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Abstract: Mountain-block groundwater in the Southern Basin-and-Range Province shows a variety
of patterns of δ18O and δ2H that indicate multiple recharge mechanisms. At 2420 m above sea level
(masl) in Tucson Basin, seasonal amount-weighted means of δ18O and δ2H for summer are −8.3,
−53%�, and for winter, −10.8 and −70%�, respectively. Elevation-effect coefficients for δ18O and
δ2H are as follows: summer, −1.6 and −7.7 %� per km and winter, −1.1 and −8.9 %� per km. Little
altitude effect exists in 25% of seasons studied. At 2420 masl, amount-weighted monthly averages
of δ18O and δ2H decrease in summer but increase in winter as precipitation intensity increases.
In snow-banks, δ18O and δ2H commonly plots close to the winter local meteoric water line (LMWL).
Four principal patterns of (δ18O, δ2H) data have been identified: (1) data plotting along LMWLs
for all precipitation at >1800 masl; (2) data plotting along modified LMWLs for the wettest 30% of
months at <1700 masl; (3) evaporation trends at all elevations; (4) other patterns, including those
affected by ancient groundwater. Young, tritiated groundwater predominates in studied mountain
blocks. Ancient groundwater forms separate systems and mixes with young groundwater. Recharge
mechanisms reflect a complex interplay of precipitation season, altitude, precipitation intensity,
groundwater age and geology. Tucson Basin alluvium receives mountain-front recharge containing
50%–90% winter precipitation.

Keywords: Arizona; New Mexico; hydrology; mountain block; recharge; stable isotopes; tritium;
carbon-14

1. Introduction

In the Basin and Range Province [1] of Southwestern North America, mountain blocks play an
important role in regional hydrology. Water from the highest mountain ranges is conveyed to adjacent
basin-fill aquifers either as surface flow or as sub-surface mountain-block recharge [2]. Since the 1880s,
the alluvial aquifers have been a crucial water source for agriculture, mining and urban centers in the
region. Groundwater hydrology studies in mountain ranges are potentially difficult because of the
challenges of data collection in remote and inaccessible terrain with few sampling points [2].
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Studies of mountain-system hydrology have been conducted at a variety of spatial scales.
Smaller-scale studies have focused on water budgets of individual hillslopes or small watersheds,
using parameters such as water chemistry, temperature and isotopes to examine the distribution of
available water between runoff, soil water and bedrock groundwater [3–8]. At a larger scale, isotope
and noble gas ratio data have identified groundwater moving from a mountain block into basin
alluvium in Salt Lake Valley, Utah, USA [9,10]. Stable isotope studies have addressed the residence
time of mountain-block groundwater of Table Mountain, South Africa, and the Cascade Range, Oregon,
USA [11,12].

A potential approach to mountain-block hydrology consists in comparing isotope data of
groundwater from springs and wells with isotopes in mountain precipitation, taking into account
the altitude and seasonal effects, with a view to constraining recharge mechanisms and flow paths.
Such studies have been undertaken in the Basin-and-Range Province [13–17]. Figure 1 is a conceptual
sketch of a mountain block, showing possibilities for water movement that might be evaluated using
stable isotope data.
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Figure 1. Conceptual diagram for processes of mountain-block hydrology in the Basin-and-Range
Province. A = recharge of high-altitude precipitation, fracture flow to all lower elevations; B = recharge
of lower-altitude precipitation; C = high-altitude recharge subject to cyclic infiltration, discharge,
evaporation and infiltration; D = mountain-block recharge to basin alluvium; E = mountain-front
recharge to basin alluvium.

In this article, stable oxygen and hydrogen isotope data from environmental waters are reviewed
in an assessment of groundwater characteristics in six mountain blocks (Santa Catalina, Rincon, Tucson,
Santa Rita, Galiuro, and Sacramento) of the Basin and Range Province in Southern Arizona and New
Mexico, and in the Mogollon Highlands at Payson, Arizona (Figure 2). Data for the Huachuca and
Chiricahua Mountains (Mts.) (Figures S1 and S2), which illustrate less clearly the phenomena to be
described in the other locations, are reviewed in Supplementary Information. The aims of the study
are: (1) detailed evaluation of isotope character of high-altitude precipitation in the Santa Catalina
(Mts); (2) comparison of isotope data for groundwater in multiple mountain blocks; (3) interpretation
of stable O and H isotope data in the context of isotope altitude effects, local geology and groundwater
ages; (4) interpretation of isotope data patterns in terms of recharge mechanisms; and (5) re-evaluation
of seasonality of mountain-front recharge to the alluvial aquifer in Tucson Basin.
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2. Materials and Methods

2.1. Study Area

The mountain blocks considered here are hard-rock ranges of the Basin-and-Range province,
plus part of the southern rim of the Colorado Plateau. The Basin-and-Range Province formed by
Neogene tectonic extension, part of an extended episode of taphrogenesis reflecting the interaction
of mid-ocean ridges and triple junctions with trenches along the western edge of the continent [18].
Extension split a hard-rock plateau into a series of mountain ranges separated by basins filled with
alluvium, a process that began 15 Ma ago in Southeastern Arizona [18]. The ranges are fault-bounded
horsts or tilted blocks of consolidated Early Proterozoic to Neogene rocks [19]. The complex interior
structure of the ranges reflects evolution from a Late Cretaceous compressive stress regime to a Neogene
extensional regime [19].

The region has an arid to semiarid climate, except at the crests of the higher mountain ranges.
Annual average precipitation ranges from 75 to over 1000 mm annually, with the higher totals occurring
at the range crests [20]. Potential evaporation greatly exceeds rainfall [20,21]. Rainfall typically occurs
in two seasons or modes: in summer, localized, potentially intense convective precipitation results
from the North American monsoon, and in winter, widespread orographic precipitation originates
from Pacific frontal systems. These precipitation modes are consistently separated in the spring by a
hot period with little or no rain during May and June. Dry, lower mountain slopes typically support
grasses, forbs, succulents and shrubs, succeeded upwards by stunted evergreen oaks and conifers.
Well-watered range-crests support forests of conifers and deciduous trees. Most woodland parts of
the study areas have little human settlement and are protected by National Forest or National Park
designation; in such areas, fire has been suppressed for many years. Since the onset of long-term
drought in the late 1990s, the vegetation and surface hydrology of large areas have been greatly affected
by forest fires. Higher-density human settlement in these mountain ranges is present locally in the
Southern Sacramento, Santa Catalina and Tucson Mts. and the Mogollon Highlands.

When sampling for this study began in the 1990s, springs of modest discharge were widely
distributed in most of the ranges considered here, except for the Tucson Mts. Attempts at re-sampling
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since 2012 have shown that many springs no longer discharge in the Santa Catalina and Galiuro Mts.
The change in hydrology reflects drought conditions that have prevailed since about 1998 [22].

The hydrogeology of each range is strongly influenced by its lithologies and structures. In the
following summary, representative references are given for the geology. Detailed geological maps and
cross-sections can be found in those references.

2.2. Santa Catalina and Rincon Mts

These ranges form the northern and northeastern boundary of Tucson Basin, and constitute a
single structural block of the Basin-and-Range Province. In the Santa Catalina Mts. (SCM), the highest
peak is Mt. Lemmon, 2791 masl. Steep slopes and V-shaped drainages are characteristic. In the
Rincon Mts. (RM), the highest peak is Mica Mountain, 2641 masl. The central massifs of both ranges
consist mainly of granitoid intrusions, including thick sheets of Paleogene equigranular peraluminous
leucogranite and associated pegmatite intruding tilted Proterozoic and Paleozoic strata to the northeast,
and intensely deformed Proterozoic granite to the southwest [23,24]. The SCM-RM block formed the
lower plate of a Neogene low-angle detachment fault marked by a band of impermeable mylonite [25].
A pronounced set of sub-horizontal leucogranite sheets on Mica Mountain (RM) creates a stepped
topography that is absent in the SCM.

Previous stable isotope studies in the SCM addressed the origin of spring water [26], the origin
of groundwater associated with the detachment fault [27], the nature of precipitation at a station at
2420 masl [28] and relationships among precipitation, critical zone groundwater, soil water and stream
flow [6,8,29,30].

2.3. Tucson Mts

The Tucson Mountains form a terrain of steep slopes and sharp peaks interspersed with broad
valleys and pediments, and bounding Tucson Basin to the west. Wassen Peak, 1428 masl, is the highest
point. Late Cretaceous–Paleogene granitoids intrude coeval felsic volcanic rocks and Permian to
Jurassic sedimentary rocks [24]. Fracture-hosted groundwater is pumped from as much as 170 m below
valley-floors and pediments; water levels are declining rapidly. Detailed isotope (stable O, H in water,
stable S, O in sulfate, 3H, 14C, 87Sr/86Sr) and geochemical data were presented for fracture-hosted
groundwater from a 9 km2 area near the Yuma Mine, 32.19◦ N, 111.73◦ W [31].

2.4. Santa Rita Mts

In the steep-sided massif of Mt. Wrightson (2882 masl), Triassic and Jurassic granitoids intrude
Triassic felsic volcanic rocks with interbedded eolian sandstone. Paleozoic limestone and Mesozoic
clastic sedimentary rocks underlie the eastern slope of the massif [32]. Published groundwater isotope
data (stable O, H and tritium) are available for the Rosemont area at 1500–1700 masl on the northern
ridge of the range [33], where complex faulting juxtaposes Proterozoic granitoid, Paleozoic marine
shelf strata and Mesozoic clastic sedimentary rocks [32,34,35].

2.5. Galiuro Mts

Steep slopes and V-shaped topography are characteristic. The highest point is Bassett Peak,
2332 masl. Late Paleogene felsic and intermediate volcanic rocks unconformably overlie discontinuous
outcrops of Late Cretaceous–Paleogene andesite and granitoids [36]. At the south end of the range,
a group of hot springs (Hooker and nearby hot springs) discharges at 53 ◦C. Stable O, H isotope data
were measured for a few springs at the north end of the range [37].

2.6. Mogollon Highlands

Paleozoic strata, predominantly limestone, sandstone and siltstone, unconformably overlie
Proterozoic granitoids [38]. Highest elevations, 2300–2400 masl, occur at the Mogollon Rim (the
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southern edge of the Colorado Plateau) where the strata are flat-lying. South of the Mogollon Rim,
at elevations of 1500–1700 masl, the Paleozoic strata and Proterozoic granitoids are juxtaposed in
complex fashion by normal faults. Available reports address the hydrogeology of the Mogollon
Highlands [39] and isotopes in groundwater [40].

2.7. Sacramento Mts

The highest point in the range is Cathey Peak, 2923 masl. Landforms at high elevation include
V-shaped canyons, broad valleys with thick soil, and local karst features. Paleozoic strata, predominantly
limestone, are bounded by steep normal faults to the west, and dip eastward. Small springs discharge
where shale beds form aquitards, but regional hydrology is dominated by long-distance karst
permeability [16]. Groundwater isotope (stable O, H in water, 3H, 14C) and geochemical data amassed
during wet years, 2006–2009, [16] were compared with isotope data collected in 2003, following a dry
period [17].

2.8. Recharge Seasonality

The difference in stable isotope composition between summer and winter rain in Tucson Basin
has been used with isotope mass-balance to determine that winter recharge is dominant in the basin
aquifer [41–44]. Both O and H isotopes should be used in the mass-balance approach [45] because of an
isotope effect related to precipitation intensity like that in tropical regions [46]. Two principal recharge
mechanisms involving local precipitation (not river water of remote derivation) operate in alluvial
basins of Arizona [45]. Basins in Northwestern Arizona receive recharge from winter precipitation,
with strong evaporation effects. Basins in Southeastern and Central Arizona receive both summer and
winter recharge, but only from precipitation falling in the wettest months. The seasonality of recharge
in mountain blocks may not correspond to that in adjacent basins, and may vary with altitude [47].

2.9. Altitude Effects

The altitude effect on stable isotopes in precipitation [48] consists in decreases in δ18O and δ2H
with increasing sampling elevation. The altitude-δ18O relationship has been used to determine altitudes
of recharge [49,50] and paleoelevations in ancient mountain ranges [51,52]. For worldwide stations at
latitudes <70◦ and altitudes <5000 m, the relationship between δ18O and altitude is linear, and the
range of isotopic lapse rate for δ18O is −1.0 to −5.1%�/km with an average of −2.8 ± 1.3 (1σ) %�/km [53].
Snow sublimation may be superimposed on isotope altitude effects, decreasing lapse rates of δ18O and
leading to underestimates of paleo-elevation [54].

Isotope altitude effects are commonly absent on mountain ranges in continental interiors and in
snow [55]. Altitude effects in interior ranges of Arizona and New Mexico appear to be complex [45].
Altitude effects are present in summer but not in winter on a north-facing transect near Prescott,
Arizona, outside the present study area; on a neighboring south-facing transect, altitude effects are
present in both seasons, but are imperfectly correlated with altitude [56]. On the east-facing slope
of the Sacramento Mts., New Mexico, normal altitude effects were observed in summer, but reverse
effects (δ18O increasing with altitude) occurred in two winters of three studied [16].

In Tucson Basin, data collected at 2420 masl between 1995 and 2004 at Palisades Ranger Station
(PRS) in the Santa Catalina Mts. [28] (Supplementary Table S1) have been compared with a 32-year
dataset collected at 747 masl at the University of Arizona (UA) station in Tucson [22,28]. PRS has an
average precipitation of 750 mm/year; precipitation at PRS is more frequent than at UA, where average
precipitation is 360 mm/yr. The long-term estimates of altitude coefficients (Figure 3a) are based on all
precipitation events for each station.
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Figure 3. Isotope data for precipitation in the Santa Catalina Mts. (a). δ2H vs. δ18O for individual
measurements. Values of δ18O are amount-weighted means. (b). δ2H vs. δ18O for seasonal
amount-weighted mean data. (c). Altitude effects measured between the University of Arizona
(UA, 747 masl) and Palisades Ranger Station (PRS, 2420 masl) over entire winter and summer seasons,
1996–2003. (d). δ2H vs. δ18O for snow-banks.

2.10. Sampling and Analyses

Spring water was sampled as close as possible to the discharge point. Water supply wells in
continual use were sampled without further purging. Samples were stored in robust, tightly sealed
plastic bottles. Measurements of δ18O and δ2H were made on an automated gas-source isotope ratio
mass spectrometer (Finnigan Delta S) at the Environmental Isotope Laboratory of the University of
Arizona, Tucson, Arizona. For H isotopes, samples were reacted at 750 ◦C with Cr metal using a
Finnigan H/Device coupled to the mass spectrometer. For O isotopes, samples were equilibrated with
CO2 at approximately 15 ◦C in an automated equilibration device coupled to the mass spectrometer.
International reference materials VSMOW and SLAP were used for standardization [57]. On the basis
of repeated internal standards, analytical precision (1σ) was 0.9%� or better for δ2H and 0.08 %� or
better for δ18O. Prior to 1992, water samples were prepared manually by reduction to H2 gas using Zn
metal for H isotopes, and CO2 equilibration for O isotopes. Analytical precision (1σ) was poorer, 1.5%�

to 2%� for δ2H, and 0.15%� for δ18O. Tritium was measured on 0.18 L samples following electrolytic
enrichment, using Quantulus 1220 spectrophotometers with a detection limit of 0.6 tritium units
(TU). Calibration was based on National Institute of Standards and Technology standard reference
materials 4361 B and C. Carbon-14 measurements were made on 50 L water samples at the Radiocarbon
Laboratory, University of Arizona. Dissolved inorganic carbon was precipitated as BaCO3, processed
to benzene, and measured using Quantulus 1220 liquid-scintillation spectrophotometers. The detection
limit for full-size samples was 0.8 percent modern carbon (pMC) or lower. Calibration was based on
international standard Oxalic Acid I.

In this article, the presence of finite tritium in a groundwater sample is used as evidence that the
sample contains at least some recharge from precipitation that fell since about 1953. Finite tritium does
not preclude the presence of older recharge mixed with the younger water.
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3. Results

Previously unpublished isotope data are listed with sample location data in Supplementary
Tables S1–S3. Sources of published groundwater data are cited in each section, below.

3.1. Precipitation, Santa Catalina Mts

Figure 3a shows all available data for PRS [28]. Gaps exist, and many data represent composites
of rain events over multiple weeks (Table S1). Data for summer (defined here as June to October) and
winter (November to May) span broad, largely identical ranges; most data plot on a linear trend above
the global meteoric water line (GMWL) [58] between δ18O values of −19%� and −3%�. Summer data
predominate at δ18O > −5%�. Seasonal local meteoric water lines (LMWL), weighted for precipitation
amount [59] differ in slope and intercept (Figure 3a). Long-term amount-weighted averages (Figure 3b)
are (δ18O, δ2H) = (−10.8%�, −70%�) for winter and (−8.3%�, −53%�) for summer.

3.2. Altitude Effects at Annual Time Scale

Differences in seasonal amount-weighted mean δ18O between PRS and UA are distributed
evenly between 0, signifying no altitude effect, and 4.9, corresponding to −2.9 %�/km (Figure 3c).
In Southern Arizona, estimation of average isotope altitude effects clearly requires data for multiple
years. Available data indicate little to no altitude effect (< 1%� difference in Figure 3c) in four of sixteen
individual seasons.

3.3. Isotopes in Snow

Winter precipitation above 2000 masl in the Santa Catalina Mts. is commonly snow, locally
forming snow-banks that may persist until the spring equinox. Vertical sections through a snow-bank
on Mt. Bigelow Road (32.4158◦ N, 110.7302◦ W) were sampled between 2007 and 2012 to investigate
the occurrence of isotope shifts due to sublimation or other snow-metamorphic processes that are
known elsewhere in the Basin and Range Province [54,60]. Except in 2007, the data form a scattered
linear trend (Figure 3d), essentially conforming to the winter LMWL. In 2007, much of the snow plotted
far above the GMWL, reflecting snow-bank isotope fractionation opposite in sense to that observed
in Southeast California and Nevada [54]. Three meltwaters plot with snow-bank data, and a fourth
plots to the right of the GMWL, as predicted for snow that has partly sublimed [14]. Large isotope
fractionation within snow-banks does not occur in most years in the Santa Catalina Mts. When present,
it may result from sublimation and recondensation of vapor along a thermal gradient [61]. Snow
metamorphism studies in Alaska [61] and the Southwest USA [54,60] do not show the large isotope
shifts to the left of the GMWL that were identified in this study (Figure 3d).

3.4. Precipitation Intensity Effects

Recharge in subtropical and tropical regions has the isotope composition of precipitation falling in
the wettest months [46]. This effect is also present in Southern Arizona, where an isotope intensity effect
exists in the UA precipitation isotope dataset, and recharge appears to be dominated by precipitation
falling during approximately the wettest 30% of months (Figure 4a) [45]. The PRS precipitation
dataset is not ideal for such analysis, because of composite samples that are not easily arranged into
calendar-month brackets, and because of the relatively small number of monthly data (30 for winter,
37 for summer, compared with 159 and 134, respectively, at UA). Where necessary, data were combined
into approximate month-long non-calendrical brackets. Limitations notwithstanding, the wettest
summer months (plotted at x ≥ 60 in Figure 4b) at PRS have lower δ18O and δ2H than the long-term
amount-weighted averages (plotted at x = 0). In winter, the opposite occurs: the wettest months
have higher values of δ18O and δ2H than the long-term averages. Means representing the wettest
30% of months at PRS are nearly collinear with the LMWL as defined by long-term means of all data
(Figure 5a).
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Figure 4. Effect of rainfall intensity on δD and δ18O in precipitation; data from the (a) University of
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A value of 70 (for instance) on the x-axis corresponds to cumulative amount-weighted data for the 70th

to 100th percentile of months, arranged in order of monthly precipitation amount–i.e., to the wettest
30% of months.
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Figure 5. (a). δ2H vs. δ18O in groundwater (GW) from the Santa Catalina Mts., grouped according
to altitude of discharge. Also shown are long-term amount-weighted mean data for precipitation at
2420 masl [28] averaging over all data and over the wettest 30% of months, and for precipitation at
1400 masl [22,28], averaging over the wettest 30% of months. The snowbank line is from Figure 3d. (b).
δ18O in high-altitude groundwater from the Santa Catalina Mts. as a function of altitude. Sloping lines
indicate long-term δ18O lapse-rates. Blue dashed lines mark altitudes 2300 and 1400 masl. Green and
blue rectangles are discussed in the text.



Geosciences 2019, 9, 461 9 of 22

Therefore, isotope data cannot reveal a relationship between precipitation intensity and recharge
at the elevation of PRS; such relationships rely on a distinction between the LMWL (long-term means)
and the line including wettest-month means [45,46]. Recharge may nonetheless occur mainly during
the wettest summer months at high altitudes. In winter, this is less likely because snow-banks and
their meltwater can represent all winter precipitation events. The isotope composition of high-altitude
winter recharge is, therefore, better estimated by the weighted mean for all winter events.

3.5. Groundwater, Santa Catalina Mts

Figure 5a shows data for the main range of the Santa Catalina Mts., sampled in 1994–1996 [26],
omitting data for samples that had apparently evaporated between the discharge and sampling
points. Most samples plot close to the GMWL. Springs discharging at elevations above 2300 masl
have a restricted range of isotope composition, plotting near or just below the amount-weighted
mean for winter precipitation. Springs discharging below 2300 masl have a much broader range that
extends from mean summer precipitation to values far below mean winter precipitation. For springs
discharging below 1400 masl, the range of isotope composition is more restricted and possibly related
(with one exception) to mean precipitation for the wettest months near 1400 masl.

Plotting δ18O as a function of discharge altitude (Figure 5b), it is possible to constrain recharge
seasonality. Reasoning that recharge must occur at elevations above the discharge points, winter
recharge is predominant for samples plotting within the green rectangle, regardless of recharge altitude.
Similarly, samples plotting in the blue rectangle have approximately equal summer and winter recharge,
or predominant summer recharge. Points to the left of the green rectangle can only be explained
by recharge of water from unusually low-δ18O events, recorded at PRS in both summer and winter
(Supplementary Table S1).

All spring discharge in the main massif of the range contained tritium, and, therefore, contains some
post-1953 recharge [26]. Groundwater flow appears to occur on a time scale of decades, most likely
through shallow fracture systems. The drying of many springs since the beginning of drought
conditions in about 1998 is additional evidence of the short time scale of flow. Winter recharge at the
range crest could supply discharge to springs with data plotting in the green rectangle (Figure 5b).
All springs considered could potentially have catchments extending to the range crest. However,
more than half of the springs below 2300 masl were supplied with water of other isotope composition.
Recharge was, therefore, occurring at lower elevations, with a wide range of combinations of winter
and summer precipitation. No explanation is possible at present for apparent preferential recharge after
unusually low-δ18O events; in winter, such events are not the largest precipitation events (Figure 4b;
Supplementary Table S1).

3.6. Springs, Rincon Mts

Two sets of samples are considered (Figure 6). Spring water was collected in 2010 on Mica
Mountain, the main massif of the range, by National Parks Service staff [62], mostly from small pools
into the bottom of which spring water was seeping; some of the samples showed strong evidence of
evaporation and others may be slightly evaporated. A second set of spring and well water samples
was collected close to outcrop of the Catalina detachment fault by one of us (CJE), Joy Gillick, and Alex
Leonard between 1996 and 2014.

Data for springs discharging above 2180 masl form an array between mean winter and summer
precipitation at PRS, and show no evidence of evaporation, with one exception. Springs discharging
below 2180 masl on Mica Mountain form an evaporation trend of slope near 3.5, the trend apparently
also including two of the springs discharging above 2180 masl, and the mean isotope composition
of the wettest 30% of summer months. Two intensely evaporated samples with (δ18O, δ2H) = (+7.3,
−2%�) and (+15.0, +23%�) are omitted from the plot, but lie on the evaporation trend and are included
in the regression calculation. Most of the spring waters contained finite tritium when sampled in 2010.
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Figure 6. δ2H vs. δ18O in groundwater from the Rincon Mts. Also shown are long-term amount-weighted
mean data for precipitation at 2420 masl (from Figure 5). Data for ancient water are for Southeastern
Arizona groundwater containing < 8 pMC. [44,63,64]. W = winter, S = summer.

Groundwater drawn from wells in hard rock and from Agua Caliente spring near the Catalina
detachment fault at the base of the Rincon Mts. plots near (δ18O, δ2H) = (−10, −76%�). A similar set of
data, predating automated analytical techniques, was collected in the early 1980s [27]. The groundwater
is of sodium-sulfate type; sulfate-oxygen isotopes indicate that the sulfate source is oxidized sulfide [65].
Tritium is below detection, and 14C content ranges from 16 to 47 percent modern carbon (pMC).
Corrected dates are not offered, because sulfide oxidation has probably enhanced the dissolution of
accessory carbonate of unknown δ13C value from the aquifer.

Three recharge mechanisms are present in the Rincon Mts. (1) At high-altitudes, various
combinations of winter and summer recharge plot on the high-altitude LMWL. Most groundwater of
this kind bears detectable tritium (Supplementary Table S2) and appears to flow with short residence
time through shallow fractures. (2) High-altitude recharge that is either equal parts high-altitude
winter and summer precipitation (considering seasonal amount-weighted means for all precipitation
data) or entirely precipitation from the wettest 30% of summer months. This kind of water appears to
recharge and discharge cyclically in stream beds, undergoing evaporation in the process. (3) Recharge
of slightly evaporated water with (δ18O, δ2H) lower than the values for present-day weighted-mean
winter precipitation at PRS. The groundwater is of long residence time, probably thousands of
years, apparently flowing through a deep fracture system to an aquifer confined beneath mylonite of
the Catalina detachment fault. Such groundwater may be a mixture between ancient precipitation
(represented in Figure 6 by eleven data points for Southeastern Arizona groundwater containing
<8 pMC [44,63,64] with more recent high-altitude recharge. Note that the data from [64] include four
samples without 14C data, but from the same deep, saline aquifer as dated samples.

3.7. Groundwater, Tucson Mts

The Tucson Mts. are of lower elevation and have lower precipitation than the other ranges
surrounding Tucson Basin. Samples were taken from domestic wells and from one spring, all in hard
rock. Values of (δ18O, δ2H) (Supplementary Table S2) form a linear array approximately parallel to
and to the right of the GMWL (Figure 7). Samples that contain finite tritium plot at the upper end
of the trend, while the oldest sample, containing 7.8 pMC, plots at the lower end. This suggests a
relationship between stable O and H isotopes and groundwater residence time, although the age
distribution (indicated approximately by uncorrected pMC) is complex in the middle of the array.
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Values of (δ18O, δ2H) at the upper end of the trend fit a modified LMWL for the wettest 30% of months
at 1000 masl, rather than the LMWL for all data (both lines interpolated between UA and PRS altitudes).
A precipitation intensity effect operates on recent recharge, which arises equally from winter and
summer precipitation, or predominantly from summer precipitation. The lower end of the array
indicates ancient recharge at a time of lower (δ18O, δ2H) in average precipitation.
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Figure 7. δ2H vs. δ18O in groundwater (GW) from the Tucson Mts. Also shown are long-term
amount-weighted mean data for precipitation for Tucson Basin (Figures 3 and 4), adjusted for altitude.
Data sources: this study and [31], shown as elliptical field. W = winter, S = summer.

3.8. Groundwater, Santa Rita Mts

Data for springs higher than 1800 masl on the Mt. Wrightson massif (Figure 8) plot on the
LMWL for precipitation at PRS, between summer and winter means, with no indication of evaporation.
The range of δ18O is similar over about 800 m of altitude. All samples in which tritium was measured
contain finite tritium (Supplementary Table S2). In this case, all recharge may occur at the range crest,
with approximately equal winter and summer contributions.
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Figure 8. δ2H vs. δ18O in groundwater (GW) from the Santa Rita Mts. Also shown are long-term
amount-weighted mean data for precipitation for Tucson Basin (Figures 3 and 4); “30% wettest” denotes
mean data for the wettest 30% of summer and winter months, adjusted for altitude. Lines A and B are
suggested evaporation trends of slope 4. Data sources: this study, [33]. W = winter, S = summer.

Data from Rosemont, for wells and springs below 1600 masl, plot either along a line passing
through weighted-mean averages of (δ18O, δ2H) for the wettest 30% of months at 1600 masl (which
is close to collinear with the GMWL), or to the right of that line. Most data form a cluster with a
corresponding evaporation trend (line A in Figure 8, slope 4), and are consistent with about-equal
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contributions of summer and winter recharge. A few data points suggest predominant winter recharge
but may also reflect mixing with ancient recharge. The field of data is delimited downward by an
evaporation trend (line B), which appears to be related to the data for ancient water in Figure 6. No 14C
measurements are available for this data set.

3.9. Groundwater, Galiuro Mts

Most samples taken in 1994 plot along an evaporation trend of slope near 4 (Figure 9). Care was
taken to avoid water that might have evaporated since discharge. A few samples, including Hooker
Hot Springs, plot along the GMWL. Samples taken in 1982 [37] plot close to the evaporation trend.
Samples taken in 2012 at Upper and Lower Ash Springs plot closer to the GMWL. Other springs that
might have been re-sampled proved to be dry in 2012. Most samples taken in 1994 contained finite
tritium, between 1 and 6 TU, at the time of sampling. A sample from Hooker Hot Spring contained
tritium below detection, and 17 pMC.
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Figure 9. δ2H vs. δ18O in groundwater (GW) from the Galiuro Mts. Also shown are long-term
amount-weighted mean data for precipitation based on data for Tucson Basin, all events (Figures 3
and 4), adjusted for altitude. NAWP = Northern Arizona winter precipitation, independent of altitude
effect [45,56] The dashed line is a suggested evaporation trend of slope 4. Data sources: this study; [37].
W = winter, S = summer.

The data are consistent with two main recharge mechanisms in the range. Cold groundwater of
decadal residence time, evaporated prior to infiltration, originated as recharge plotting below present
mean winter precipitation at 2000 masl (based on Tucson Basin data) but resembling mean winter
precipitation that has no altitude effect in Northern Arizona [45,56]. By 2012, this recharge regime may
no longer have operated in the catchments of Upper and Lower Ash Springs. At Hooker Hot Springs
at the south end of the range, hot groundwater of long residence time, probably thousands of years,
was not evaporated prior to recharge and flows through a deeper fracture system.

3.10. Groundwater Mogollon Highlands

Groundwater from an area between the lower flanks of the Mogollon Rim and the Town of
Payson yielded (δ18O, δ2H) data forming a linear evaporation trend of slope 5 (Figure 10), and show no
relationship to altitude [40]. Samples with δ18O > −10%� are affected by recharge of treated water from
the Payson Town Lake. The data trend is closely similar to trends for alluvial basins in Northwestern
Arizona and for major rivers that rise along the Mogollon Rim. Such trends originate in regional mean
winter precipitation that has no altitude effect in Northern Arizona [45,56].
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Figure 10. δ2H vs. δ18O in groundwater (GW) from the Mogollon Highlands. Also shown are seasonal
amount-weighted mean data for precipitation. NAWP = Northern Arizona winter precipitation,
independent of altitude effect [45,56] Data source [40].

3.11. Groundwater, Sacramento Mts

The data (Figure 11) represent springs and precipitation sampled in 2006–2009, which were wetter
than average years [16], and springs and wells sampled in 2003, following several dry years [17].
All samples are from carbonate-dominated strata.
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Figure 11. δ2H vs. δ18O in groundwater (GW) from the Sacramento Mts., differentiated by time
of sampling and by altitude (2006−2009 samples only). Also shown are seasonal amount-weighted
mean data for precipitation in summer 2007, and winter 2007–2008, collection altitudes indicated.
SMT = Sacramento Mts. trend, a suggested evaporation trend. Data sources: groundwater [16,17];
precipitation [16]. W = winter, S = summer.

Data collected in 2003 from springs and wells at 1750 to 2550 masl form a linear trend (SMT) of
slope 5.6, consistent with evaporated winter precipitation (measured later, in 2007 and 2008) as the
principal source of recharge. The slope is high for an evaporation trend and may be influenced by
summer recharge. Summer recharge is clearly present during 2006–2009, when the data for springs
discharging between 1750 and 2400 masl form an array stretching between the SMT and summer
precipitation. Discharge from springs between 2400 and 2800 masl form a second array stretching
between the SMT and a mixture of summer and winter precipitation. The groundwater system
is dynamic, susceptible to change in isotope content at annual time scales. Winter recharge with
evaporation dominates at all altitudes above 1750 masl in dry years, but in years when above-average
summer rainfall occurs, summer recharge appears in groundwater.
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3.12. Seasonality of Mountain-front Recharge, Tucson Basin

Water from the Santa Catalina and Rincon Mts. is supplied to Tucson basin by three major
catchments: Rillito Creek, Cañada del Oro and Rincon Creek (Figure 12a). Mountain-front recharge
occurs at distances up to 10 km from range fronts [44]. Recharge occurs mainly during the wettest 30%
of months [45].Geosciences 2019, 9, x FOR PEER REVIEW 14 of 22 

 

 

Figure 12. (a). Map of Tucson Basin, after [44], showing principal drainages, major recharge zones as 
indicated by tritium, and zones with 50% winter recharge. (b). Sketch diagram of the conical model 
of a mountain range divided into three layers. 

Assumptions for the re-evaluation are: (1) that precipitation amount and isotope lapse rates are 
linear functions of altitude, established by data for the UA and PRS sites, and (2) that runoff from any 
altitude has the same likelihood of reaching the basin floor. Therefore, the bulk isotope content of 
runoff from the mountain block is the isotope content of precipitation at some altitude A, above and 
below which the volume of precipitation is the same. Altitude A is determined by considering each 
mountain range as a cone divided into n equally spaced layers (Figure 12b). The results for a pyramid, 
or for intersecting cones and pyramids are identical to those for the cone, and do not depend on apical 
angle. Each layer has an interpolated annual precipitation amount and an annular footprint area; the 
volume of precipitation for the layer is the product annular footprint x precipitation (mm). Volumes are 
summed for all layers above and below a chosen layer. For the Santa Catalina Mts., using 100 layers 
from 1000 to 2800 masl, altitude A is about 1660 masl (Supplementary Table 4). Interpolated, amount-
weighted, seasonal values of (δ18O, δ2H) in precipitation at 1660 masl are compared with groundwater 
isotope data for the parts of Tucson Basin recharged from mountain runoff (Figure 13).  

 

Figure 13. Frequency histograms of δ18O in groundwater recharged from three major streams in 
Tucson Basin, compared with the δ18O range of amount-weighted seasonal mean precipitation for the 
wettest 30% of months at an attitude of 1660 masl (blue bar). Only samples containing less than 1.5 
TU [44] are plotted. W = winter, S = summer. Inset: δ2H vs. δ18O for the groundwater samples plotted 
in the histograms, after [44,45], with amount-weighted seasonal means for precipitation at 1660 masl. 
Green symbols indicate means for all data, and red symbols for the wettest 30% of months. 

The groundwater data do not conform to the LMWL defined by the seasonal means of all 
precipitation data at 1660 masl (Figure 5b), but instead fall on a modified LMWL corresponding to 

CAÑADA DEL ORO

RINCON CREEK

RILLITO CREEK

  1 measurement

-10.5                    -10.0                      -9.5                       -9.0 -8.5                     -8.0
δ18O, ‰  

W S50%WETTEST 30% OF MONTHS AT 1660 masl

-100

-90

-80

-70

-60

-50

-40

-30

-12 -11 -10 -9 -8 -7 -6 -5

δ2 H
, ‰

δ18O, ‰

Precip 1660 masl all Precip 1660 masl 30%
GMWL Rillito
Rincon Canada del Oro

W

S

Figure 12. (a). Map of Tucson Basin, after [44], showing principal drainages, major recharge zones as
indicated by tritium, and zones with 50% winter recharge. (b). Sketch diagram of the conical model of
a mountain range divided into three layers.

Assumptions for the re-evaluation are: (1) that precipitation amount and isotope lapse rates are
linear functions of altitude, established by data for the UA and PRS sites, and (2) that runoff from any
altitude has the same likelihood of reaching the basin floor. Therefore, the bulk isotope content of
runoff from the mountain block is the isotope content of precipitation at some altitude A, above and
below which the volume of precipitation is the same. Altitude A is determined by considering each
mountain range as a cone divided into n equally spaced layers (Figure 12b). The results for a pyramid,
or for intersecting cones and pyramids are identical to those for the cone, and do not depend on apical
angle. Each layer has an interpolated annual precipitation amount and an annular footprint area; the
volume of precipitation for the layer is the product annular footprint x precipitation (mm). Volumes
are summed for all layers above and below a chosen layer. For the Santa Catalina Mts., using 100
layers from 1000 to 2800 masl, altitude A is about 1660 masl (Supplementary Table S4). Interpolated,
amount-weighted, seasonal values of (δ18O, δ2H) in precipitation at 1660 masl are compared with
groundwater isotope data for the parts of Tucson Basin recharged from mountain runoff (Figure 13).

The groundwater data do not conform to the LMWL defined by the seasonal means of all
precipitation data at 1660 masl (Figure 5b), but instead fall on a modified LMWL corresponding to the
wettest 30% of months at 1660 masl. The modified LMWL was calculated by applying the long-term
isotope lapse rates for Tucson Basin (Figure 3a) to the amount-weighted mean isotope compositions
for the wettest 30% of months at the UA site (Figure 4). In order to avoid scatter of isotope data
in younger, less integrated groundwater, only samples containing less than 1.5 TU were used [44].
In areas recharged from Rincon Creek and Cañada del Oro, winter recharge makes up 75% to 90% of
the total. In areas recharged from Rillito Creek, winter recharge constitutes 50% to 75% of the total.
Water with about 50% winter recharge (samples in Figure 13 with δ18O ≤ −9.3%�) occurs in discrete
areas at some distance from recharge sources (Figure 12a).
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Figure 13. Frequency histograms of δ18O in groundwater recharged from three major streams in Tucson
Basin, compared with the δ18O range of amount-weighted seasonal mean precipitation for the wettest
30% of months at an attitude of 1660 masl (blue bar). Only samples containing less than 1.5 TU [44]
are plotted. W = winter, S = summer. Inset: δ2H vs. δ18O for the groundwater samples plotted in the
histograms, after [44,45], with amount-weighted seasonal means for precipitation at 1660 masl. Green
symbols indicate means for all data, and red symbols for the wettest 30% of months.

4. Discussion

4.1. Residence Times

Where tritium data are available, they indicate the prominence of young groundwater in each
of the mountain blocks. Residence times of multiple decades are likely. Ancient groundwater is
recognized in certain blocks, either from 14C data or from distinctive stable O and H isotope data.
Available 14C data without correction suggest residence times of thousands of years. The shortest
residence times are found in the carbonate-dominated aquifers of the Sacramento Mountains, where
groundwater isotopes change at a time-scale of 5 years or less.

Contrasting systems of young and ancient groundwater have been distinguished in the Rincon
and Galiuro Mts, and possibly in the Rosemont area of the Santa Rita Mts. Except in the Galiuro Mts,
there is isotope evidence of mixing between old and young water. Preservation of ancient water in a
mountain block is likely to be related to the depth and connectivity of fracture systems. In general,
the depth of penetration of groundwater in mountain block aquifers is uncertain. Studies from regions
of active tectonics have demonstrated groundwater flow in fractured rock to depths reaching 300 m
below the surface [66] and references therein. In the Mont Blanc massif between France and Italy, 1950s
or younger recharge has penetrated to a depth exceeding 2000 m on the basis of tritium measurements
of water dripping into a highway tunnel [67]. Measurements of 36Cl and tritium in a tunnel within the
unsaturated zone at Yucca Mountain, Nevada, USA indicated post-bomb groundwater infiltration
along fractures to depths as great as 500 m [68]. The presence of warm water seems consistent with
deep flow in the Galiuro Mts. In the Tucson Mts., ancient water is produced from fractured rock up
to 170 m below the surface. In the Rosemont area, close juxtaposition of wells producing young and
ancient groundwater [33] suggests limited connectivity between sets of fractures.

Climate is also implicated in the persistence of ancient groundwater. O and H isotope data like
those for ancient water in this study are interpreted as evidence that ancient water was recharged
in the late Pleistocene, at a time of cooler and wetter climate in the Southwest USA [69]. Recharge
was more abundant than at present under such conditions. In the low-elevation Tucson Mts., present
rainfall may be insufficient to bring about recharge, leading to the dominance of ancient groundwater
in much of that mountain block.
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4.2. Multiple Recharge Mechanisms

The patterns of stable isotope data described above result from multiple recharge mechanisms
affecting young groundwater, in combination with mixing between young and ancient groundwater.
The data patterns may be grouped as follows. (i) Data plotting on a modified present-day LMWL
defined by seasonal amount-weighted means for the wettest months; (ii) data falling along the
present-day LMWL drawn through amount-weighted means for all summer and winter precipitation,
and plotting between the means; (iii) data falling along evaporation trends; (iv) data with no relationship
to present-day LMWLs or evaporation trends.

Group (i) matches Pattern 2 of groundwater in alluvial basins [45], and process B (Figure 1).
It occurs at Rosemont in the Santa Rita Mts., and in recent recharge in the Tucson Mts., in both
cases at altitudes below 1700 masl. This data pattern arises when recharge occurs during the wettest
30% (approximately) of months and reflects the loss of surface water to evaporation during drier
months. At Rosemont, equal amounts of summer and winter recharge are typical (Figure 8), and in the
Tucson Mts., more summer than winter recharge (Figure 7). Mixing of recent recharge with ancient
groundwater is indicated in both cases. Groundwater from springs discharging at elevations below
1400 masl in the Santa Catalina Mts. also largely fits this pattern, relative to mean isotope compositions
for precipitation at 1400 masl (Figure 5a).

Group (ii) is characteristic of groundwater from elevations above 1800 masl in the Santa Rita and
Rincon Mts. (Figures 6 and 8), and matches process A (Figure 1). Precipitation from wettest months at
such altitudes is collinear with the LMWL for all precipitation (Figure 6). Both summer and winter
recharge are indicated in both ranges, but the proportions remain uncertain because of the collinearity
of the LMWL and the modified LMWL, and the possibility of summer recharge mainly during the
wettest months.

Group (iii) corresponds to Pattern 1 recharge in alluvial basins of Central and Northwestern
Arizona [45] and process C (Figure 1). The pattern reflects recharge of winter precipitation only, typically
evaporated, in a region with no altitude dependence of O and H isotopes in winter precipitation. Group
(iii) is observed in the Mogollon Highlands (Figure 10) and the Galiuro Mts. until 1996, but possibly
not since 2012 (Figure 9). In both cases, the evaporation trend passes through the point (δ18O, δ2H) =

(−11.2, −77%�), corresponding to mean winter precipitation in the Pattern 1 region [45]. The persistent
evaporation trend in the Sacramento Mts. [17] also originates in winter precipitation, in this case with
(δ18O, δ2H) near (−13.5, −87%�); after wet summers, however, isotope compositions move towards the
LMWL (Figure 11). The evaporation trend at Rosemont in the Santa Rita Mts. originates in a mixture
of summer and winter recharge (Figure 8). The evaporation trend in the Rincon Mts. originates mainly
as high-elevation summer precipitation (Figure 7). In both cases, the isotope data are consistent with
multiple cycles of infiltration, discharge into streambeds, evaporation and renewed infiltration.

Group (iv) comprises other patterns, and includes ancient groundwaters, as established by 14C
data in the Rincon, Tucson and Galiuro Mts. (Figures 6, 7 and 9; Supplementary Table S2). Transmission
of such water into basin alluvium (process D of Figure 1) has been documented near the Rincon
Mts. [65].

In the Santa Catalina Mts., Group (iv) also includes spring waters from 1400 to 2300 masl (Figure 5a),
many of which cannot be derived from long-term mean winter precipitation, regardless of the altitude
of recharge (Figure 5b). Precipitation from certain events or seasons (Figure 3b,c) might account for the
very low values of (δ18O, δ2H) in springs between 1400 and 2300 masl, but an explanation of that nature
is problematic because it requires preferential infiltration of water of extreme isotope composition.
A similar infiltration phenomenon was identified, but not satisfactorily explained, in soil water in the
Marshall Gulch catchment, at 2300 to 2600 masl in the Santa Catalina Mts. [70]. Infiltration may be
favored by progressive wetting of soil during a precipitation season, later precipitation events being
more likely to survive evapotranspiration and lead to recharge. However, precipitation events with
low (δ18O, δ2H) values occur randomly in both summer or winter rainy seasons in the Santa Catalina
Mts. (Supplementary Table S2). Infiltration may also be favored by precipitation intensity (Figure 4b),
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as explained above. The highest precipitation intensity in summer corresponds with bulk monthly
values of (δ18O, δ2H) as low as (−10.3, −67%�) in rainwater, insufficient to explain the observed values
in spring water. In winter, precipitation intensity fails as an explanation because highest precipitation
intensity corresponds with monthly (δ18O, δ2H) values that are higher than the long-term winter mean.

4.3. Seasonality of Recharge

As in surrounding alluvial basins [45], recharge in mountain blocks is locally dominated by winter
precipitation, by summer precipitation, or by subequal mixtures. A particular recharge seasonality may
be characteristic of an entire mountain range (e.g., Mogollon Highlands, Galiuro Mts. in the 1990s) or
part of a range (Rincon Mts). Alternatively, recharge seasonality may depend upon altitude (Santa Rita
Mts., Santa Catalina Mts.). Altitude-dependence may reflect the tendency of winter snow to accumulate
in banks and melt in bulk at winter’s end at high altitudes, whereas snow from individual events melts
separately throughout winter at lower levels. Such an effect may account for the greater importance
of winter infiltration above 2400 masl in the Sacramento Mts. (Figure 11). It may also explain the
relative isotope uniformity of spring water (near mean winter precipitation) above 2300 masl in the
Santa Catalina Mts., contrasting with the broad range of δ18O at 1400–2300 masl (Figure 5a), but leaves
unexplained the implied preferential recharge from low− δ18O events.

4.4. Influence of Geology

All ranges studied consist predominantly of silicate rocks, except for the carbonate-dominated
Sacramento Mts. Unhindered infiltration into the highly permeable limestones of the Sacramento
Mts. is reflected in the short-term changes in isotope data in that range. Thick soil profiles in
typical high-elevation valleys appear to play a role in generating the dry-period evaporation trend in
groundwater of the range [17]. A contrast in permeability is present at the crest and on the north slope
of the Santa Catalina Mts, where tilted strata overlie less fractured, less permeable granite. Most of
the springs of the range discharge from these strata [26]. Whether this geological environment is
implicated in the unusual distribution of groundwater isotopes with altitude (Figure 5b) is not known.

The very different isotope patterns in groundwater from the Santa Catalina and Rincon Mts.
(Figures 5a and 6) occur in proximate ranges with closely similar lithology. The greater influence
of summer recharge in the Rincon Mts. may arise from structural geology, the stepped topography
governed by intrusion style at the range crest enhancing retention of summer runoff more effectively
than the V-shaped canyons of the Santa Catalina Mts.

In the Tucson Mts., the Galiuro Mts., and the Mt Wrightson massif of the Santa Rita Mts.,
groundwater is hosted by fractured volcanic rock. In these cases, geology does not appear to impose a
single pattern on isotope data in groundwater, and altitude, as discussed above, may be the primary
control. The evaporation trend of groundwater in the Galiuro Mts. is like that in the Mogollon
Highlands. Both mountain blocks are contiguous with, and behave as part of, a regional zone
in North-Central Arizona in which winter recharge is dominant, and no isotope altitude effect is
present [45].

4.5. Future Research

The complexity of (δ18O, δ2H) data patterns and recharge mechanisms in the mountain blocks
reviewed here stands in sharp contrast to the simpler zonation of neighboring alluvial basins [45].
From the discussion above, it emerges that hydrologic processes in the mountain blocks reflect a
complicated interplay of factors including precipitation seasonality, altitude, precipitation intensity,
groundwater age and geology. The recharge mechanisms described in this article operate within a
small number of mountain blocks that lie within a small portion of the North American Cordillera.
In that area, the isotopic distinction between winter and summer precipitation provides a useful
means of evaluating groundwater isotope data. Detailed studies of groundwater in other mountain
blocks, both in the region of subequal winter and summer precipitation and beyond, will add to the
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understanding of mountain block hydrogeology. It is impossible to predict, given the complexity of
results from the present study, the recharge mechanisms that will operate in neighboring mountain
blocks, let alone in more distant examples. Detailed study of each mountain block will be required.
Such research will benefit greatly from additional detailed information about isotope lapse rates in
precipitation. The two detailed datasets [28,31] for sites in Arizona reveal intricacies that can be
resolved only through long-term commitment to the gathering of data.

5. Conclusions

1. In 1995–2004, precipitation at 2420 masl at PRS in the Santa Catalina Mts. had seasonal
amount-weighted averages of (δ18O, δ2H) and LMWLs as follows: in summer (−8.3, −53%�), and
δ2H = 7.0δ18O + 4.2; in winter, (−10.8, −70%�) and δ2H = 8.3δ18O + 20.1. Wetter months have
lower (δ18O, δ2H) in summer, but higher (δ18O, δ2H) in winter.

2. In 2008–2013, snow-bank samples defined a line δ2H = 9.0δ18O + 26.3; in 2007, isotope
metamorphism gave rise to (δ18O, δ2H) values deviating strongly from this line.

3. Long-term coefficients for isotope altitude effect (δ18O, δ2H) between Tucson and PRS are (−1.6,
−7.7 %� per 1000 m) in summer, and (−1.1, −8.9 %� per 1000 m) in winter. Altitude effect was
absent in 25% of seasons examined.

4. Groundwater containing finite tritium predominates in all ranges studied except the Tucson Mts.,
and is interpreted as young groundwater, or mixtures containing young groundwater. Ancient
groundwater, indicated by 14C and distinctive (δ18O, δ2H) data, is present in the Galiuro, Tucson,
Rincon and Santa Rita Mts.

5. Multiple recharge mechanisms of young groundwater are indicated by patterns of (δ18O, δ2H)
data. The patterns are influenced by altitude, geology and mixing with ancient groundwater.

6. Regional, zoned recharge mechanisms of neighboring alluvial basins [45] are present in the silicate
mountain blocks. Winter-only recharge with evaporation occurs in the Mogollon Highlands
and the Galiuro Mts. Infiltration of winter and summer infiltration from the wettest months,
in various proportions, occurs below 1700 masl in the Santa Rita and Tucson Mts, and below
1400 masl in the Santa Catalina Mts.

7. Additional recharge mechanisms include: (1) infiltration of both winter and summer precipitation
in various proportions at high elevations in the Rincon and Santa Rita Mts., yielding (δ18O, δ2H)
data plotting along high-altitude LMWLs; (2) Infiltration of high-elevation summer-dominant
precipitation, with strong evaporation, in the Rincon Mountains; (3) recharge of water with (δ18O,
δ2H) values below those of long-term mean winter precipitation above 1400 masl in the Santa
Catalina Mts.; and (4) alternation of winter recharge with evaporation (dry years) and recharge of
mixed winter and summer precipitation without evaporation (wet years) in the carbonate rocks
of the Sacramento Mts.

8. A complex interplay of isotope effects related to altitude, precipitation seasonality, precipitation
intensity and groundwater age is responsible for the multiple patterns of isotope data.

9. Assuming that mountain runoff from any altitude has an equal likelihood of reaching the basin
floor, mountain-front recharge to alluvium in Tucson Basin consists of 50%–90% winter runoff

from surrounding mountain blocks.

Supplementary Materials: The following previously unpublished data are available online at http://www.
mdpi.com/2076-3263/9/11/461/s1: Isotopes in precipitation at Palisades Ranger Station, Santa Catalina Mts. in
Supplementary Table S1; Isotopes in groundwater, with sample location data, in Supplementary Table S2; Isotopes
in snowbanks on Mt. Bigelow, Santa Catalina Mts. in Supplementary Table S3. Supplementary Table S4 shows the
calculation of average isotope composition in runoff from a conical mountain. Other Supplementary Material
gives isotope data for springs in the Huachuca and Chiricahua Mts.
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