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Abstract: Despite landslide inventories being compiled throughout the world every year at different 
scales, limited efforts have been made to critically compare them using various techniques or by 
different investigators. Event-based landslide inventories indicate the location, distribution, and 
detected boundaries of landslides caused by a single event, such as an earthquake or a rainstorm. 
Event-based landslide inventories are essential for landslide susceptibility mapping, hazard 
modeling, and further management of risk mitigation. In Nepal, there were several attempts to map 
landslides in detail after the Gorkha earthquake. Particularly after the main event on 25 April 2015, 
researchers around the world mapped the landslides induced by this earthquake. In this research, 
we compared four of these published inventories qualitatively and quantitatively using different 
techniques. Two principal methodologies, namely the cartographical degree of matching and 
frequency area distribution (FAD), were optimized and applied to evaluate inventory maps. We 
also showed the impact of using satellite imagery with different spatial resolutions on the landslide 
inventory generation by analyzing matches and mismatches between the inventories. The results of 
our work give an overview of the impact of methodology selection and outline the limitations and 
advantages of different remote sensing and mapping techniques for landslide inventorying. 

Keywords: mass movements; inventory map; amalgamation; earth observation (EO); spatial 
resolution 

 

1. Introduction 

Landslides are the most frequent hazards of mountain regions throughout the world [1]. Given 
landslides’ variable characteristics, they cause enormous damage to human life and infrastructure 
[2]. Landslides are usually caused by a trigger, like an earthquake or rainfall, and these two 
phenomena are considered to be the common physical triggers for event-based landslides [3]. In the 
Himalayan region, rainfall in the monsoon period triggers several massive and small landslides every 
year [4]. However, landslides triggered by earthquakes are severely destructive. For instance, the 
recent global landslide triggering events of the Wenchuan earthquake (2008), China [5], the Gorkha 
earthquake (2015), Nepal [6], and the Bihar earthquake (2002), India [7], resulted in a large number 
of casualties and severe damage to private and public infrastructures. However, there are several 
reasons that make it difficult to extract information about the exact location of landslides in an area, 
such as difficulty in accessing the hazard-affected remote areas [1]. A landslide inventory map, 
including the exact location and the exact boundaries along with the distribution, is the prerequisite 
for landslide analysis, susceptibility assessment, and mapping [8,9]. Furthermore, for the case of 
event-based landslides, detailed and state-of-the-art information about the landslides is critical. To 
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better understand the triggering factors in an event-based landslide, different aspects of tracking, 
recording, and analysing data must be considered [10]. Several definitions are available regarding 
landslide inventories in the literature. According to [11], landslide inventory maps are the basis for 
obtaining records about the date of occurrence, location, and type of slope movements. A dataset of 
a landslide inventory can provide information on the time of the event, the location of occurrence, 
the type of landslide, and the extent of the landslide [12].  

Landslide inventory maps are the basis of determining hazard and risk assessment [13,14]. 
Golovko et al. [15] analyzed multiple sources of slope failures for the establishment of a 
comprehensive multitemporal landslide inventory. They also described landslide inventories as the 
prerequisite to enable landslide hazard assessment. Landslide inventories are also crucial in carrying 
out a risk analysis by analyzing the impacts of past landslide events and relating them to the present 
criteria to predict future landslide-prone areas [16]. Thus, it is crucial to record required information 
on landslide occurrence to link this with triggering factors.  

Landslide inventory maps can give information about probable threatened areas to disaster 
management authorities whcih can be used for reconstruction planning after an earthquake event [6]. 
Inventories are also a basis for training and validating various knowledge-based, machine learning, 
and deep learning methodologies related to automatic landslide detection [1,14]. 

Event-based landslide inventory maps can be prepared from various sources. Recently, the 
availability and use of high-resolution remote sensing optical images has been very useful in the 
identification of landslides [14]. For instance, triggering events like earthquakes trigger thousands of 
landslides in remote areas. Therefore, remote sensing and earth observation (EO) data play a 
significant role in mapping and analyzing inventories. The EO data of pre- and post-landslide events 
are required for conducting classification and interpretation of the hazard-affected area. There have 
been several attempts to map landslides using expert-based approaches, such as manual rule-based, 
automatic, and semi-automatic classification techniques. Two main approaches for the classification 
and extraction of landslides from the EO data, namely object-based and pixel-based, were 
distinguished [1]. However, the spatial resolution of the available EO data plays a critical role in the 
quality of the resulting landslide inventory maps [17,18]. Although most studies so far relied on EO 
data with a single scale for landslide extraction, some works considered multi-resolution satellite 
imageries and EO data [18]. Even using a single satellite image frame, some studies performed multi-
scale methodologies and observed higher landslide extraction accuracies compared to single-scale 
performances [17]. Scientific progress toward pixel-based automatic identification of landslides was 
made using remote sensing imageries with different resolutions [19]. Considerable progress toward 
pixel-based automatic identification of landslides was achieved using deep-learning convolution 
neural networks (CNN) [1,14]. Ghorbanzadeh et al. [1] applied CNN and other machine learning 
models to identify landslides in RapidEye data from the Rasuwa district in Nepal. The extracted 
landslides from different models were then tested using Global Position System (GPS) data along 
with a manually detected landslide inventory of image spectral features from RapidEye data; 
topographic input was also used, including digital elevation models (DEM) from Advanced Land 
Observing Satellite (ALOS) data. In another pixel-based study [20], unsupervised classification 
resulted in the detection of about 60% of manually extracted and mapped landslides. There were also 
several object-based studies for landslide extraction, such as [21] and [22], which compared their 
results with manually extracted results. Therefore, manual landslide extraction and mapping is 
considered a standard technique for receiving the most detailed and accurate inventory. As manual 
detection and extraction is the most reliable technique for inventory generation, it is preferable for 
testing state-of-the-art models, such as deep-learning CNN models. Therefore, the quality of the 
manually detected landslide inventory is critical, as it usually considered to be the ground truth [14]. 
There are a limited number of landslide and mass movement detection studies evaluating the quality 
of their applied inventory dataset. In a specific study [14], the frequency area distribution (FAD) 
method was applied to evaluate the three available landslide inventory maps, with one of them being 
selected for validation of the results.  
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On one hand, the quality of a landslide inventory map easily affects the overall accuracy of any 
landslide detection, susceptibility assessment, or hazard- and risk- mapping study. On the other 
hand, there are a limited number of landslide studies that tackled the problem of comparison of two 
or more inventories [3,23]. Pellicani and Spilotro [23] compared archives and surveyed inventories 
for the Daunia region in Italy. They compared two landslide inventory maps to determine the 
corresponding quality through direct comparison. Another work by [3] compared photo-interpreted 
and semi-automatic landslide inventory maps in the Pogliaschina catchment, Italy. They compared 
the quality of rainfall event-based inventories cartographically and statistically.  

Quality and completeness levels of a landslide inventory depend upon the accuracy, certainty, 
and type of information included in the map [24]. Criteria for the assessment of inventories are 
lacking from previous landslide research [3,25,26]. For the comparison of inventories, two or more 
inventories are needed to compare the quality of landslide maps. Despite the great importance of 
establishing the quality of a landslide inventory for scientific investigations, the number of such 
studies is limited. Comparing two or more inventories does not occurs often due to the limited 
availability of two or more inventories. However, there are some studies that were carried out 
regarding landslide mapping, and also several databases of landslides were compiled earlier by 
[27,28]. After the 1989 Loma Prieta, California, earthquake (Mw 6.9) a total of 1046 landslides were 
mapped using field investigations and aerial photographs in an area of about 15,000 km2 in central 
California. The spatial distribution of the landslides was investigated statistically using one-way 
analysis of variance (ANOVA) and regression techniques. Correlations of landslide occurrence with 
distance from the earthquake source, slope steepness, and rock type were determined [29]. A 
comprehensive database of devastating landslides caused by catastrophic earthquakes that took place 
all over the world was compiled by Rodrı ́guez et al. [28], covering the period 1980–1997. Another 
work by Esposito et al. [30] discussed and described the ground effects and landslides triggered by 
the 1997 Umbria–Marche seismic sequence in an area of 700 km². The environmental, seismic 
intensity (ESI) scale, and earthquake hazard were studied by [31,32]. The ESI scale is a measurement 
which defines the earthquake intensity by considering the size and spatial distribution of earthquake 
environmental effects. Lekkas et al. [33] used the ESI scale and its correlation with geological 
structures for seismic hazard estimation of the 2008 Mw 7.9 Wenchuan, China, earthquake. In another 
study by [34], correlations between ESI-07 intensity, slope, and lithology were discussed regarding 
landslides triggered by the 2016 Mw 7.8 Pedernales, Ecuador, earthquake. 

Furthermore, Ferrario et al. [35] investigated the role of earthquake environmental effects within 
seismic sequences from the 2018 Lombok (Indonesia). Statistical analysis was carried out for three 
nearly complete landslide inventories triggered by the 12 May 2008, Wenchuan Mw 7.9 earthquake 
of China [36]. Correlations of landslide occurrence with topographical factors and seismic parameters 
were studied for three inventories. This literature review shows that, over the past decades, there was 
an improving trend regarding both the documentation and statistical evaluation of the earthquake-
induced landslides in some important works.  

Several of the nowadays commonly applied methodologies were mostly developed by the 
Italian groups for the census of the effects induced by earthquakes of moderate magnitude. During 
the Emilia Romagna (northern Italy) 2012 earthquake sequence, for processing and real-time data 
sourcing, new approaches and technologies were developed by the INGV EMERGEO working group 
[37]. Just after the earthquake event, the EMERGEO working group surveyed the epicentral area for 
co-seismic geological hazards. Later, they organized the records and processed them with the 
EMERGEO Information System (siE). The EMERGEO working team of Civico et al. [38] presented a 
1:25,000 scale map of the surface ruptures after the 30 October 2016 Mw 6.5 Norcia earthquake, central 
Italy. They used 11,000 oblique photographs taken from helicopter flights, which were verified with 
field datasets. They also provided the datasets through a database of the co-seismic effects following 
the Norcia earthquake [39].  

In this study, we evaluated four manually extracted landslide inventory maps of the Gorkha 
earthquake 2015, Nepal. Four different research teams from different parts of the world carried out 
landslide inventories related to this earthquake and published their resulting maps. These studies 
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used various EO data sources, such as very high-resolution WorldView imagery and coarser-
resolution imageries. We compared these inventory maps quantitatively and qualitatively using the 
cartographical degree of matching and frequency area distribution (FAD) methods [40]. The reasons 
for the differences are discussed here, outlining the limitations and advantages of different mapping 
techniques.  

2. Study Area 

The epicentre of the earthquake was in the Gorkha district and its aftershock was about 140 km 
in the Dholaka district [41]. However, landslides triggered by the earthquake and several aftershocks 
were scattered around large areas. Seven districts that were severely affected by the earthquake were 
selected for inventory mapping by different researchers. The study area covered a 14,502 km² region, 
which spread over most of central Nepal. The area had two primary drainage systems, namely 
Narayani and Saptakoshi [42]. Our case study area lay in central Nepal country within the fold and 
thrust zone of Himalaya. This zone was caused by the collision of the Eurasian plate with the Indian 
Plate [43] (see Figure 1). The collision resulted in extensive crustal shortening and upheaval, leading 
to the formation of the quintessential collided orogen, Himalaya. All evaluations of the present study 
were done based on an overlapping region of four considered inventory maps. 

 
Figure 1. Area covered by the different investigators during mapping landslide inventories of the 
2015 Gorkha earthquake. 
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3. Landslide Inventory Maps of Gorkha Earthquake (National Scale) 

3.1. Inventory A 

Authors carried out a field survey and manual interpretation of Landsat-8 Enhanced Thematic 
Mapper (ETM) images with a resolution of 15 m, Gaofen-1 (GF-1) images with resolution of 2 m, GF-
2 images with resolution of 0.8 m, and Google Earth imagery to prepare the polygon-based inventory 
[42]. A total of 15,456 km2 area was selected for investigation based on previous studies and updates 
during the digitation process. A total of 3716 co-seismic landslides were mapped. The largest 
landslide mapped was 9983 m² and the smallest landslide was less than 50 m². The co-seismic 
landslides covered a total area of 15.93 km². 

3.2. Inventory B 

Earthquake-induced landslides were mapped by comparing pre- and post-event very high-
resolution satellite imageries. DigitalGlobe WorldView-2 and -3 imagery, along with Pleiades satellite 
data, were used [44]. The spatial resolution of imagery used in mapping landslides varied from 30–
50 cm in most of the areas. Images were acquired from 26 April to 15 June 2015, with most images 
collected between 2 May and 8 May 2015. This team was the only group working on Gorkha 
earthquake who differentiated between landslide source and deposits areas. They were able to map 
more than 25,000 landslides in the area affected by the earthquake. 

3.3. Inventory C 

Authors used Google Earth imagery, which was updated after the Gorkha earthquake, to 
prepare a polygon-based inventory. A total of 4000 km2 area was selected for investigation based on 
previous studies and updates during the digitizing process [45]. In most of the region, the satellite 
imagery of pre-earthquake was from December 2014 and post-earthquake imagery from 2–4 May, 
which was around one week after the main earthquake. A total of 17,000 co-seismic landslides were 
mapped by [45]. Results also showed the spatial correlation of topographical parameters with 
landslide occurrence. 

3.4. Inventory D 

The landslide inventory map was manually mapped by the authors in the immediate aftermath 
of the earthquake using a range of EO data sources, including web-hosted high-resolution optical 
data in Google™ Crisis Response (e.g., United Kingdom - Disaster Monitoring Constellation-2 (UK-
DMC2),  Disaster Monitoring Constellation for the International Charter (DMCii), Worldview, 
Digital Globe Inc., SPOT National Centre for Space Studies (CNES), imagery accessed via the Disaster 
Charter, imagery available from United States Geological Survey (USGS) Hazards Data Distribution 
System (HDDS Explorer), and imagery specifically tasked over regions of interest (e.g., Pleiades 
CNES). A total of 2117 co-seismic landslides were mapped by [46] (see Figure 2).  
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Figure 2. Landslide mapped after the 2015 Gorkha earthquake for the affected region. (A) Inventory 
A, (B) inventory B, (C) inventory C, and (D) inventory D. 

4. Landslide Inventory Comparison Methodologies 

4.1. Spatial Distribution  

Landslide inventories for the Gorkha event were collected from various sources. Detailed 
information on inventories is given in Table 1. Out of the inventories, we used four that were available 
and prepared by research teams from various parts of the world. To analyze the landslide density 
per square kilometre, point-based inventory data were used. Figure 3 shows the landslide density 
distribution of selected inventories for the Gorkha event; all of the inventories were co-seismic and 
prepared using post-earthquake satellite imageries.  

Information regarding the data used to prepare the inventories is given in Table 1. There was a 
significant variation in the number of landslides mapped for the Gorkha event, ranging from 𝑁௅் =2117 to 𝑁௅் = 24,915. None of these inventories classified the types of landslides as proposed by [47]. 
The data sources used for mapping varied from high-resolution imagery of about 30 cm resolution to 
Google Earth images. The landslide density analysis results, illustrated in Figure 3, showed that most 
of the landslides were concentrated in the Gorkha and Sindhupalchock districts for most of the 
inventories; the southern part of the Rasuwa district was also severely hit, as can be interpreted from 
the Figure 3. Differences in the density of landslides in an area depended on factors such as the effect 
of amalgamation while mapping, the purpose of the mapping, and the data sources used for 
mapping. Areas near the Dholaka and Sindhupalchok districts showed high landslide density ias a 
result of the aftershock on 12 May 2015 in the Dholaka district. The higher density of landslides 
showed that inventories were prepared after the aftershock of 12 May 2015 and hence had a larger 
number of landslides compared to inventories prepared for the first earthquake event. Another factor 
that affected the density of landslides was the different coverage of the mapping area. Comparing the 
different inventories at larger scale is not an easy task as their coverage areas are different. To 
compare landslide inventories prepared by different interpreter, we chose a commonly mapped area 
that was mapped by most of the inventories. For the analysis, we chose four inventories from various 
sources which were polygon-based, and compared them statistically for smaller regions. 



Geosciences 2019, 9, 437 7 of 19 

 

Table 1. Landslide inventories prepared after the 2015 Gorkha earthquake, Nepal. 

# Landslide Inventory No. of Landslides 
(𝑵𝑳𝑻) 

Geometry 
Type Area Coverage Produced by 

1.  Valagussa et al. (2016) 4300 Polygon Central Nepal [48] 
2.  Roback et al. (2018) 24,915 Polygon Central Nepal [44] 
3.  Martha et al. (2017) 15,551 Polygon Central Nepal [49] 
4.  Regmi et al. (2016) 2645 Polygon Central Nepal [42] 

5.  
Meena, Mavrouli, and 

Westen (2018) 
2513 Polygon Central Nepal [50] 

6.  Kargel et al. (2016) 4312 Polygon Central Nepal [51] 
7.  Gnyawali et al. (2016) 19,332 Point Central Nepal [45] 
8.  Robinson et al. (2017) 2117 Polygon Central Nepal [46] 

 

 
Figure 3. Landslide inventory densities per km² for the Gorkha event. (A) Inventory A, (B) inventory 
B, (C) inventory C, and (D) inventory D. 

To compare the inventories for the Gorkha earthquake, we chose four polygon-based inventories 
that were available. The commonly mapped area was covered in all four inventories, which allowed 
for the statistical comparison of the inventories. We compared the four inventories and examined the 
differences and similarities of the total area covered, the number of landslides mapped, and the size 
of the landslides.  

4.2. Cartographical Degree of Matching 

For the comparison of four inventories available for the common mapped area in the Rasuwa 
district, an attempt was made to determine the cartographic matching and mismatch (see Figure 4). 
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Figure 4. (A) Example of a union with features within a feature class that overlaps. (B) Example of an 
intersection with a feature within a feature class that overlaps. 

Carrara et al. (1993) [52] provided a method to evaluate the degree of matching and mismatch 
between two inventory maps. The mismatch index, 𝐸, was given by 𝐸 = (𝐴ଵ ∪ 𝐴ଶ) െ (𝐴ଵ ∩   𝐴ଶ)(𝐴ଵ ∪ 𝐴ଶ) , 0 ൑ 𝐸 ൑ 1         (1) 𝑀 = 1 െ 𝐸, 0 ൑ 𝑀 ൑ 1 (2) 

where E is the mismatch and M is the matching between the inventories. Union and intersection are 
used in Equation (1) to observe the matching and mismatch between the inventories. 

This equation was valid for up to two inventories. However, in our case, we wanted to compare 
four inventories. Thus, we formulated an equation for the comparison of four inventories (see 
Equation (3)). 𝐸 = 1 െ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) ∪ (𝐴 ∩ 𝐷) ∪ (𝐵 ∩ 𝐶) ∪ (𝐵 ∩ 𝐷) ∪ (𝐶 ∩ 𝐷)(𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷)  (3) 

The statistics of the four landslide inventories can be seen in Table 2. The total number of 
landslides varied from 33 to 49 for the same area. Moreover, there was a significant difference in the 
total area of landslides. Cartographical mapping differences in a single landslide for the same event 
can be seen in Figure 5. Interpreters mapped the landslide boundary differently, and the causes of 
such differences are discussed in Section 5. Based on Equation (3), we observed cartographical match 
and mapping errors, as presented in Table 3. The pairwise comparison of inventories and comparison 
of inventories mapped by different interpreters are represented in Figure 6 and Figure 7, respectively.  

Table 2. Statistics for the four event-based landslide inventories. 

  A B C D 
Number of mapped landslides # 144 498 197 336 

Minimum landslide area (m²) 500.53 35.50 95.49 112.22 
Maximum landslide area (m²) 157,265.25 118,805.11 764,038 151,708.90 

Mean landslide area (m²) 9990.18 6520.23 25,599.34 8816.13 
Standard deviation of landslide area (m²) 19,203.38 11,595.57 74,255.39 17,832.65 

Total landslide area (m²) 1,438,587.08 3,247,077.22 5,043,071.10 2,962,222.12 
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Figure 5. Mapping by different interpreters for the Gorkha earthquake of the same landslides. A and 
B represent examples of the mapped landslides. 
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Figure 6. Pairwise comparison of inventories mapped by different interpreters. 

 
Figure 7. Comparison of inventories mapped by different interpreters. 

Table 3. Cartographical matching and mismatch between inventories. 

Inventories Area m² 
Percentage of the Area Covered Relative to 

the Total Study Area 
Mapping 
Error, E 

Mapping 
Match, M 

Landslide area 
Inventory A 

294,0746.
32 

6.49   

Landslide area 
Inventory B 

3,256,245
.33 

7.18   

Inventory A ∪ 
Inventory B 

4,966,842
.26 

10.96   

Inventory A ∩ 
Inventory B 

1,231,685
.97 

2.72 0.752 0.248 

Landslide area 
Inventory A 

2,940,746
.32 

6.49   

Landslide area 
Inventory C 

5,043,072
.67 

11.12   

Inventory A ∪ 
Inventory C 

6,005,657
.34 

13.25   

Inventory A ∩ 
Inventory C 

1,960,725
.08 

4.32 0.674 0.326 

Landslide area 
Inventory A 

2,940,746
.32 

6.49   

0.
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2
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4
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Landslide area 
Inventory D 

4,230,476
.82 

9.33   

Inventory A ∪ 
Inventory D 

5,051,960
.15 

11.14   

Inventory A ∩ 
Inventory D 

2,122,932
.49 

4.68 0.58 0.42 

Landslide area 
Inventory B 

3,256,245
.33 

7.18   

Landslide area 
Inventory C 

5,043,072
.67 

11.12   

Inventory B ∪ 
Inventory C 

6,518,452
.96 

14.38   

Inventory B ∩ 
Inventory C 

1,765,857
.66 

3.90 0.729 0.271 

Landslide area 
Inventory B 

3,256,245
.33 

7.18   

Landslide area 
Inventory D 

4,230,476
.82 

9.33   

Inventory B ∪ 
Inventory D 

5,909,070
.8 

13.03   

Inventory B ∩ 
Inventory D 

1,582,813
.94 

3.49 0.732 0.268 

Landslide area 
Inventory C 

5,043,072
.67 

11.12   

Landslide area 
Inventory D 

4,230,476
.82 

9.33   

Inventory C ∪ 
Inventory D 

6,530,387 14.40   

Inventory C ∩ 
Inventory D 

2,764,641
.79 

6.10 0.577 0.423 

4.3. Frequency Area Distribution (FAD) 

Landslide inventories were statistically analyzed using frequency area distribution (FAD) 
curves, in which the landslide areas were plotted versus the cumulative and non-cumulative 
landslide frequencies. In the study by [53], observations showed that the power law was valid for 
medium and large landslides. The probability of occurrence of landslide size can be given by the 
power-law equation.  𝑝(𝑥) = 𝑐𝑋ିఉ, (3) 

where 𝑋 is the observed values, 𝑐 is a normalization constant, and β is the power-law exponent. 

Figure 8 shows the power-law distribution for medium to massive landslides and divergence 
from the power-law toward lower frequencies with a rollover point, where frequency decreased for 
smaller landslides. The trend of the FAD of most landslide inventories diverged from the power-law 
for small landslides [53–56]. The point where this divergence began was defined as the cut-off point 
[56,57]. For non-cumulative probability density distributions of landslide areas, the peak point of the 
probability distribution curve, after which the probability value began to decrease for smaller 
landslides following a positive power-law decay, was referred to as the rollover point [58]. According 
to [58], in a power-law distribution, the slope of the distribution was defined with a power-law 
exponent. The part that was represented by large events was referred to as the power-law tail, as 
shown in Figure 9 (with a scaling parameter, β). Malamud et al. [53] investigated four well-
documented landslide events and concluded that rollover was a real phenomenon for landslide-event 
inventories, depending upon the bias and under-sampling of the smaller landslides. They modeled 
the FAD for these four inventories and established theoretical curves to estimate the total landslide 
area triggered by an earthquake or rainfall event. 
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Figure 8. Schematic representation of the main components of a non-cumulative frequency area 
distribution (FAD) for a landslide inventory. 

Further distributions were used to fit the frequency area distribution of landslides. The double 
Pareto model described the majority of the data well, but [59] indicated that the same model was less 
good at the tails of the distribution. Another method was proposed by [60], who showed that the 
entire FAD of landslides could be explained by a three-parameter inverse-gamma distribution 
(equation). This approach also described a way to estimate the landslide event magnitude (𝑚𝐿𝑆). The 
mLS is the indication of the size of the landslide triggering event and gives an indication of the 
severity of the event in terms of landslide occurrence in a particular area for an event. 𝑝(𝐴௅; 𝜌, 𝑎, 𝑠) =  1𝑎Γ(𝜌) ൤ 𝑎𝐴௅ െ  𝑠൨ఘ ା ଵ  𝑒𝑥𝑝 ൤െ 𝑎𝐴௅  െ  𝑠൨ (4) 

where ρ is the parameter primarily controlling power-law decay for medium and large values, Γ(ρ) 
is the gamma function of ρ , 𝐴௅  is landslide area, 𝑎  is the location of rollover point, 𝑠  is the 
exponential decay for small landslide areas, and െ(𝜌 ൅ 1) is the power-law exponent. Malamud et 
al. [60] provided a best fit for the power-law exponent and showed that െ(𝜌 ൅ 1) = 2.4. 

Table 4 shows that the power-law exponent of four analysed inventories ranged from 2.27 to 
2.48, which was consistent with the literature describing an interval having a central tendency of 
around 2.3–2.5 [55,58]. The minimum landslide area mapped ranges from 35.50 m² to 500.53 m² for 
the inventories. Also, the largest landslide mapped ranges from 764,038 m² to 157,265.25 m². The 
rollover points ranged from 256.74 m² to 1258 m² for the inventories. 

Table 4. Comparison of the frequency area statistics of the landslide area. 

Inventories 
Total number 

of 
Landslides 𝑵𝑳𝑻 

Total Area of 
Landslides 𝑨𝑳 m² 

Minimum 
Area of 

Landslides 𝐦𝐢𝐧 𝑨𝑳 m² 

Maximum Area 
of Landslides 𝐦𝐚𝐱 𝑨𝑳 m² 

Power 
Law 

Exponent 
(β) 

Rollover 
Point (m²) 

Inventory 1 144 1,438,587.08 500.53 157,265.25 2.48 1411.43 
Inventory 2 498 3,247,077.22 35.50 118,805.11 2.30 85.13 
Inventory 3 197 5,043,071.10 95.49 764,038 2.27 223.22 
Inventory 4 336 2,962,222.12 112.22 151,708.90 2.37 289.99 
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Figure 9. Landslide frequency size distribution, representing the dependence of landslide probability 
density p on the landslide area. 

There was a zigzag pattern in the plotted figure of landslide probability density against the 
inverse gamma fit. The differences in the probability distribution and inverse gamma fit may have 
been the result of gaps regarding mapped landslides for given inventories, indicating that some 
landslides were missing or not mapped by interpreters due to various reasons, such as rapid mapping 
or the amalgamation of smaller landslides into single landslide features. The rollover points for all 
inventories differed to each other. For the inventory by interpreter B, the rollover point toward the 
smaller landslides was 85.13, which was smaller in comparison to other inventories, as there was a 
wider distribution of small landslides in this inventory.  

5. Discussion and Conclusions 

The availability of four independent landslide inventories for the same triggering event in the 
same geographical area allowed us to quantitatively compare and outline strengths and weaknesses 
of the methods used to prepare the inventories. The inventory by interpreter B (Figure 10b) portrayed 
more landslides (498) than the other inventories. This difference was significant, as the other 
interpreters could not detect most of the smaller landslides visually using Google Earth imagery, 
which was used to prepare the three inventories by interpreters A, C, and D. The more significant 
number of landslides in the inventory by interpreter B with the very high-resolution Worldview 
imagery used for the visual identification of the landslides, compared to the spatial resolution of the 
satellite imagery used for the other inventories, is explained here. The amalgamation of the landslide 
information merged multiple very small landslides into a single larger landslide, reducing the total 
number of the mapped event landslides. Considering only the number of landslides, quantitative 
identification could not be performed because of both the amalgamation of adjacent landslides and 
the subjectivity of the landslide extraction process. Many factors caused the amalgamation of 
landslides in a landslide inventory map. The manual extraction of landslide borders and 



Geosciences 2019, 9, 437 14 of 19 

 

representation with polygons is a subjective process that is affected by the applied method, the 
preferences of the experts and interpreters, and how much time and effort are invested into the 
inventory generating process [61]. Amalgamation is the mapping of nearby smaller landslides as a 
single polygon, which may lead to possibly severe distortion of the statistical analysis of these 
inventories. An adjacent landslide polygon is usually described as a single polygon if the runouts or 
scars overlap in areas. Thus, differentiating between them is difficult. Low image resolution, the 
working scale, and the contrast between affected and unaffected areas are all other reasons for 
amalgamation [62]. In some regions, landslides can be very condensed, and several contiguous 
landslides may join runout areas. Amalgamation is often due to errors resulting from a lack of 
expertise of the interpreter. It may also happen when landslide inventory mapping is carried out 
using (semi)-automated classification and change detection based on optical satellite images, e.g., 
[63].  

There are different numbers of mapped landslides for the same area interpreted by different 
interpreters, which related to the scale of working, applied EO spatial resolution, personal 
perspective, and the method of mapping that was adopted. Inventory C (Figure 10C) and inventory 
D (Figure 10D) landslides were mapped using Google Earth imagery; 197 and 336 landslides were 
mapped, respectively. In Figure 10A, inventory A had 144 landslides for the same common area using 
Google Earth imagery. Figure 10B shows 498 landslides in inventory B, which was the result of using 
high-resolution Digital Globe WorldView 2–3 satellite imagery by the author. However, it should be 
mentioned that very high resolution (VHR) optical satellite imagery can have significant distortions 
and georeferencing errors in high-relief areas if they are orthorectified using only provided rational 
polynomial coefficient (RPC) models and not by using manual ground control points (GCPs). Also, 
this can be more severe, as many of the VHR rapid emergency acquisitions over a disaster area-of-
interest can have small incidence angles, thus increasing automatic orthorectification errors. 
Differences in the mapped outlines of landslides can be due to this. The offset from automatic RPC 
processing is no less than 5 m for the newer sensors (WorldView 2- 3, Pleiades) and even less for older 
satellites (GeoEye-1, etc). High mountain relief and low-resolution digital elvetaion model (DEM) 
used for orthorectification (e.g., Shuttle Radar Topography Mission (SRTM), Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) or Advanced Land Observing Satellite 
(ALOS) may add more possible errors to these offsets [64].  
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Figure 10. Effect of amalgamation for the same area mapped by four different people in the area near 
the Trishuli river, (A) Inventory A, (B) inventory B, (C) inventory C, and (D) inventory D. 

The results of our mismatch index in this work confirm that the difference between the four-
event inventories was significant. However, the mismatch index was in the range of the differences 
measured by other investigators in previous studies that compared landslide inventories in similar 
physiographical settings (e.g., [25,52]). In addition to the causes for the mismatch discussed by these 
investigators, in our test case, the difference was also the result of the period of landslides mapped 
and of the different spatial resolutions of the satellite imagery. Despite the mismatch index, E, visual 
inspection of the four inventories revealed a similar spatial distribution of the event landslides in the 
four landslide maps. This matter was confirmed (i) by the spatial correlation between the four 
inventories and (ii) by the similarities of the double Pareto density functions for the four inventories 
(see Figure 10). The results of the power-law exponent of the four analysed inventory ranged from 
2.27 to 2.48, which was consistent with the literature that showed that the power-law exponent 
interval had a central tendency around 2.3–2.5 [55,58]. 

According to the results of the present study, we conclude that both comparison methods, i.e., 
the cartographical degree of matching and FAD, are essential for evaluating the quality of landslide 
inventory productions in terms of their similarities in the total number, area size, and spatial density 
of landslides. However, the cartographical degree of matching method is suitable more for the 
evaluation and validation of the location and boundaries of the landslide affected areas. Therefore, 
the cartographical degree of matching method is essential for landslide extraction/annotation studies, 
especially those using machine learning models for this aim. The accuracy of the resulting landslide 
extraction from remote sensing data by using the machine-learning models is directly related to the 
quality of the training data of landslide inventory datasets [1]. Thus, the cartographical degree of the 
cartographical matching method plays a vital role in enhancing the accuracy of any landslide 
extracting studies using machine learning models.  

On the other hand, although the FAD is also advantageous for landslide detection studies, it is 
a crucial method for studies which analyse the landslide areas and their distribution in a case study 
area. Landslide susceptibility mapping, landslide-prone region analysis, and landslide modeling and 
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risk assessment are considered to be studies, where the FAD method should be considered to evaluate 
the applied inventory datasets. 

For the Gorkha earthquake-affected region in central Nepal, we compared four independent 
event landslide inventories showing landslides triggered by a high-intensity earthquake that hit the 
area on 25 April 2015. The first inventory was obtained through the visual interpretation of Google 
Earth imagery. The second inventory was obtained by exploiting a semi-automatic procedure applied 
to a VHR resolution worldview satellite imagery. We compared the four inventories by exploiting 
methods already present in the literature and by proposing new qualitative and quantitative criteria. 
Comparison of the four independent event inventory maps led to the conclusion that the mismatch 
between the four inventories was significant but consistent with differences measured by other 
investigators in similar physiographical areas. The mismatch was attributed to (i) different spatial 
resolutions of the satellite images, (ii) the amalgamation of smaller landslides into larger landslides 
while delineating the boundaries of landslides; the minimum landslide area was 35.50 m², which was 
mapped using VHR resolution worldview satellite imagery, whereas, the landslide mapped using 
Landsat 8 ETM imagery was 500.53 m², and (iii) the inability of the operator to recognize landslides 
in shadowed areas. For our future work, we will apply these inventories along with some data-driven 
models to generate landslide susceptibility maps and compare the resulting susceptibility accuracies. 
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