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Abstract: We present a computational framework that allows investigating the Thermo-Hydro-
Mechanical response of a representative part of a sedimentary basin during a glaciation cycle.
We tackle the complexity of the problem, arising by the mutual interaction among several phenomena,
by means of a multi-physics, multi-scale model with respect to both space and time. Our contribution
addresses both the generation of the computational grid and the algorithm for the numerical solution
of the problem. In particular we present a multi-scale approach accounting for the global deformation
field of the lithosphere coupled with the Thermo-Hydro-Mechanical feedback of the ice load on a
representative part of the domain at a finer scale. In the fine scale model we also include the erosion
possibly caused by the ice melting. This methodology allows investigating the evolution of the
sedimentary basin as a response to glaciation cycle at a fine scale, taking also into account the large
spatial scale movement of the lithosphere due to isostasy. The numerical experiments are based on
the analysis of simple scenario, and show the emergence of effects due to the multi-physics nature of
the problem that are barely captured by simpler approaches.

Keywords: multiscale/multiphysics basin modeling; thermo-hydro-mechanical model; isostatic
adjustment; computer simulations; finite element method

1. Introduction

Reconstructing the stress and deformation history of a sedimentary basin is a challenging and
important problem in the geosciences and a variety of applications [1]. The mechanical response of
a sedimentary basin is the consequence of complex multi-physics processes involving mechanical,
geochemical, geophysical, geological and thermal aspects [2]. The strongly coupled nature of the
deformation problem may be understood in terms of the feedbacks underlying crustal dynamics.
The pore fluid pressure affects stress, stress changes can lead to fracturing, and fracturing can affect
pore fluid pressure [3,4].

Basin scale compaction processes involve mechanical and chemically induced transformations
that take place during the accumulation of sediments [2]. In this context a number of approaches have
considered the geochemical and mechanical compaction problem from a one-dimensional perspective,
i.e., by considering mass, momentum and energy balances along the vertical direction, applied to fluid
and solid phases [3–6]. These simplified one-dimensional approaches may be effective in interpreting
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qualitatively well data (e.g., [7]), however, they cannot capture inherently three dimensional processes
that may arise due to the coupling of mechanical deformations and fluid mechanics in geological
bodies that play an important role in the presence of glaciations [8].

Hydro-mechanical effects of continental ice sheets are widely recognized to cause movements
and stresses of overridden terrains by ice load. The effect of the ice load on top of the sedimentary
basin can be represented by the combination of two effects. The first is a large scale effect where we
consider the action of the ice load on the entire lithosphere. The second is a fine scale analysis where
we take into account the thermo-hydro-mechano-chemical (THMC) effects of the ice load into a small
portion of the crust, such as a sedimentary basin [8].

In the global large scale framework, the interaction between the lithosphere and the glaciation
cycle is modeled by means of a viscoelastic model. This choice is based on significant previous efforts
devoted to define a proper mathematical model for the description of glacial isostatic adjustment.
Initially this problem has been considered by Rayleigh [9] which studied the problem of a pre-stressed
elastic compressible layer as an approximation of a “flat” planet. After Rayleigh’s work other authors
enriched his theory, including many other details, like the effect of viscosity or the stratified structure
of the Earth. First of all, Love [10] gave a more detailed theory and defined the basic concepts which
are included in more recent works. Peltier and his coauthors in a series of articles [11–13] gave a
detailed description of a more realistic viscoelastic model of stratified Earth. The Peltier’s model is
essentially an extension of Love’s model, where a viscoelastic rheology is used instead of an elastic
one. All the mathematical details of this theory are contained in the works of Biot and, more recently,
Ogden [14,15].

In this work we apply these models to describe the global deformation field of the lithosphere and
to extract from it the information of the movement of a selected part of the sedimentary basin. Since the
spatial scale of such region is very small compared to the global scale, we describe it as a rigid motion.
More precisely, the rigid motion of the fine scale basin model is extrapolated from the lithosphere
displacement fields and used at run time to move the computational grid in the simulations. In what
follows we describe in more details this the workflow of this multiscale approach.

A number of numerical simulation tools have been presented to model THMC processes [16–18].
While considering a similar mathematical approach, our work introduces the following new features
with respect to previous studies:

(i) it combines the global deformation of the lithosphere with the local simulation of pressure and
temperature fields;

(ii) it is built on available geophysical and geological information on the whole sedimentary system
and relying on information available at selected wells;

(iii) it allows considering the effects of erosion induced by glaciation, which is often neglected in
previous studies.

Our work focuses on the integration of THM simulation of a single glaciation cycle with larger
scale information available on basin scale compaction and lithosphere dynamics, thus the proposed
THM simulation of glaciations can be cast within a multi-scale geological simulation framework.
A visual sketch of the multiscale model outline is provided in Figure 1.
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Figure 1. A visual sketch of the multiscale model outline.

2. Isostatic Glacial Rebound Model

From the mechanical point of view the interior of the Earth can be considered as composed of
four main layers: the inner and outer core, the mantle and the lithosphere [19]. During the growth of a
continental ice sheet, the lithosphere under the ice load is deformed into the mantle and the removal
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of the ice load during deglaciation initiates a rebound process. The uplift is well known in formerly
glaciated areas, e.g., North America and Scandinavia, and in currently deglaciating areas, e.g., Alaska,
Antarctica, and Greenland. Compared to water, the mantle viscosity is 1022–1025 times higher, therefore
the uplifting will be slowed down and continue long time after the ice has gone. The entire process of
subsidence during the glacial growth, followed by uplift during and after deglaciation, is referred to as
glacial isostatic adjustment.

The glacial isostatic adjustment process is dependent on the viscosity structure of the mantle,
as well as the elastic thickness of the lithosphere. Observations of this process can therefore be used
to gain insight into these properties of the Earth and this is important for an understanding of the
dynamics of the Earth’s interior.

A well established assumption for the computation of the solid Earth response to surface ice loads
over glacial timescales is that the Earth can be considered as a viscoelastic body ([20]). In particular the
lithosphere can be assumed to be elastic and the solid mantle beneath behaves as a viscous fluid.

A complete review of the state of the art concerning the modeling and simulation of the glacial
rebound can be found in [21,22] whereas the importance of this phenomenon in the context of basin
simulation is discussed in [23–25].

In the next section the physical model adopted for the simulation of the post-glacial rebound is
presented; the details of the numerical method can be found in Appendix A.

A Viscoelastic Model for the Earth

In accordance with the previously cited works the Earth has been modeled has a linear viscoelastic
spherical shell Ω ⊂ R3 since the dynamics due to the glacial isostatic adjustment does not involve the
core of the planet. Following the approach presented in [26] we assume that the viscoelastic stress
tensor is given σ = σe − q, where σe is the elastic stress and tensor q is an internal variable used to
model the effects of viscosity. Denoting with u the displacement field, the elastic stress tensor σe is
given by the sum of the deviatoric and the volumetric parts

σe = 2µ e(u)− pI ,

where I denotes the identity matrix. The deviatoric part is the product between the shear modulus µ

and the deviatoric strain e(u) defined as

e(u) :=
1
2
(∇u +∇ut)− 1

3
(∇ · u)I.

The volumetric part depends on the pressure p which is defined by the equation

∇ · u +
3

2µ

1− 2ν

1 + ν
p = 0, (1)

where ν is the Poisson ratio.
The internal variable q is defined by the evolution equation

q̇ +
1
τ

q =
1
τ

2µ e(u),

q(0) = 0,
(2)

where q̇ denotes the derivative of the quantity q with respect to time and τ is called relaxation time
and it is related to the viscosity η through the relation τ = η

2µ .
The Equation (2) can be rewritten in the integral form as:

q(t) =
∫ t

0

1
τ

e−
t−s

τ 2µ e(u(s)) ds.
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By means of the previous expressions the viscoelastic stress tensor σ is evaluated through a
convolution integral defined as

σ(t) = −pI +
∫ t

0
e−

t−s
τ 2µ e(u̇(s)) ds .

This equation coupled with the Equation (1) and with the equation of conservation of linear
momentum give us a system of partial differential equations that describe the motion of a
viscoelastic body: 

∇ · σ + f = 0 in Ω,

∇ · u +
3

2µ

1− 2ν

1 + ν
p = 0 in Ω,

σ = −pI +
∫ t

0
e−

t−s
τ 2µ e(u̇(s)) ds in Ω.

(3)

The unknowns of this system of equations are the displacement field u, the pressure field p and
the stress tensor field σ. The volumetric force field f is the gravitational force field, how this term has
been modeled will be discussed later.

Since our domain is a spherical shell its boundary is the union of two connected components:
the inner and the outer surfaces of the shell. The outer surface Γout is the surface of the Earth and on
this portion of the boundary we assume to know the history of the load due to the presence of the ice
or other type of loads, like sediments. According to these data the following boundary condition is
assumed: σn = sload on Γout, where n denotes the outer normal defined on the boundary. The inner
surface Γin of the shell is chosen in such a way it corresponds to the core-mantle boundary (about
2900 km of depth). On this portion of the boundary the displacement u is assumed to be equal to zero,
since the deformation due to the glacial isostatic adjustment involves only the shallow part of the
mantle, until few hundreds of kilometer, namely u = 0 on Γin.

The force field f is given by the product between the density field ρ and the acceleration gravity g.
Since we are dealing with a model of the whole Earth we cannot assume a constant value for the
gravity and its value must be computed in accordance with the density field using the Gauss’s law for
the gravity {

g = −∇φ,

∇ · g + 4πGρ = 0,
(4)

where G is the universal gravitational constant and the boundary conditions are g = −gsurfacen on
Γout and φ = 0 on Γin. Even though the displacement u is small if compared to the characteristic length
of problem (1 km vs. 6371 km) the gravity acceleration acting on the point change in accordance with
the displacement field, so the force field f is given by ρg(x + u) ≈ ρg(x) + ρ(∇xg)u. From a physical
point of view the first term ρg(x) is a static component, it does not change in time, on the other side
the second term ρ(∇xg)u is the buoyancy term that determine the uplift and subsidence processes.
This physical interpretation can be justified from a mathematical point of view. Exploiting the linearity
of the problem the stress tensor σ is decomposed as a sum of two components: a static stress term σ0

(which is not important for our purposes) and a dynamic term σd which is the solution of Problem
Equation (3) with f = ρ(∇xg)u and the boundary conditions.

3. The Thermo-Hydro-Mechanical Model Including Erosion

In this section we focus the attention on the mathematical framework describing the mechanical
and thermal evolution of the basin. First, we show how the basin model is built and how we basin
tilting is extracted from the large scale isostasy model. Second, we use mathematical models to
describe the thermal and mechanical evolution of the basin under the effect of a glaciation cycle.
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The combination of these models consist in the multiscale modeling of glacial loading illustrated in
Figure 1.

In the next sections the THMC model is introduced; the details of the numerical method can be
found in Appendix B.

3.1. The Geological Model of a Sedimentary Basin

We assume that information about sedimentary units thicknesses, porosity and/or mineral
composition are available at selected locations across a sedimentary system, typically from well logs,
i.e., along the vertical direction (as sketched in Figure 1). In this framework we employ the stochastic
inverse modelling procedure implemented in [7] to interpret vertical distributions of system properties
with a one-dimensional model, which was developed in [5] starting from classical approaches to
vertical compaction modeling (e.g., [2]). At each location such one-dimensional model provides an
approximation of layers interface locations, whose characterization under uncertainty is investigated
in detail in [27]. These interface locations can then be approximated in the whole domain starting
from these data. This task is here performed using an interpolation based on ordinary kriging [28].
Our procedure assumes a smooth spatial variation of the sedimentary unit thicknesses. While this
hypothesis can be restrictive in practical cases (e.g., in the presence of fault zones), our procedure is
still able to handle geological settings of interest such as the occurrence of pinch out layers.

3.2. Extraction of the Basin Tilting from the Isostasy Model

The isostatic movement of the basin is taken into account as a rigid motion. In particular, we
locate the computational cell that embed the fine scale geometrical model from the isostatic adjustment
simulation, as shown in Figure 3. From the displacement field of the selected cell we evaluate
the deformation gradient and the vertical rigid motion. We then isolate the rotational part of the
deformation gradient that is uniquely defined by the polar decomposition [29], F = R ·U, where F
is the deformation gradient, U is the symmetric stretch tensor and R, such that det(R) = 1, is the
rotation matrix that we want to determine. In particular, from the deformation gradient we evaluate
the Right Cauchy-Green Deformation Tensor namely matrix G := FT · F. Using the definition of F,
we obtain that G = (RU)T · (RU) = (UT · RT) · (R ·U), and using the orthogonality of the rotation
matrix, namely RT = R−1, we obtain G = UT ·U. We recall that U is a diagonalizable matrix so
can be represented by U = Q−1 ·Λ ·Q, where Q is the square matrix in which the ith column is the
eigenvector qi of U and Λ is the diagonal matrix composed by the corresponding eigenvalues, namely
Λii = ζi. We recall that U is a symmetric matrix so UT ·U = U ·U, so using the spectral decomposition
we obtain that G = (Q−1 · Λ2 · Q) where Λ2 is a diagonal matrix defined by Λ2

ii = ζ2
i . From the

previous considerations, it follows that by computing the eigenvalues and the eigenvectors of G, which
is a known matrix, we calculate the matrix Q, Λ2, and, as a consequence, Λ. Using U = Q−1 ·Λ ·Q we
compute the matrix U so that we finally retrieve the rotation matrix R using R = F ·U−1.

The collection of the rotation matrices together with the axial displacement evaluated at every
time step of the isostatic adjustment simulation, defines the rigid motion that we consider in fine
scale model. In particular we use a Lagrangian and an Eulearian approach for the mechanical and the
thermal problems, respectively. More precisely, in the mechanical problem the imposed rigid motion
does not causes any additional stress so that the calculation of stress and the strain can be performed
in the reference (static) configuration, while the rotation matrix is used to change the orientation of
the gravity vector. In this framework, we let pressure, flow and displacement evolve under the action
of the weight of the basin and of the ice. Concerning the thermal evolution of the basin we account
of the variation of the heat flux with the isostatic movement of the sedimentary basin by means of
the Eulerian approach, that is we actually move the domain in the computational model. In this way,
both the vertical displacement and the rotation matrix are taken into account in the evaluation of the
thermal source, as it will be discussed later.
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3.3. A Poromechanical Approach to Coupled Hydro-Mechanical Effects

For the mechanical evolution of the basin we rely on the theory of poroelasticity introduced by
Biot in [30] under the quasi-static assumption for modeling a linearly elastic fully saturated porous
medium. Such approach is widely used in literature, see [1,16,31,32] for a non exhaustive list of
examples. Given a domain Ω ∈ Rd, we consider for simplicity an isotropic material (named the
skeleton) filled with an isothermal single-phase fluid. A sketch of a typical domain together with the
frame of reference is shown in Figure A1. In this framework the momentum equation reads

−∇ · σ(u) + α∇p = f in Ω(t) , (5)

∂t

( p
M

+ α∇ · u
)
−∇ · K∇p = 0 in Ω(t) , (6)

where (with little abuse of notation with respect to the isostatic adjustment model) here u denotes
the solid matrix displacement vector and p is the variation of pore pressure from the hydrostatic
load. We notice that ∂t denotes the standard partial derivative with respect to time in the Eulerian
framework. The parameters α, M and K are the Biot coefficient, the Biot modulus and the hydraulic
conductivity, respectively. We recall that the hydraulic conductivity is defined as the ratio between the
permeability ks and the dynamic viscosity of the fluid µ f , namely K = ks/µ f . Finally f is the gravity
load of the porous material evaluated as f = (ρs − ρ f )g, where ρs, ρ f and g are the fluid density,
the solid density and the gravity vector, respectively. We remark that in the mechanical model the
isostasy movement coming from the isostatic adjustment simulation is taken into account by means of
a Lagrangian approach. As a consequence, the gravity vector g varies during the simulation according
to a prescribed profile. Such profile is defined by the angles evaluated from the polar decomposition
of the deformation gradient of the computational cell, of the large scale simulation, that contains the
portion of the sedimentary basin we consider. To complete the definition of the problem we recall
the linear elasticity behavior for the skeleton. This implies that the stress tensor σ, appearing in (5), is
defined by σ(u) := 2µε(u)+ λ∇ ·u , where µ and λ are the Lamé coefficients and ε(u) is the symmetric
gradient of the skeleton displacement. For further details on poromechanical modeling, the interested
reader is referred to e.g., [32,33].

For a well-posed problem we must complement the previous governing equations with
appropriate boundary and initial conditions. Concerning the initial condition, the following constraints
u = 0 and p = 0 are considered at the initial time t = t0. Let us label with Γ the top surface
of the basin, while ∂Ωb and ∂Ωl are the bottom and the lateral boundary of the domain Ω, as
show in Figure A1. According to this notation, we consider the following boundary conditions,
p = 0 , σ(u) · n = σice(t) on Γ(t), u = 0 ,∇p · n = 0 on ∂Ωb(t) , u · n = 0 ,∇p · n = 0 on ∂Ωl(t), where
n is the unit outward normal to the boundary and σice(t) is the load resulting from the ice sheet on
top of the basin. We further assume that the load relative to the solid component of the ice sheet
transfers only to the solid matrix of the basin, while the fluid phase at the top surface is subject to the
hydrostatic load.

3.4. Thermal Effects

The heat transfer is modeled through the following advection diffusion equation

ρbcb
∂T
∂t

+ ρ f c f vD · ∇T −∇ · (b∇T) = qr , (7)

where T is the temperature field, ρ f and c f are the fluid density and specific heat, respectively; ρb
and cb are the bulk density and the bulk specific heat defined as ρbcb = φρ f c f + (1− φ)ρscs with
φ, ρs and cs being the porosity, the solid density and specific heat capacity; vD is the Darcy velocity
defined as vD = −K∇p, b is the bulk thermal conductivity which is an average of the conductivity
of the solid and the fluid phase and finally qr is the heat source. Concerning the initial condition,
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we consider an homogeneous temperature field, namely T = 0 ∀x ∈ Ω(t = t0). According to the
nomenclature shown in Figure A1, we consider the following boundary conditions,T = Tice(t) on Γ(t),
∇T · n = 0 on ∂Ω(t) \ Γ(t), where n is the unit outward normal to the boundary and Tice(t) is the basin
top temperature. Following a widely used approach in literature, see for example [16,25], the presence
of the ice on top of the basin is taken into account by means of a variation of the top temperature of the
basin (Tice(t)) during the glaciation cycle.

4. Results and Discussion

4.1. Results of the Glacial Rebound Model

The glacial rebound simulation addresses the deformation of the lithosphere of the whole Earth,
based on a viscoelastic model. The forcing term of such simulation is the load of the ice sheet under a
glaciation cycle.

The approach presented in this work is different from the one presented in the previously cited
articles [11–13]. In these articles the authors describe a model for the deglaciation, the initial condition
of their model is a glaciated Earth, the authors take into account the presence of this load at the initial
condition defining a prestressed configuration. We rather simulate a full cycle of glaciation-deglaciation
process to avoid the definition of a prestressed configuration, in our model the initial condition
considered is a fully relaxed configuration, without enforced load.

In this case we consider a benchmark problem, where a circular sheet of radius R = 1111 km
(equivalent to an angular sector of 10◦) centered at the North pole is formed and melt over a time
window of 26 × 103 years, according to the variable thickness profile shown in Figure 2. More precisely,
we assume that the glaciation phase starts 26 × 103 years ago and ends at present. We split this time
window in three uniform intervals of 8.6 × 103 years each. In the first one we assume formation
of the ice sheet up to a maximal thickness of 4 km. In the central phase, we assume that the ice
is static, while in the last term we model ice melting with a linearly decreasing profile of the ice
thickness. The results of such simulation are reported in Figure 3. In Figure 4 we show a zoom of
the computational cells on the crust layer of the glacial rebound simulations. The zoom is taken in
correspondence of the computational cell used to calculate the deformation gradient F. More precisely,
the numerical calculation of the deformation gradient involves the displacement field in the x, y and
z direction at the nodal points of of the selected cell. The time history of the displacement at these
time points is shown in Figure 5. Even if the presented test is just a synthetic example, the order of
magnitude of the obtained vertical displacement is reasonable and in good agreement with the results
reported in [24,25].

t[ky]-26 -17.4 -8.7

h ice[km]

4

0
0 t[ky]-21.65

T[C]

0

-10
-26 0

Figure 2. The evolution of the height of the ice sheet is shown on the left and the prescribed temperature
field on top on the basin is reported on the right.
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Figure 3. The simulation of isostatic adjustment with visualization of the selection of the location where
the deformation tensor is extracted.

Figure 4. A zoom of the computational cells on the crust layer of the glacial rebound simulations.
The magnitude of the vertical displacement is shown (meters). The black edges highlight the
computational cell used to calculate the deformation gradient F.

−200

−100

0

u
[m

]

0 10 20
t[ky]

dx

dy

dz

Figure 5. We show the average displacement field over time in the x, y and z direction at the nodal
points of of the selected cell. Precisely, the light regions mark the minimum and the maximum
displacement sampled at the nodes of the selected computational cell.
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4.2. Results of the Kriging Algorithm for the Geological Basin Model Setup

An example of a simple reconstructed basin geometry is represented in Figure 6. These results
are obtained on a synthetic example which considers a domain of 50 by 20 km in planar dimension.
The one-dimensional simulations consider sediment deposition for a total period of time of 40 Ma.
The sedimentation velocity is assumed to be fixed in time and is assigned at each x, y location between
a maximum value 90 m/Ma (at the domain center) and and a minimum of 40 m/Ma (at the domain
boundaries, i.e., at x = 0 and x = 50 km). Interfaces between different layers are approximated in
such a domain by applying ordinary kriging starting from interface depths calculated at 20 locations
randomly placed in the computational domain. Four interfaces are considered in total, including the
top and bottom surfaces. We assume that two interface collapse on each other, i.e., the second and
third interface correspond for x > 35 km. This means that one of the layers is not found at locations
x > 35 km, and that a layer pinch-out occurs.

Note that in the simulation approach presented in Section 3 the effects of chemical compaction
processes, such as quartz precipitation and smectite to illite transformation [6,34,35], are not explicitly
included. However, the effects of chemical processes are considered in the one-dimensional model
employed to approximate the interfaces [5,36] at selected locations, and therefore are implicitly
embedded in the system geometry. The geometrical reconstruction of the sedimentary system obtained
in this way can then be further enriched by mapping mineral compositions, porosity, permeability
or other properties which may be available at selected location, e.g., through compositional kriging.
These data are not considered in the following for simplicity.

x (km)y (km)

z 
(k

m
)

Figure 6. Kriging-based basin-scale reconstruction of layers interfaces.

4.3. Results of the Thermo-Hydro-Mechanical Effects of Glaciation

In this section we consider the application of the solver described in Section 3. As introduced in
Section 3.3, the mechanical effect of the glaciation is taken into account by means of a variable load.
This load is related to the height of the ice accumulated on top of the basin and follows the curve
shown in the left part of Figure 2. Concerning the thermal problem, adiabatic conditions are considered
at the bottom and the lateral surfaces of the physical domain while a time-dependent temperature
profile is imposed in the top boundary of the basin. This profile models the thermal effect of the ice
and it is shown in the right panel of Figure 2.

The configuration of the basin simulated in this section and the physical parameters used to
initialize the THM model are reported in Figure 7. More precisely, to perform the three-dimensional
THM simulation, we consider a portion of the basin of 4× 4 km size with an average depth of of 2.8 km
located at the x, y coordinates (32.5, 36.5)×(8, 12) km of the basin shown in Figure 6. The domain is split
into three layers (numbered as 1,2 and 3 from bottom to top, as shown in the left part of Figure 7) and
one of them is not continuous across the whole planar domain size resulting in a geological model with
a pinch-out, consistent with the data in Figure 6. The material properties of all the different components
of the basin are summarized in the right panel of Figure 7. We assume that the intermediate layer has



Geosciences 2019, 9, 465 11 of 23

a permeability that is significantly higher than the other ones and we consider the evolution of the
basin during a time window of 26 ky with a time step of 0.14 ky chosen to follow with enough detail
glaciation evolution.

Young Modulus E1 1011 Pa
E2 2 1010 Pa
E3 1010 Pa

Rock density ρs 2.2 103 kg/m3

Rock permeability K1 10−18 m2

K2 10−12 m2

K3 10−16 m2

Thermal diffusivity b1 10−6 m2/s
b2 2 10−6 m2/s
b3 10−6 m2/s

Water density ρl 103 kg/m3

Water viscosity µl 10−3 Pa s
Dimension l 4 103 m
Radiogenic source q 10−7 W/m3K

Figure 7. On the left we show a sketch of the physical domain, ot top of which is superposed a layer
visualizing the ice sheet. The labels 1, 2, 3 mark the different materials. On the right the list of materials
properties is reported.

In the example of this section, the surface erosion on top of the basin is active during the last 8.7 ky
of the simulation. It is modeled as the prescribed evolution of the upper part of the sedimentary basin.
More precisely, we assume that during the last part of the simulation a certain amount of material is
removed from the upper part of the basin. As a consequence the top surface of the physical domain
evolves from S1 to S2, as shown in Figure 8. From the modeling standpoint, the motion of the top
surface is described by means of a the level set function, that is defined in terms of spatial coordinates
x, y and time t,

ls(x, z, t) = −(−0.285x + 1.6z + 12353) + 400(1 + a) , (8)

a = 0 if t < −8.7Ky , (9)

a =
t + 8.7Ky

8.7ky
if t ≥ −8.7Ky . (10)

Finally, in the simulations presented in this section, we consider that the basin is exposed to a
spatially dependent heat source qr, determined by the heat flux from the mantle and by the internal
radiogenic thermal source. The combination of these factors is accounted as a volumetric thermal
source of this form qr(x) = qr(z) = q0 f (z). Following [37], the baseline source q0 is determined by
means of a heat balance equation that distributes over the basin volume the heat flux coming form
the bottom surface (i.e., the one closer to the mantle) and the radiogenic source. Precisely, we set
q0 = φS/V + qr,0 where φ is the surface heat flux from the bottom surface, S, V is the basin volume
and qr,0 is the baseline radiogenic source. In this way we obtain q0 = 0.1 µW/m3 .To account for the
exponentially decreasing radioactivity with depth, this source is evaluated as a function of the actual
position of the domain according to the following empirical formula q = q0e−z/D where the parameter
D = 5 km.
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t[ky]-26 -17.4 -8.7

h ice[km]

4

0
0

Erosion

Figure 8. The evolution of the top surface of the basin due to erosion form configuration S1 to S2 is
shown during the last part of the simulation, from −8.7 ky to the present.

The kriging-based horizon reconstruction addressed before approximates the interface locations
on a user-defined spatially uniform grid (with uniform size equal to 0.5 km in our example), so that
each interface is represented by a point cloud. Such point clouds are used to generate the internal
surfaces of the basin as shown in the left panel of Figure 9. Then the boundaries of the horizons are
used for the creation of the lateral surfaces of the geological model as shown in the middle panel.
These operations result in the definition of a water tight geological model and are performed using the
platform GOCAD. The geological model is then used as the input of the mesh generator RINGMesh [38]
that produces the 3D a labeled computational grid shown in Figure 9, right panel.

Figure 9. A sketch of the pipeline to build the geological model and the mesh. On the left we show
the point cloud and corresponding reconstruction of the horizons. In the middle we show the lateral
surfaces together with the internal horizon. On the right we report the final Computational grid of the
geological model.

For the analysis and the interpretation of the results we subdivide the simulation in three different
phases: phase A (formation of the ice sheet) from −26 to −17.4 ky where the ice is growing, phase
B (isostatic adjustment) from −17.4 to −8.7 ky where the ice load is steady and most of the isostatic
motion takes place and the phase C (erosion) from −8.7 to 0 ky where the ice on top of the basin
vanishes and the erosion takes place. A schematic of this temporal subdivision is reported in Figure 10.
The current configuration of the domain Ω(t), rotated according to the rigid motion coming from
the isostatic adjustment simulation at different time steps, is shown in Figure 11. The evolution of
displacement and pressure along the phases A, B and C of the simulation is shown in Figure 12. In the
first phase (A), the action of the ice load generates the mechanical compaction of the basin. According
to the Biot model the compaction leads to an increase in the pore pressure in the different layers of
the basin. This effect is more evident in the top layers, 2 and 3, while layer 1 is almost unperturbed,
because it is the most impermeable and it is subject to zero displacement conditions on the bottom
surface. Moreover, we notice that the pressure field in the pinch out layer (layer 2) is almost uniform
and equal to the value at the interface with the upper layer (layer 3). This effect is due to the fact
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that layer 2 is the most permeable. According to the Darcy law, this is the region where the smallest
pressure gradients are observed.

In the second phase (B) we can observe the effect of the isostatic adjustment. The interaction
between the isostatic motion end the poromechanical problem is illustrated in Figures 12 and 13,
where we show at tB = −13 ky the pressure field in an internal slice of the domain, together with the
displacement direction inside layer 3. We observe that the imposed rotation generates a tangential
component of the load applied on the top of layer 3, namely σice

n · t 6= 0. This effect, combined with
the boundary conditions enforcing zero normal displacement on the lateral surfaces of the basin,
generates a mechanical compression effect along the tangential direction of the top and bottom surface
planes of layer 3. Because of the poromechanic coupling, this tangent stress induces the pressure peak
observed at the left corner of the basin. Furthermore, in the right part of Figure 13, an internal slice
along the xz plane is shown. From this view, the transition from layer 1 to layer 2 (at the pinch out) is
visible. In this visualization, the effect of the permeability jump can be appreciated. More precisely, the
pressure increases only along the interface between layers 1 and 3, while the pressure gradients are
significantly smeared out along the contact line with layer 2 as a consequence of the high permeability
of it. Finally, we notice that these effects are difficult to appreciate in the bottom layer, where the high
young modulus limits the displacement field and the low permeability almost blocks the diffusion of
the pressure peak occurring in the top layer.

phase A phase B phase C

-26ky -17.4ky -8.7ky 0ky

tA = −21.7 ky tB = −13 ky tC = −4.3 ky

hice

Ttop
erosion

Figure 10. Timeline of the simulation. On the top we show the height of the ice, on the bottom
temperature profile (red) and the thickness of the eroded material (green).

0.9

1

1.1

q t
o
t/
q 0

−20 −10 0

t[ky]

Figure 11. Time variation of the relative total thermal source (qr) during the evolution of the domain
because of isostasy and erosion.
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Rigid motion

Displacement

Pressure

tA tB tC

Figure 12. Evolution of the isostatic adjustment, the displacement and the pressure fields along the
different phases of the simulation. In particular, we show on the top we show an the imposed rigid
motion. The displacement (middle row) and the pressure fields (the variation from the hydrostatic
pressure profile is shown, bottom row) are reported at times tA = −21.7ky tB = −13Ky and tC =

−4.3Ky, from left to right.

Figure 13. Front (on the left) and lateral (on the right) view of the basin. The color marks the pressure
field, the arrows shows the direction of the solid displacement (in the interior and on the boundary of
the domain, that is u · n = 0) and the black lines show the direction of gravity. The configuration of the
basin layers is also shown, to facilitate the interpretation of the results.
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To appreciate the impact of taking into account the isostatic response, we compare the pressure
field in the top layer with the one obtained through a different numerical experiment in which we
neglect the isostatic adjustment and the erosion. In the second scenario the basin model is completely
static. In such case, because the load on top of the basin is constant, the general temporal trend of
the pressure is to progressively reach a steady state in all the layers of the basin according to the
characteristic temporal scale determined by the different permeability values.

The comparative study of the two scenarios described above is reported in Figure 14. In this
Figure we compare the pressure field along two transversal lines r1 and r2, obtained switching on
(first scenario, solid line) and off (second scenario, dashed line) the isostatic motion of the basin.
As previously observed in the central panel of Figure 12, we notice that in the first scenario the pressure
reaches a peak in the left corner of the layer 3 (as also illustrated in Figure 14). Such peak is not present
in the second scenario, where we neglect the isostatic movement of the basin, as we can see from
Figure 14 (dotted line). From that comparison we notice that limited spatial variations of the pressure
are generate without taking into account the rigid motion of the basin, Conversely, the introduction of
the isostatic rebound significantly increases the pressure variability, generating local peaks that depend
on the morphology of the basin. Then, we conclude that the motion due to the isostatic adjustment
simulation is the primary reason of the overpressure generation.

2

3

4

P
[M

P
a
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
r1

Piso

Pnoiso

2

3

P
[M

P
a
]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r2

Piso

Pnoiso

Figure 14. Pressure field on the lateral (on top) and front (on the bottom) lines r1 and r2, respectively.
Solid (Piso) and dashed line (Pno−iso) mark the results obtained considering and neglecting the effect of
erosion and of the isostasy movements, respectively.

We now focus on the final phase (namely phase C) when the ice sheet is disappearing from the
top of the basin and the erosion takes place. In this phase the mechanical load due to the ice weight
goes to zero. The reduction of mechanical compaction is also augmented by the erosion of the top part
of the basin. The combination of these effects leads to a general decrease of the pore pressure in all
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layers, as shown in the right panel of Figure 12, right column. More precisely, the lowest values of
pressure (in terms of variations from the hydrostatic load) are located in the softest layer.

Concerning the temperature field, the model is initiated with a temperature field at thermal
equilibrium and it evolves according to the (time dependent) heat equation under the action of a space
dependent heat source. To analyze and validate the simulation of the thermal field we address two
indicators: the overall thermal gradient from the top to the bottom of the basin and the temporal
variations of the temperature from the steady state. Concerning the vertical temperature gradient,
we observe from Figure 15 that a difference of 60 degC along the vertical axis is established as a
consequence of thermal balance between the thermal source and the imposed temperature at the top
of the basin. This results is in good agreement with the thermal gradients expected in literature, see
for example [37,39] for thermal properties and, in particular [37] for expected temperature profiles.
For a more detailed analysis of the thermal variations from the initial equilibrium state, we report,
in Figure 16, difference of the temperature field at time tA = −21.7ky tB = −13Ky from the one at
t0 = −26Ky. We notice that at tA and tB, the main temperature variations are driven by the increase of
surface temperature from −10 degC to 0 degC at the top of the basin, due to the protective effect of the
ice cap, that is progressively forming in this phase. Comparing more in detail the profiles at tA and
tB, we observe that at time tB the temperature in the central part of the basin has slightly increased
with respect to the one at tA, by the effect of the thermal source . The profile at tC differs significantly
form the others, because of the erosion, active in the time interval from tB to tC. During erosion, the
reference temperature of 0 degC enforced at the contact interface with the ice, progressively shifts
downwards, swiping a region of the basin that was previously hotter than 0 degC. For this reason, the
temperature in the basin after erosion significantly decreases with respect to the initial time. Finally, in
Figure 11 we report the variation of the total thermal source term, relative to the initial state, that is the
spatial integral during the evolution of the domain Ω(t) of the heat source

∫
Ω(t) q(x)dω/

∫
Ω(t0)

q(x)dω.
These data suggest that variation of the basin volume due to erosion decreases the thermal source
more significantly than the progressive increase of basin depth due to isostasy.

Figure 15. Comparison of the initial (t = −26 ky on the left) and final (t = 0 ky on the right) temperature
fields. It is observed, at the depth of 4 km, temperature gradient of approximately 60◦C as qualitatively
expected in [37].
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tA tB tC

Figure 16. The difference of the temperature field at time tA = −21.7 ky, tB = −13 ky and tC = −4.3 ky
from that at t0 = −26 ky is shown from left to right.

The analysis of the thermal field confirms that, in the short time window of one cycle of glaciation,
the surface temperature, possibly modulated by erosion, is the main diving factor that determines
temperature variations from the equilibrium state. This finding is in accordance with the detailed
analysis of the effects of glaciations on sedimentary basins provided in [25]. It should also be observed
that using a time dependent heat equation correctly models the natural inertia of the basin to change
its equilibrium state. As a result, it is expected that the repetition of many glaciation cycles is required
to significantly cool down the entire basin.

5. Conclusions

We have developed a fully coupled multiphysics and multiscale description of the evolution
of a sedimentary basin under the effect of a glaciation cycle. To the best of our knowledge,
thermo-hydro-mechanical effects are combined with isostatic adjustment and erosion within a fully
time dependent three-dimensional simulation for the first time. Although the geological model that
has been considered does not represent yet the complexity of a real sedimentary basin, we have
described a pipeline of steps that could handle the most complex cases as well, thanks to a multiscale
approach that decouples phenomena occurring at very different space and time scales. For example,
our methodology establishes a quantitative framework to transfer information from the definition of a
large scale geological architecture to local fluid displacement and deformation dynamics. Preliminary
numerical results suggest that the combination of all these phenomena reveals the emergence of effects
that were not expected or predictable using simpler approaches. In the considered synthetic test case
we have quantified the effects of large scale isostatic displacement on local pressure and displacement
field, in the presence of layer a pinch-out. Moreover, our results demonstrate the effect of erosion on
the temperature dynamics of the sedimentary system. We believe that our results show the predictive
potential of this holistic description of sedimentary basins subject to glaciations.
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Abbreviations

The following abbreviations are used in this manuscript:

THM Thermo-Hydro-Mechanical

Appendix A. The Numerical Solver for the Isostatic Glacial Rebound Model

The numerical solver for the glacial isostatic adjustment is implemented using the deal.II
library [40,41]. This library provides the tools for an efficient implementation of a parallel solver
based on the Discontinuous Galerkin method. Let Th be a subdivision of the geometric domain Ω
consisting of non-overlapping hexahedra with characteristic mesh size h, we introduce the finite
dimensional spaces

Vk
h = {v ∈ L2(Ω;R3) : v|K ∈ Pk(K;R3) ∀K ∈ Th},

Qk
h = {q ∈ L2(Ω) : q|K ∈ Pk(K) ∀K ∈ Th}.

Let Eh =
⋃

K∈Th
∂K denote the set of the faces of Th then E0

h = Eh\∂Ω is the set of internal faces.
Let e ∈ E0

h be a face shared by two elements K+ and K−, define the unit normal vector n+ and n− on
the e pointing exterior to K+ and K−, respectively. With φ± = φ|K± we set the average operators as

{v} = v+ + v−

2
{q} = q+ + q−

2
,

together with the jump operators:

JvK = v+ ⊗ n+ + v− ⊗ n− JqK = q+n+ + q−n−.

Equation (4) is discretized using the standard SIPG method [42]: find φh ∈ Qk
h such that

∫
Ω
∇hφh · ∇hψh + 4πGρψh dx+

+
∫
E0

h

γJφhK · JψhK− {∇hφh} · JψhK− JφhK{∇hψh} ds + B.C. = 0 ∀ψh ∈ Qk
h.

where B.C. is the term related to the boundary conditions and γ is a proper penalization factor.
The algebraic system obtained from this weak formulation is solved using the standard conjugate
gradient method preconditioned with a geometric multigrid method, available in deal.II library [43].

The Equations (3) are discretized using a standard second order accurate, one-step and
unconditionally stable scheme [26] and the integral is approximated using the mid-point formula.
Using this approach the equations describing the motion of the viscoelastic Earth model can be
rewritten in semi-discrete form using only the variables u, p and h:

∇ ·
(

2µe−
∆tn
2τ e(un − un−1)− pn I + e−

∆tn
τ hn−1

)
+ ρ(∇xg)un = 0 in Ω,

∇ · un +
3

2µ

1− 2ν

1 + ν
pn = 0 in Ω,

hn = 2µe−
∆tn
2τ e(un − un−1) + e−

∆tn
τ hn−1 in Ω.

The first two equations of this system have the same structure of the linear elastic problem and
they are discretized using the Discontinuous Galerkin scheme. In order to keep the notation simpler
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the shear modulus will be redefined as µ̂n = µe−
∆tn
2τ and all the known terms in the first equation are

written as a unique term Fn:

Fn = ∇ ·
(

2µ̂ne(un−1)− e−
∆tn

τ hn−1

)
.

These equations can be rewritten in a full discrete form using the standard SIPG-method for the
linear elasticity [44]: find (uh,n, ph,n) ∈ Vk+1

h ×Qk
h such that

a(uh,n, vh) + b(vh, ph,n) =
∫

Ω
Fn · vh dx + B.C. ∀vh ∈ Vk+1

h ,

b(uh,n, qh)− c(ph,n, qh) = B.C. ∀qh ∈ Qk
h.

where the bilinear forms are defined by

a(uh, vh) =
∫

Ω
2µ̂ne(uh) : e(vh) + ρ(∇xg)uh · vh dx+

+
∫
E0

h

γJuhK : JvhK− {2µ̂ne(uh)} : JvhK− JuhK : {2µ̂ne(vh)} ds,

b(uh, qh) = −
∫

Ω
∇ · uhqh dx +

∫
E0

h

JuhK : {qh I} ds,

c(ph, qh) =
∫

Ω

3
2µ

1− 2ν

1 + ν
phqh dx,

The terms B.C. are related to the boundary conditions and γ is a proper penalization factor. This
problem is equivalent to the algebraic block structured linear system

2µ̂n A BT

B − 3
2µ

1− 2ν

1 + ν
C


[

Un

Pn

]
=

[
Fn

Gn

]

This system is solved using the GMRES method and it is preconditioned with the block-triangular
preconditioner

P =


2µ̂n Â −BT

0
3

2µ
M


where Â is the matrix associated to the Discontinuous Galerkin approximation of the vector-valued
Laplace operator in Vk+1

h and M is the mass matrix in Qk
h. The implementation of P−1 requires the

computation of the inverse matrix for Â and M. The mass matrix M can be inverted easily, because a
proper choice of the base functions for the space Qk

h and the quadrature rule to evaluate the integral
leads to a diagonal mass matrix. The inverse of matrix Â is replaced with a geometric multigrid
preconditioner [45].

Even if the numerical solver is general with respect to the polynomial order k, the results presented
in this work are obtained using quadratic polynomials for the gravity potential field (in order to
evaluate the gradient of gravity acceleration) and the stable pair of spaces V2

h × Q1
h is used for the

displacement and the pressure unknowns in the viscoelastic problem.

Appendix B. The Numerical Solver for the THM Model

The surface erosion on top of the basin is taken into account as a prescribed evolution of the upper
part of the sedimentary basin. To model erosion, we use the cut finite element method, briefly CutFEM,
in which the boundary of the physical domain is represented on a background grid using a level set
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function see for example [46]. This approach requires that the computational domain must embed all
possible eroded configurations. As a consequence, we immerse the physical domain that describes the
basin Ω(t), into a larger computational domain Ω(t) ∪Ωout as shown in Figure A1. The background
or computational grid is also used to approximate the solution of the governing problem. We ideally
divide the computational grid into three regions, Ω(t), Ωout and Γ, where the level set is lower, grater
and equal to zero, respectively; Ω(t) is the physical domain where the poromechanical problem is
solved; Ωout is a dummy zone that does not affect the solution, while Γ is the top surface of the basin
where the top boundary conditions are enforced.

Figure A1. On the left we show the physical domain. On the right the physical domain (gray) is
embedded in a larger computational domain (Ω ∪Ωout). Γ marks the top surface of the basin.

Figure A2. A schematic of the complete algorithm for the solution of the thermal poro mechanical
problem. Matrices Bu, Bp, BT correspond to the discretization of Equations (A1) a, b, c respectively.

Since Equations (5)–(7) are solved numerically, we briefly introduce the corresponding finite
element discretization, which is based on the weak formulation of the problem.

Let Th := {K} denote a triangulation of ΩT = Ω(t) ∪Ωout that does not necessarily conform to
the surface Γ and let us introduce the discrete spaces

Vh := {vh ∈ H1(ΩT ,R3) : vh|T ∈ P1(K,R3), ∀K ∈ Th} ,

Qh := {qh ∈ H1(ΩT ) : qh|T ∈ P1(K), ∀K ∈ Th} ,

Wh := {wh ∈ H1(ΩT ) : wh|T ∈ P1(K), ∀K ∈ Th} ,
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where P1 denotes the space of scalar piecewise linear polynomials on Th. We introduce the following
bilinear forms:a(u, v) := 2

∫
Ω(t) µε(u) : ε(v)dΩ +

∫
Ω(t) λ(∇ · u)(∇ · v)dΩ and c(p, q, K) :=

∫
Ωin

K∇p ·
∇qdΩ. Let us also introduce the operators Dp(p, q, u) = 1/M(p, q) + α(∇ · u, q) , DT(T, w, v) =

ρbcb (T, w)+ ρ f c f (v · ∇T, w) and Θ〈p, q〉KΓ = −
∫

Γ K∇p ·nqdΓ+γh−1
∫

Γ pqdΓ−
∫

Γ K∇q ·npdΓ, where
(·, ·) is the standard inner product in the space L2(Ω(t)), h is the characteristic size of the quasi-uniform
computational mesh and γ > 0 denotes a penalization parameter. For the imposition of the pressure
and temperature boundary conditions on the internal unfitted interface Γ, we rely to the Nitsche’s
method following the approaches proposed in [47–50]. This technique allows to weakly enforce
interface conditions at the discrete level by adding to the variational formulation of the problem
appropriate penalization terms (γ). Finally, considering a backward-Euler time discretization scheme,
the fully discretized problem at time tn, n = 1, 2, ..., N can be written as follows: find (uh, ph, Th) ∈
Vh ×Qh ×Wh such that:

a(un
h , vh)− α(pn

h ,∇ · vh) = (f, vh) ∀vh ∈ Vh ,

Dp(pn
h , qh, un

h) + τΛ(pn
h , qh, K) = Dp(pn−1

h , qh, un
h) ∀qh ∈ Qh ,

DT(Tn
h , wh, vn

D,h) + τΛ(Tn
h , wh, b) = DT(Tn−1

h , wh, 0) + (qn
r , wh) ∀wh ∈Wh .

(A1)

where Λ(p, q, k) = c(p, q, K) + Θ〈p, q〉KΓ and τ is the computational time step.
The solution of Equations (A1) is not trivial. We decouple the solution of poromechanical problem

(i.e., the first two Equations of (A1)) from the solution of the thermal problem (last Equation of (A1)).
However the solution of the poromechanical problem is still challenging due to the tight coupling
between deformation and flow. To solve such problem we adopt the fixed stress iterative scheme as
proposed in [31,51]. This algorithm is a sequential procedure where the flow is solved first followed by
the solution of the mechanical problem. In particular, in every time steps, the algorithm is iterated
until the solution converges within an acceptable tolerance. In the first step the fixed stress algorithm,
given (un,k

h , pn,k
h ) ∈ Vr

h ×Qs
h we evaluate pn,k+1

h ∈ Qs
h where ·k is the index of the fixed stress iteration.

In the second step, given the new pressure pn,k+1
h ∈ Qs

h we find the new un,k+1
h ∈ Vr

h. The iterative
steps are performed until the following convergence criterion is fulfilled

pn,k+1
h − pn,k

h

pn,0
h

< ηp,
un,k+1

h − un,k
h

un,0
h

< ηu, (A2)

where ηp and ηu are the desired tolerances (here chose equal to 10−7). A schematic of the complete
algorithm for the solution of the thermal poro mechanical problem in a compact form is shown in
Figure A2. For further details about the performance of this method we remand to [52].
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