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Abstract: While Light Detection and Ranging (LiDAR) revolutionized archaeological prospection
and different visualizations were developed, an automated detection of cultural heritage still poses
a significant challenge. Therefore, geographers and archaeologists from Westphalia, Germany are
developing automated workflows for classifying field monuments from special terrain models. For this
project, a combination of GIS, Python, and Object-Based Image Analysis (OBIA) is used. It focuses on
three common types of monuments: Ridge and Furrow areas, Burial Mounds, and Motte-and-Bailey
castles. The latter two are not classified binary, but in multiple classes, depending on their degree of
erosion. This simplifies interpretation by highlighting the most interesting structures without losing
the others. The results confirm that OBIA is suitable for detecting field monuments with hit rates of
~90%. A drawback is its dependency on the use of special terrain models like the Difference Map.
Further limitations arise in complex terrain situations.

Keywords: automated detection; OBIA; LiDAR; Difference Map; field monument; Burial Mound;
Motte-and-Bailey castle; Ridge and Furrow

1. Introduction

The use of airborne laser scanning in archaeology started almost 20 years ago. Since then, LiDAR
revolutionized archaeological prospection and new visualizations were invented to ease interpretation
of field monuments. In parallel, the need for automated workflows and classifications became evident
to handle the growing number of datasets.

One of the first archaeological applications of LiDAR in Germany was performed by Sittler in
Rastatt [1]. He successfully searched for Ridge and Furrow structures, digitized some of them manually,
and carefully predicted that algorithms would be able to detect structures automatically. Later, Heinzel
and Sittler [2] presented an automated approach using Pattern Recognition for the detection and
delineation of single Ridge and Furrow structures. The evaluation with reference data produced
accuracies up to 84%, depending on the complexity of the terrain.

In parallel, de Boer experimented with Template Matching to detect Burial Mounds in the
Netherlands [3]. This technique slides a tiny digital terrain model (DTM, the template or window)
over the DTM of a study area and calculates the correlation to the part that is currently covered by
the template. The result is a raster with correlations at each position written to the corresponding
pixel. The highest pixel values of this raster are considered as hits. De Boer used multiple templates of
different sizes and was able to detect most of the reference mounds. In the end, the research was not
continued due to too many false positives [4].

Another project to detect field monuments using Template Matching was undertaken by Trier
and a Norwegian research team. In multiple publications, they demonstrated how to detect pits
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and similar structures like Burial Mounds or Charcoal kiln sites [5–7]. An example from Germany is
Schneider et al., presenting a workflow for detecting Charcoal kiln sites using Template Matching as
well [8].

Most recently, Freeland et al. provide an example of an automated detection of mounds in the
Kingdom of Tonga [9] and Cerrillo-Cuenza presents a workflow for detecting mounds in Spain [10].
In 2018 and 2019, Davis et al. developed and compared workflows for the detection of mounds in
South Carolina [11,12].

Up to now, however, not all field monuments are covered and furthermore no attempt was made
to adapt the variety of methods to the province of Westphalia, Germany, which has a rich archaeological
record including monuments from the Stone Age until World War II (Figure 1). Therefore, the project
presented here aims at a provincewide detection of frequently appearing field monuments like Burial
Mounds and medieval fields, improving knowledge of Westphalia’s historic landscapes and supporting
preservation; e.g., medieval fields are strong indicators for lost settlement that often are completely
invisible in the terrain and help to reconstruct spatial distribution of settlements in different epochs.
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Westphalian archaeologists are limited regarding funds to spend on projects like this. Therefore,
as a secondary objective, this project examines the potential of the currently only available LiDAR
data source for automated classifications using OBIA. The quality is far away from today’s standard
but it is for free, covers the whole province and is presumably precise enough for detecting the
desired structures.

This article presents the initial steps of the project, in which workflows are developed and tested.
It will be demonstrated that the combination of OBIA and a simple terrain visualization is suitable for
the detection of different types of field monuments. These workflows are supposed to be finally used
for a provincewide detection of field monuments.

Three types of field monuments are considered. In the beginning, Motte-and-Bailey castles were
used to investigate the potential of OBIA for the classification of complex structures. A Motte-and-Bailey
castle is a medieval fortification that consists of a mound and a surrounding bailey. The former
usually carried a fortified building and the latter was the place for other buildings of varying purposes
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(Figure 2) [14]. Today, in most instances, only the motte and its surrounding ditch are preserved in
varying shapes and conditions (Figure 3). Other common field monuments are areas with Ridge and
Furrow structures (Figure 4). A single ridge is the remnant of an early medieval field that was just a few
meters wide but hundreds of meters long [15]. The third type of field monument is the Burial Mound.
These mounds were common in the Bronze Age and the Iron Age and are preserved quite often.
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Figure 4. Ridge and Furrow area in Dülmen.

Although new monuments are searched systematically, there are still many field monuments
hidden in the terrain. Looking at the size of Westphalia, the need for automated approaches becomes
obvious. It has an area of about 21,000 km2, of which 3/4 are unsealed and therefore suitable for
archaeological prospection. In northern Westphalia, these areas mostly consist of agricultural land,
whereas in the southern mountainous region forests are dominating the landscape. Pastures and some
minor land use classes are present all over Westphalia.
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2. Materials and Methods

Archaeologists in North Rhine-Westphalia (NRW) benefit from the Open Geodata principle of the
provincial government, which provides up-to-date and continuously updated spatial data for free [17].
Table 1 provides an overview of the datasets that were used in this project so far.

Table 1. Overview of the LiDAR datasets.

Field Monument Motte-and-Bailey
Castles

Ridge and Furrow
Areas Burial Mounds

provided as point data

date of acquisition 2008–2010 2016

preprocessing filtered, last pulse filtered, last pulse,
interpolated

point spacing and
distribution irregular, 1–4 pt/m2 regular grid, 1 pt/m2

The LiDAR datasets for the detection of Motte-and-Bailey castles and Ridge and Furrow areas
were acquired between 2008 and 2010 and provided as filtered point data in an irregular distribution
with a point density of 1–4 pt/m2. The data for the detection of mounds were acquired in 2016 and
provided online [17] as filtered point data in an interpolated regular grid with 1 pt/m2—these point
data can be converted to DTM without interpolation.

Additionally, a digital land use model (DLM) containing information about the current land use
as point, line and polygon features is used [11,17]. From this dataset, polygons representing unsealed
areas were extracted once and merged into a ‘positive layer’, to which the search is limited. This avoids
misclassifications in areas where no monuments can be preserved, e.g., in settlements or mining areas
(Figure 5).
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For the development and evaluation of the classification algorithm, reference data were taken
from FuPuDelos, the official database of archaeological records, maintained by the Westphalian
archaeology [18]. There are three things to consider when working with this dataset:
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(1) To ease evaluation of the Burial Mounds, a GIS will be used to flag all results having a reference
point feature inside as true positives. This requires the points to be very precise, but some are offside up
to a few meters due to imprecise recording in the field. They need correction based on visual inspection
of the terrain model, which is done manually for all monuments in the investigation area. (2) Some
monuments that are not protected by law were destroyed between their record and the acquisition
of the terrain model. They are not present anymore and therefore cannot be classified. The reference
points corresponding to destroyed monuments were removed from the dataset to avoid their impact
on the classification. (3) The dataset tends to be incomplete and contains some records that were
not yet confirmed in the field. This must be considered in the evaluation. Therefore, results are also
inspected visually in the terrain models and aerial photography.

To evaluate the classification, especially with the Burial Mounds, results are interpreted as true
positives (TP) if they are present in the reference dataset. For the sake of simplicity, results that are
absent are false positives (FP), although a few of them might be revealed as new findings. Therefore,
all FP were interpreted visually based on different terrain models and aerial photography. Even
without inspection in the field, some of them are most likely new discoveries—these are called new
positives (NP). Finally, evaluation and interpretation are difficult and therefore the workflows are
supposed to lead the interpreter’s focus to the most promising features. In this context, the authors
agree that the final interpretation still cannot be done by a computer (e.g., Sevara et al. [19]).

In this project, two approaches are considered. On the one hand, discrete field monuments are
classified by tracing their shape. In doing so, castles and mounds are not only classified binary as true
or false, but furthermore by their degree of erosion in multiple classes, e.g., to what extent they are
leveled or stretched by farming activities (Figure 3c). This is a similar result organizing approach to
that of Trier et al. [6].

In contrast to binary classifications, it is not necessary to optimize the algorithms towards high
completeness or high correctness. Full completeness is guaranteed by the fact that the classes are
derived by the worst preserved reference monuments. At the same time, the classes containing
well-preserved results show high values of correctness. Their results are more likely to be true and can
be interpreted at first. The drawback is that evaluation becomes difficult since calculating reasonable
values for an overall correctness and completeness is hardly possible.

On the other hand, tracing the shape of areal monuments, e.g., Ridge and Furrow areas, is difficult
if single elements looks like nonarchaeological structures. Therefore, the second approach is not to
find every single ridge or furrow but to tag the location of the area by highlighting objects indicating
an area of similar structures.

The workflow (Figure 6) starts in a GIS with the calculation of the desired visualization(s) and
ends in the same place with the interpretation. Just as important as an accurate classification is an easy
access to the visualizations and a user-friendly workflow. Therefore, an ArcGIS-tool was written in
Python that is designed to work with the mentioned LiDAR data. It is capable of calculating different
visualizations, currently a conventional DTM as well as the special visualizations Difference Map (DM)
and Local Relief Model (LRM) that were both invented by Hesse [20]. The latter two exclusively show
the microrelief, which is essential for a classification using OBIA (see below).

Figure 6. Overview of the general workflow for the detection of field monuments [13].
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For the classification, OBIA, implemented in eCognition Developer by Trimble, was used. This technique
does not classify single pixels, but objects representing homogeneous areas within an image. In a DTM,
they correspond to areas of the same height. Objects are generated in the initial segmentation step
that has three adjustable thresholds: Most importantly, the scale parameter defines the final size of the
objects. Adjustments are to be done very carefully to represent the real-world object as best as possible.
The following two parameters describe the homogeneity of the objects: The shape parameter defines
how much the algorithm takes the shape of the emerging object or the spectral values of its pixels
into account. Finally, the compactness parameter defines the smoothness of an object border, which is a
relation between length and width of an object and its area. The segmentation starts with converting
every pixel into a single object and then iterates over the objects, merging the current one with the
most similar neighbor. This is done until the adjusted thresholds are reached [21]. The segmentation is
perfect when the object borders match the borders of their corresponding field monuments.

Afterwards, statistical values (features) are calculated for every object. Some of which refer directly
to the object (e.g., length and width) and some to its neighbors (e.g., rel. border to brighter objects).
From these, the user can choose features to describe classes. This is the advantage over pixel-based
approaches because objects can be seen in a relation to their neighbors and therefore be discriminated
by their location, which is essential for the detection of field monuments. In terms of OBIA, remnants
of a Motte-and-Bailey castle can be described as a local maximum (the motte) or as an object completely
surrounded by darker (lower) objects, which is in close proximity from a ring-shaped local minimum
(a ditch surrounding the motte). Up to now, three rulesets where developed that run fully automated
and export the classification results to GIS-compatible shapefiles.

Although OBIA does not ‘see’ an object in the way the human eye does, it nevertheless benefits
from special terrain visualization like the DM or the LRM that were originally developed for manual
interpretation. In this project, the DM was preferred over other Visualizations because of its excellent
ratio of benefit and calculation effort. Calculation is done in two simple steps using a GIS: At first,
the terrain model is smoothed using a low-pass filter, which removes the microrelief while preserving
hills and valleys. The Difference Map is then calculated by subtracting the smoothed DTM from
the initial one, only preserving the microrelief with its small-scale features [20]. Because hills and
valleys were removed by the subtraction, the contrast increases significantly but most importantly,
all monuments appear in a leveled situation because slopes are removed as well (Figure 7).
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The latter is necessary because object borders in LiDAR datasets follow the contour lines making
field monuments invisible to OBIA if they are located on a hillside. Figure 8 demonstrates this issue
as the castle on the left side cannot be detected. On the right side the hill is removed and motte and
bailey stand out against the surrounding area even though they are almost eroded completely.
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A disadvantage of using a visualization like this is that the calculation will usually generate
undesired structures as well, especially in complex situations like slopes (Figure 9). They are a problem
for the detection of some field monuments and cannot be handled perfectly.
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The next chapters will present the classification algorithms (rulesets). For the definition of class
borders, software-internal statistics (features) are used. Based on the eCognition reference book [21],
details are to be found below.

The following features describe the shape or extent of an object.

• Area equals number of pixels of an object. It can be converted into different measurements if a
unit is available. In this case 1 px equals 1 m2.

• Border length/area describes the ratio of the border length to the area of an object. It is dependent
on the shape and the size of object at the same time.

• Compactness is calculated by dividing the area of an object by its number of pixels. The ideal
compactness equals 1.

• Density determines if an object is rather shaped like a square, which is the ‘most dense’ object,
or like a filament. Calculation is done by dividing the number of pixels of an object by its
approximate radius.
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• Elliptic fit is calculated by comparing the object to an ellipse of similar size (area) and proportions
(width and length). The overlapping area is then compared to the area of the object outside the
ellipse. A value of 0 indicates less than 50% fit, whereas 1 indicates a perfect fit.

• Length/width: eCognition internally calculates two different length-to-width ratios, one of which
using a bounding box. The smaller value is finally assigned to the object and helps discriminating
between elongated and well preserved mottes.

• Max and Min pixel value provide the highest and the lowest pixel value of an object. When using a
DM, it is representing the elevation of an object above ground level.

• Mean describes the average pixel value of an object.
• Roundness is calculated by subtracting the radius of the largest enclosed ellipse from the smallest

enclosing ellipse of an object. The lower the value, the more similar the object looks to an ellipse,
meaning that the roundness for the detection of mottes and mounds should be as low as possible.

• Shape index describes the smoothness of an object border. Low values are desired because they
represent smooth borders.

• Standard deviation describes the homogeneity of pixel values of an object.
• Width is calculated by dividing the number of pixels of an object by its length/width ratio.

The second group of features describes the relation of an object to its neighbors. They help
discriminating objects by their location and relation to others, which is essential for detecting many
different types of structures:

• Distance to [class] describes the distance in pixels to the closest object of a specified class, measured
from center to center.

• Number of [class] [distance] defines the number of objects in a specified class within a
specified distance.

• Relative area to [class] [distance] is similar to number of. This value describes the area covered by
objects of a specified class relative to the total area around the object within a specified distance.

• Relative border to [class] describes the percentage of the border length that an object shares with
objects of a specified class relative to the total border length.

• Relative border to brighter objects [layer] determines if an object is surrounded by brighter (in terms
of LiDAR: higher) objects. If the value equals 0, an object represents a local maximum.

2.1. Detection of Motte-and-Bailey Castles

For the development of the corresponding ruleset, three castles in very different conditions were
considered. The first motte in Borken (Figure 3a) still carries a house from the 18th century [22] and is
therefore in perfect condition. The second one—the Imbsenburg in Paderborn (b)—was destroyed at
some point but is still in very good condition. The last one, located in Warburg, is almost completely
leveled off by farming activities over the last centuries (c).

Looking at mottes (a) and (b) in Figure 3 again and comparing the profile graphs of motte (a) in
Figure 10, another link between visualization and classification becomes obvious. In the DM, the border
of the motte appears higher than its center and the motte becomes a ring (Figure 10, center). This is a
result of the low-pass filter that starts flattening the mound from the edges towards the center, which has
to be considered in the classification step because the surface of the mound is not homogenous enough
to be represented by a single object.
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Figure 10. Profile graphs of the motte in Borken in the LRM (top), Difference Map (DM) (center) and
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The first task was to find suitable settings for the segmentation that would work in all areas.
After several tests, the settings 10/0.001/0.5 (scale/shape/compactness) were chosen to generate large
objects, which strongly take into account the pixel values (the relative height) and are quite compact,
with the following statistical values (Table 2).

Table 2. Overview of the objects representing the real-life mottes and the derived class borders.

Motte-and-Bailey Castles Borken Paderborn Warburg Class Borders Possible Mound

area (px) 1212 1953 1978 >= 1000
border length/area 1.130 0.124 0.169 >= 0.1

compactness 1.222 1.357 1.383 <= 1.6
length/width 1.026 1.019 2.314 <= 2.5

roundness 0.275 0.355 0.489 <= 0.6
shape index 1.134 1.380 1.888 <= 2.0

The classification (Figure 11) starts with the search for big mounds (the mottes, blue). All objects
whose shape indicates a motte are collected in a class called possible mound. The values of the
class borders are set in a way that allows the classification of more eroded structures and to avoid
misclassifications as best as possible. In the next step, the software examines if an object is a local
maximum and therefore still probably a mound (rel. border to brighter objects). Due to the mentioned
problem resulting from the low-pass filter, the decision is based on both DM and regular DTM because
in the latter a mound with pseudo structures is still intact. An alternative solution is to use a LRM
but one wanted to avoid the calculation effort (see Figure 10 top). If an object is a local maximum,
it is moved to a class depending on where it appears. These two classes get joined afterward in the
class mound.

Ditches are classified in almost the same way (red). At first, objects are classified as a possible ditch,
depending on the shape statistics in Table 3. Secondly, objects that are a local minimum, either in the
DM or the DTM, and that are located close to a mound object (<= 40 px), are classified in corresponding
classes and finally joined in the class ditch. Vice versa, only those objects from the mound class are
classified as a motte that are located in close proximity to an object in the ditch class (<= 40 px) and
share at least 15% percent of their border with a ditch.
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Table 3. Overview of the objects representing the real-life ditches around the mottes and the derived
class borders.

Ditches Borken Paderborn Warburg Class Borders Possible Ditch

density 1.213 1.137 1.877 <= 2.0
length/width 1.268 1.026 1.483 <= 1.5

After the mottes are classified, they are sorted into subclasses by their appearance. Four classes
were defined to cover all types that appeared so far as well as possible types in between (Table 4).Geosciences 2019, 5, x FOR PEER REVIEW  10 of 17 
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Table 4. Overview of the classes that represent the mottes by their degree of erosion.

Class Length/Width Shape Index Explanation Example

(1) ideal
>= 1.0 . . . < 1.75

>= 1.0 . . . < 1.5 round and high Borken (a), Paderborn (b)
(2) almost ideal >= 1.5 . . . < 2.0 round and flat
(3) almost ideal

>= 1.75 . . . < 2.5
>= 1.0 . . . < 1.5 long and high

(4) not ideal >= 1.5 . . . < 2.0 long and flat Warburg (c)

2.2. Detection of Ridge and Furrow Areas

For the development of the workflow two regions with extensive Ridge and Furrow areas were
chosen. One of which is located in Dülmen, the other one in Höxter. Both are covered by forests and
have an area of 8 km2.

Ridges and furrows appear in groups and trying to detect every single structure is not promising
because the number of false positives would be too high. In addition, the reference dataset only
contains the outlines of the areas. Therefore, it is again not possible to calculate reasonable values for
an evaluation, which makes visual inspection necessary. The approach is to find single ridges and
furrows (‘indicating objects’) that are surrounded by multiple similar structures, which makes them
reveal themselves as a part of a Ridge and Furrow area.

This time, finding segmentation settings turned out to be much more difficult. The problem
was that many segmentation settings were unsatisfying because the object borders did not follow
the ridges or furrows in the way they were supposed to. After systematically testing, 5/0.001/0.5
(scale/shape/compactness) was chosen to work sufficiently. This setting is in a good balance between
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finding more eroded structures on the one hand and not producing too much useless objects on
the other.

The first step after the segmentation is to find long and thin objects (Figure 12). The required
statistics for an object to be classified as a possible ridge or furrow are listed in Table 5. As with the castles,
the second step is to determine if an object in this class is a local maximum or minimum. Sorting in
corresponding classes is again done with the rel. border to brighter objects criterion, this time using
thresholds of > 80% and < 80%. After that, all minima and maxima are collected in max. or min. in
order to determine which objects are surrounded by at least six objects of the same class in a defined
area around the object. Besides, the classifier checks the distance to the next maximum or minimum
and how much of the border of an object is shared with an object of the same class (Table 6). If an
object meets all requirements, it is classified as a ridge or furrow and exported.
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Table 5. Description of the class possible ridge or furrow.

Class Area (px) Density Length/Width Width (px)

possible ridge or furrow >= 1000 <= 1.4 > 3.0 >= 15 . . . <= 55

Table 6. Description of the final class ridge or furrow.

Class Distance to
max. or min. (px)

Number of max. or
min. (100px)

rel. Border to
max. or min.

ridge or furrow <= 70 >= 6 > 0.4

2.3. Detection of Burial Mounds

The investigation area for the detection of Burial Mounds is located around the Haard, a hilly
landscape close to Haltern. It mostly consists of forested areas with a decent amount of Burial
Mounds in varying shapes and conditions as well as some other areas to test the robustness towards
artificial structures.

Compared to the others, the detection of Burial Mounds is straightforward. In terms of OBIA,
the task is to find round local maxima in the DM (Figure 13). Doing this is easy, but the drawback of
detecting such a simple structure is a high number of false positives. This is minimized by using the
landscape model to reject the results that are located in settlements and are therefore false.

As mentioned above, mounds are not classified binary but in five classes depending on their
degree of erosion. After finding segmentation settings (6/0.001/0.1, scale/shape/compactness) that
sufficiently represent most of the (reference) mounds, class borders were derived by carefully looking
at the statistics of the objects representing reference mounds (Table 7). The class borders become more
restrictive as they describe more ideal mounds. This is done to separate these mounds from the others.
The latter are collected in classes (4) eroded and (5) highly eroded and are therefore not lost. At first,
all possible mounds are classified in class (5). After that, only those objects are classified further that
meet the more narrow class borders of class (4). Then, it is the same procedure with classes (3) to (1)
and therefore only the very best objects reach class (1).



Geosciences 2019, 9, 109 12 of 18

Geosciences 2019, 5, x FOR PEER REVIEW  11 of 17 

 

 
Figure 12. Overview of the workflow in eCognition for the detection of Ridge and Furrow areas. 

Table 5. Description of the class possible ridge or furrow. 

class Area (px) Density Length/Width Width (px) 
possible ridge or furrow >= 1000 <= 1.4 > 3.0 >= 15 … <= 55 

Table 6. Description of the final class ridge or furrow. 

Class Distance to 
max. or min. (px) Number of max. or min. (100px) rel. Border to 

max. or min. 
ridge or furrow <= 70 >= 6 > 0.4 

2.3 Detection of Burial Mounds 

The investigation area for the detection of Burial Mounds is located around the Haard, a hilly 
landscape close to Haltern. It mostly consists of forested areas with a decent amount of Burial 
Mounds in varying shapes and conditions as well as some other areas to test the robustness towards 
artificial structures. 

Compared to the others, the detection of Burial Mounds is straightforward. In terms of OBIA, 
the task is to find round local maxima in the DM (Figure 13). Doing this is easy, but the drawback of 
detecting such a simple structure is a high number of false positives. This is minimized by using the 
landscape model to reject the results that are located in settlements and are therefore false. 

As mentioned above, mounds are not classified binary but in five classes depending on their 
degree of erosion. After finding segmentation settings (6/0.001/0.1, scale/shape/compactness) that 
sufficiently represent most of the (reference) mounds, class borders were derived by carefully looking 
at the statistics of the objects representing reference mounds (Table 7). The class borders become more 
restrictive as they describe more ideal mounds. This is done to separate these mounds from the 
others. The latter are collected in classes (4) eroded and (5) highly eroded and are therefore not lost. At 
first, all possible mounds are classified in class (5). After that, only those objects are classified further 
that meet the more narrow class borders of class (4). Then, it is the same procedure with classes (3) to 
(1) and therefore only the very best objects reach class (1). 

 
Figure 13. Overview of the workflow in eCognition for the detection of Burial Mounds. 
Figure 13. Overview of the workflow in eCognition for the detection of Burial Mounds.

Table 7. Overview of the classes that represent the Burial Mounds by their degree of erosion.

Class 1 (1) Very Well
Preserved (2) Well Preserved (3) Sufficiently

Preserved (4) Eroded (5) Highly Eroded

area (px) >= 85 . . . <= 320 >= 20 . . . <= 500
compactness <= 1.5 <= 1.6 <= 1.8 <= 2

elliptic fit >= 0.86 >= 0.8 >= 0.7 >= 0.6
length/width <= 1.13 <= 1.25 <= 1.4 <= 1.6 <= 2

roundness <= 0.25 <= 0.4 <= 0.6 <= 1
shape index <= 1.25 <= 1.4 <= 1.6 <= 1.85

mean <= 1.2 . . . <= 1.35 . . . <= 1.45 >= 0.2 . . . <= 1.55
max (px) >= 0.6 . . . <= 1.65 >= 0.59 . . . >= 0.57 . . . >= 0.55 . . . <= 2
min (px) >= −0.1 . . . <= 0.85 >= −0.15 . . . <= 1.15

stand. dev. >= 0.2 >= 0.1 . . . <= 0.38 >= 0.05 <= 0.45
1 If no class border is specified, the border of the next wider class (to the right) is applied.

3. Results

This chapter will present the results that were produced so far. They are structured by the
monument that they describe.

3.1. Motte-and-Bailey Castles

Calculating a meaningful correctness and completeness for the detection of Motte-and-Bailey
castles (Figure 14) is not possible, at least not at this stage, because the number of samples is too low.
All three samples were detected, only in Paderborn a single false positive was classified. Testing some
more castles, that did not influence the parameters, revealed some difficulties in the segmentation of
distorted mottes and baileys. Other than that, shapes that differ from the three presented above need
slight adjustments to be segmented. Additionally, this could be addressed by defining more classes.
For further evaluation, a provincewide investigation needed to be carried out, which is not planned so
far because the number of unknown castles is presumably not high enough. Nevertheless, the results
show that a relatively simple algorithm in OBIA can detect complex multiobject field monuments like
Motte-and-Bailey castles in different degrees of erosion, once useful parameters are found.

Geosciences 2019, 5, x FOR PEER REVIEW  12 of 17 

 

Table 7. Overview of the classes that represent the Burial Mounds by their degree of erosion. 

Class 1 
(1) Very Well 

Preserved 
(2) Well Preserved 

(3) Sufficiently 
Preserved 

(4) Eroded (5) Highly Eroded 

area (px)  >= 85 … <= 320   >= 20 … <= 500 
compactness  <= 1.5 <= 1.6 <= 1.8 <= 2 

elliptic fit  >= 0.86 >= 0.8 >= 0.7 >= 0.6 
length/width <= 1.13 <= 1.25 <= 1.4 <= 1.6 <= 2 

roundness  <= 0.25 <= 0.4 <= 0.6 <= 1 
shape index  <= 1.25 <= 1.4 <= 1.6 <= 1.85 

mean  <= 1.2 … <= 1.35 … <= 1.45 >= 0.2 … <= 1.55 
max (px)  >= 0.6 … <= 1.65 >= 0.59 … >= 0.57 … >= 0.55 … <= 2 
min (px)  >= -0.1 … <= 0.85   >= -0.15 … <= 1.15 

stand. dev. >= 0.2 >= 0.1 … <= 0.38   >= 0.05 <= 0.45 
1 If no class border is specified, the border of the next wider class (to the right) is applied. 

3. Results 

This chapter will present the results that were produced so far. They are structured by the 
monument that they describe. 

3.1. Motte-and-Bailey Castles 

Calculating a meaningful correctness and completeness for the detection of Motte-and-Bailey 
castles (Figure 14) is not possible, at least not at this stage, because the number of samples is too low. 
All three samples were detected, only in Paderborn a single false positive was classified. Testing some 
more castles, that did not influence the parameters, revealed some difficulties in the segmentation of 
distorted mottes and baileys. Other than that, shapes that differ from the three presented above need 
slight adjustments to be segmented. Additionally, this could be addressed by defining more classes. 
For further evaluation, a provincewide investigation needed to be carried out, which is not planned 
so far because the number of unknown castles is presumably not high enough. Nevertheless, the 
results show that a relatively simple algorithm in OBIA can detect complex multiobject field 
monuments like Motte-and-Bailey castles in different degrees of erosion, once useful parameters are 
found. 

 
Figure 14. Detected castle in Paderborn [13]. 

3.2 Ridge and Furrow Areas 

The results of the classifier for Ridge and Furrow areas are presented in Figure 15. Red structures 
represent single ridges or furrows who were left in max. or min. They do not have enough neighbors 
to be definitely part of a Ridge and Furrow area but nevertheless help to identify the blue ones. The 
latter are the important objects representing single ridges or furrows that have at least six adjacent 
objects of the same class around and can therefore be addressed as a part of a Ridge and Furrow area 
(class Ridge or furrow). These blue structures were found in every relatively big area. On the other 
hand, structures like modern drainages, which basically look like a sequence of ridges and furrows, 
were not detected—probably because their elements is too thin (Figure 15b). 

Figure 14. Detected castle in Paderborn [13].



Geosciences 2019, 9, 109 13 of 18

3.2. Ridge and Furrow Areas

The results of the classifier for Ridge and Furrow areas are presented in Figure 15. Red structures
represent single ridges or furrows who were left in max. or min. They do not have enough neighbors to
be definitely part of a Ridge and Furrow area but nevertheless help to identify the blue ones. The latter
are the important objects representing single ridges or furrows that have at least six adjacent objects
of the same class around and can therefore be addressed as a part of a Ridge and Furrow area (class
Ridge or furrow). These blue structures were found in every relatively big area. On the other hand,
structures like modern drainages, which basically look like a sequence of ridges and furrows, were not
detected—probably because their elements is too thin (Figure 15b).Geosciences 2019, 5, x FOR PEER REVIEW  13 of 17 
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Problems occur when ridges or furrows are cut (Figure 15a), which is caused by the scale 
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would to be run again, starting with the time-consuming segmentation. 
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Figure 15. Classification result of the investigation area in Dülmen, overlaying a DM. The blue objects
are ridges or furrows that have at least six adjacent objects of the same class and can therefore be
addressed as a part of a Ridge and Furrow area. The red structures look like ridges or furrows in
terms of shape and are a minimum or maximum, but do not have enough neighbors to be classified in
blue [13,16].

According to the approach of finding these blue ‘indicating objects’, only one object is needed per
Ridge and Furrow area. Therefore, having Ridge and Furrow areas being mostly colored red is fine,
as long as there is at least one blue structure present. It is possible to identify more of the red objects as
blue ones by lowering the threshold, but along with the number of blue structures, the risk to generate
misclassifications rises as well.

Problems occur when ridges or furrows are cut (Figure 15a), which is caused by the scale parameter
in the segmentation algorithm. To solve this problem, the whole process in eCognition would to be run
again, starting with the time-consuming segmentation.

Other misclassifications occur if multiple paths run parallel to contour lines in hillside areas
(Figure 16). The problem is that a sequence of path-slope-path-slope (etc.) looks like ridges and
furrows, once the hill is removed in the DM. To address this, searching for slopes in the regular DTM
might be a solution but the question arises, what happens to ridges and furrows that are located on a
hillside and are oriented along the contour lines.
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3.3. Burial Mounds

Although completeness and correctness are not that meaningful as with binary classifications,
Table 8 provides an idea of what is possible under good circumstances. The decreasing correctness is
no surprise because the class descriptions get wider in order to find possible eroded mounds as well
(Trier et al. 2015 observed the same with their confidence levels [6]). Completeness is 100% by definition
because all 172 reference mounds defined the classes. Regarding the values, two things should be
noted. On the one hand, some Burial Mounds were segmented insufficiently, meaning that it was
impossible to generate objects with borders meeting those of the real-world mounds, and are therefore
not included in the dataset with its 172 class defining mounds (see above). The lack of segmentation can
be caused by a high degree of erosion, suboptimal segmentation settings or, most likely, a size differing
significantly from the average. These mounds are missing in the classification and are therefore not
included in the calculation.

On the other hand, the reference dataset is probably not complete. Therefore, some of the false
positives are actually unconfirmed and might be true, once they are interpreted or even excavated
(the most promising false mounds are called new positives). The others are false positives until they are
definitely interpreted as true or false.

Despite all these uncertainties, this method is still useful because the interpreter is able to interpret
the classes with the most promising results (e.g., classes 1–3) at first and can eventually focus on the
others or see the results in their relation to the others (Table 8).

Table 8. Results of the classification of Burial Mounds in the investigation area in Haltern.

Class TP 1 + NP 2 FP 3 Total Correctness 4 (%)

(1) very well
preserved 14 0 14 100

(2) well preserved 20 10 30 67
(3) sufficiently

preserved 64 + 9 138 211 35

(4) eroded 52 + 11 404 467 13
(5) highly eroded 22 + 6 905 933 3

total 172 + 26 1457 1655 (12)
1 true positives, included in the reference dataset, 2 new positives, included in the reference dataset after manual
interpretation based on terrain models and aerial photography, 3 not included in the reference dataset, 4 correctness =
TP+NP/Total.

Figures 17 and 18 present a subset from the mound detection area in Haltern. The decreasing
correctness is displayed by the dominance of orange and red shapes, whereas more ideal shaped
mounds are colored yellow and green. It is obvious that the classification works better in flat areas
and has problems at edges, because the DM generates pseudo mounds where the terrain is more
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complex. Nevertheless, the results are useful and simplify the interpretation by highlighting probable
monuments. In addition, Figure 18 shows a possible new mound (new positive, yellow) that was not
included in the reference dataset (missing dot) and looks like its neighbors of the same class.Geosciences 2019, 5, x FOR PEER REVIEW  15 of 17 
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Figure 18. Classification results of Burial Mounds in Haltern. Members from the following classes
are presented (Table 8); 3 (yellow), 4 (orange) and 5 (red). Mounds with a dot are included in the
reference dataset. The yellow traced mound on the right side without a dot inside is considered as a
new discovery (new positive) [13].

Although detection of mounds produced useful results, there are some issues to be solved.
A major problem is the variety of sizes, making it difficult to find segmentation settings that work for
every size of Burial Mound. Multiple segmentation would be a way to address this. Another problem
is that some mounds are classified in lower classes (e.g., 4 & 5) although their appearance is almost
ideal. This sometimes happens due to only one outlying statistical value (e.g., shape index), making
the mound incompatible to the better classes. This could be addressed by reclassifying the statistics
of every object to a common scale at first and then by calculating an average value representing the
degree of erosion for every mound. This value would finally be the only one to be classified in the
classes listed above, which would avoid the strong influence of single outlying statistics.

4. Conclusions & Outlook

This article presented possible ways of classifying typical field monuments in the relatively
low-quality Westphalian LiDAR dataset. It was demonstrated that all three presented monuments
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are basically detectable with automated workflows using OBIA and that it is reasonable to classify
monuments by their degree of erosion.

The results reveal the same difficulties that other studies are affected by as well: the more complex
the terrain is and the more anthropogenic influence is present, the more difficult it is to discriminate
between true and false positives.

Optimizing the positive layer will be one point to address this issue. Up to now, only unsealed
areas where considered. However, there are unsealed, positive areas under strong anthropogenic
influence that still need to be rejected. In addition, some structures that cause false positives are not
recorded as polygons but as points (e.g., foundations of windmills) and lines (e.g., roads and railway
tracks) due to their size. These data need further examination to decide which of them can be buffered
and rejected as well. This will improve classification results as well as save processing time.

The combination of OBIA and the available LiDAR dataset seems to be suitable for the presented
purpose, because especially the calculated quality of the mounds detection looks similar to those from studies
with high-quality data (e.g., approximately 10 pt/m2, [6,7]). The problem with OBIA is its vulnerability
to distortions and the implementation in commercial software. Therefore, Template Matching, e.g.,
as proposed by Davis [12], is investigated and was already implemented for experimental purposes in
the ArcGIS-tool.

Regarding the latest innovative trend of Machine Learning, e.g., summarized and proposed by
Trier et al. [23], the authors are curious to examine its potential compared to ‘traditional’ approaches
like the one presented here. The problem is the large amount of high-quality training data, which may
be problematic in regards to archaeological records.

The workflows are supposed to be an addition to the toolbox of archaeological prospection.
Hopefully, they can contribute to the provincewide database of archaeological records that was
mentioned in the beginning. A precondition is that they produce good results in other areas as well.
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