to the instability of the structures (houses, building, shacks, etc.) or their roofs, characteristic of this
region. As in the case of Lagos, weather conditions could also play a significant role in the precision of
the measured deformation, being X band sensitive to the atmosphere. In general, for Banjul we can
affirm that CSK data do not appear to be very reliable. In fact, the fluctuations of measurements in
some cases are too big to trust the mean velocity of deformation. A combination of high resolution,
short wavelength and unstable structure of the urban texture is most likely the cause of this low level
of accuracy. However, TSX data, which is very similar to CSK, appeared to be more reliable than CSK
data, considering that Lagos is not a completely different environment compared to Banjul. Probably
the more developed condition of Lagos plays a role in the resulting PS density. The advantage of the
CSK dataset compared to TSX is the wide and continuous availability of images from 2011 to today.

The lower density of PSs detected by ASAR data was expected due to the resolution of the data.
In addition, the low frequency of observations in the first part of the time series (2004 to 2005) results
in fluctuations in the deformation measured.

S1 in this case also appeared to have very reliable datasets, allowing us to obtain very precise
measurements (characterized by low values of velocity of deformation standard deviation) and perform
large-scale land deformation analyses.

4. Conclusions

In this paper, we presented a methodology for performing land deformation analysis based on
the integrated use of SNAP and StaMPS and applied at large scale, employing a large amount of data
and using different sensors. We presented the results for the city of Lagos, Nigeria, where we used
ASAR, TSX and S1 data and Banjul, the Gambia, where we used ASAR, CSK and S1 data. The results
showed hotspots of land deformation. While the analyses should be further investigated, particularly
with field measurements, they are nevertheless of interest for local authorities and urban planners.

The methodology proved to be easy, detailed and reliable in obtaining InSAR time series analysis
from a large amount of data, such as the long S1 time series and the high-resolution CSK and TSX
time series. This allows moving toward a more accessible InSAR analysis. In fact, with this easy
and semiautomatic methodology coupled with a free accessible dataset, such as the S1, transferring
knowledge, especially to developing countries, becomes more feasible, allowing capacity to be built
within the framework of a very complex technology.

Within the framework of the CityCORE Africa project, which aims to improve the resilience of
selected coastal cities in sub-Saharan Africa, we were able to apply this methodology to 18 cities with
the aim of highlighting possible critical land deformation hotspots. We employed about 1000 S1 images
covering an area of about 20,000 km2.

In particular, S1 images are acquired with enough frequency and cover extensive enough areas to
allow the analysis of fast-growing cities, such as the African cities analyzed in this study. The dataset
is freely accessible and continuously updated thanks to the global systematic acquisition plan of the S1
mission, allowing constant monitoring of the areas of interest. The open access of the data, its wide
area coverage and the frequency of observation allow hotspots of land deformation to be exposed at
limited cost.

Despite not being freely accessible, high-resolution commercial SAR data are available over most
of the selected cities and allow a detailed analysis (3 m resolution and more) of land deformation,
such as the case of CSK data available from 2011.

The presented methodology shows various limitations. Some are purely related to the technology
employed. For instance, precipitation and water content in the atmosphere can significantly affect
the results, introducing disturbances in the radar signals, which influence the measured deformation
and this introduces fluctuations in the measured deformation time series and uncertainty in the
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mean deformation value; a long time series of images can limit this source of error. The measured
deformation is expressed in the direction of the line of sight of the SAR antenna, which is about
30◦ from the nadir and in order to derive its vertical and horizontal components, two compatible
measurements should be available, one from an ascending and one from a descending orbit; this would
increase the capacity needed in terms of computation and time of analysis and also cost in the case of
commercial data. Despite the abundance of S1 data, in many cases SAR images are available only from
a single orbit, especially when there is a need to go back in time, before the advent of S1. The resolution
of older SAR data, such as Envisat-ASAR and the more recent S1 employed in this study, does not
allow for precise analysis at building scale, for which commercial data at high resolution is needed,
as shown in the case of Lagos by means of TSX data. The extensive lack of independent measurements,
such as with Global Positioning System (GPS) data, does not allow for validation and calibration of the
results, which is important for calibrating a precise model of deformation. This is especially true for
African cities. However, developments in the field of smart sensors can allow automatic and low-cost
monitoring of buildings and structures [69,70], which could be useful for integrated InSAR analysis.

Other limitations are connected to the dataset employed. The use of S1 data was shown to be
particularly effective; however, in many cases data were available only for one or two years. This is
a short time frame for a precise analysis; older data archives such as those of Envisat-ASAR and
ERS-1 and -2 may cover longer time periods but the data are very sparse and, in many cases, do not
cover the areas of interest. CSK shows an abundance of data for many of the considered cities since
2011, which would guarantee a long enough analysis, with the problem that these data are not freely
available; a long time period of observation is important because some deformations can be seasonal,
such as thermal expansion of structures and contraction or expansion of underground water storage.
Low resolution and accuracy of the digital elevation model can substantially degrade the precision of
results. High-resolution digital elevation models are not easily available, especially for African cities
or are very expensive to produce. However, for flat areas, such as most of the African cities considered,
this is a limited problem.

Other limitations are related to the physical nature of the observed urban landscape. The observed
deformation can be due to a mix of different phenomena difficult to discern without a field analysis.
New constructions can be monitored only from the time they are completed; during construction,
in fact, the scatterer is likely to lose coherence, resulting in a nonpermanent scatterer. Changes
(also small) on ground surfaces or on top of observed structures, such as changes in vegetation or
accumulation of material such as mud or garbage, result in a loss of coherence and make it impossible
to monitor the deformation.

New SAR constellations will help overcome some of these limitations. For instance, the recently
launched ICEYE constellation [71] will allow for more precise InSAR analysis [72], not only for the list
of cities considered here but also worldwide. ICEYE data have a high spatial resolution (10 m for the
initial 2018 phase, 3 m starting in 2019, when the constellation will be operational) and thanks to the
large number of orbiting satellites (18 microsatellites are planned to be launched), a short revisit time
(up to few hours) and a continuous observation strategy. However, contrary to S1, ICEYE data are
commercial, not openly accessible and it is foreseen that they will not be suitable for interferometry as
they are not provided with orbit control and are only available on ground range detected products,
not single look complex, as is needed for InSAR.

From an InSAR point of view, the analysis could be improved by implementing a precise filtering
of acquisitions based on weather data, which was only partially implemented in the assessment here.
In fact, atmospheric disturbances may significantly affect InSAR results. For instance, in some cases
we noticed unexpected fluctuations in the time series results in connection to certain dates (e.g., strong
increase of subsidence compared to the average trend of the time series). Excluding images acquired
on days with heavy rain may improve the final result. This would also reduce the number of analyzed
images, which would speed up the time required for the analysis.
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Moreover, the analysis could be set at building level using, whenever available, the outlines of the
buildings. In fact, for many areas of the world, building outlines are openly available thanks to tools
such as Open Street Map [73]. The vector layer can be used to select points relative to a single building,
which would be used to assess the deformation of the building itself. Unfortunately, Open Street Map
data are not always detailed enough for many African cities.

Despite some of the limitations of this technology, the presented methodology, InSAR, especially
with the use of S1 data, shows great potential within the framework of land deformation and coastal
resilience. In fact, hotspots of land deformation, critical in terms of coastal resilience, can easily be
exposed for further analysis or for development of adaptation plans or disaster risk reduction measures.
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