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Abstract: Full-waveform inversion for borehole seismic data is an ill-posed problem and constraining
the problem is crucial. Constraints can be imposed on the data and model space through covariance
matrices. Usually, they are set to a diagonal matrix. For the data space, signal polarization information
can be used to evaluate the data uncertainties. The inversion forces the synthetic data to fit the
polarization of observed data. A synthetic inversion for a 2D-2C data estimating a 1D elastic model
shows a clear improvement, especially at the level of the receivers. For the model space, horizontal
and vertical spatial correlations using a Laplace distribution can be used to fill the model space
covariance matrix. This approach reduces the degree of freedom of the inverse problem, which can
be quantitatively evaluated. Strong horizontal spatial correlation distances favor a tabular geological
model whenever it does not contradict the data. The relaxation of the spatial correlation distances
from large to small during the iterative inversion process allows the recovery of geological objects of
the same size, which regularizes the inverse problem. Synthetic constrained and unconstrained
inversions for 2D-2C crosswell data show the clear improvement of the inversion results when
constraints are used.

Keywords: constrained inversion; elastic full waveform inversion; multicomponent seismic data;
borehole seismic

1. Introduction

Full-waveform inversion of seismic data allows one to obtain an image of the subsurface through
the determination of a certain number of physical parameters. Borehole data (VSP and crosswell)
are of special interest because of the geometry of acquisition, which provides more informative
signals on the medium properties than surface seismic data (high frequency signal, energetic P-S
conversions). However, the lack of seismic data redundancy (e.g., few shots) renders the inversion
problem underdetermined. In general, full-waveform inversion is an ill-posed problem, in the sense
that an infinite number of models match the data [1]. It is classically solved with local optimization
schemes and is therefore strongly dependent on the starting model definition. This starting model
should predict arrival times with errors less than half of the period to cancel the cycle-skipping
ambiguity [1]. The multiscale strategy performed by moving from low to high frequencies during
the inversion allows reduction of the nonlinearities and cycle skipping issues of the inversion and
helps convergence toward the global minimum. Regularizations are conventionally applied to the
inversion in the model space to make it better posed [2,3]. Tikhonov and Arsenin [4] have proposed a
regularization strategy within the optimization step to find the smoothest model that explains the data.
Preconditioning techniques acting as a smooth operator on the model update [5] may add strong prior
features of the expected structure through directive Laplace preconditioning, as in Guitton et al. [6].
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Regularization schemes that preserve edges and contrasts have also been developed for specific
full waveform inversion applications through a `1 model penalty [7] or through a multiplicative
regularization [8]. Regularization can also be expressed in the curvelet or wavelet domains [9,10].
In such domains, the `1 norm minimization is generally preferred for the model term penalty because
it ensures sparsity in the model space. All the previous regularization techniques allow stabilization of
the inversion scheme by assuming a particular representation or structure of the velocity model
(smoothness, sparsity, and so on). However, geological information, taking into account prior model
information, is generally not used in classical full waveform inversion implementation; however,
there are some examples [11,12]. In addition, most of the weighting operators or covariance matrices
associated with the model parameters are set to identity or in the best cases to a diagonal matrix.
The same applies to the weighting operators or covariance matrices associated with the data.

Weighting operators on the data and models or inverse of the data and model covariance operators
for least squares in the frame of the Bayesian formulation [3] are introduced in the misfit function.
In this paper, we will show the benefit of introducing covariance matrices in the data and model space.
On the one hand, we will illustrate the impact on constraining the seismic inverse problem on the
data space for the case of a synthetic two-component borehole seismic data by using the polarization
analysis to fill a block diagonal data space covariance matrix. On the other hand, we will illustrate
the benefit of constraining the seismic inverse problem on the model space by performing a crosswell
synthetic experiment. The horizontal and vertical spatial correlations using Laplace distribution are
used to fill the model space covariance matrix in order to introduce an a priori solution, favoring a
tabular medium whenever it doesn’t contradict the information contained in the data.

2. Constrained Least Squares Inversion

Using the probabilistic formalism developed by Tarantola [3] and considering only the data space
term in the equation, we rewrite the misfit function in the vicinity of the current model mn:

S(mn + δm) = (δdn −Gnδm)TCD
−1(δdn −Gnδm)

+(∆mn − δm)TCM
−1(∆mn − δm),

(1)

where:

• δm is the perturbation in the vicinity of the current model mn,
• δdn are the data residuals for the model mn,
• ∆mn is the difference between the current model mn and the a priori model mprior

• Gn is the linear function tangent to g at the model mn,
• g is the function mapping the model space m ∈ M into the data space d = g(m) ∈ D
• CD is the covariance matrix on the data space.
• CM is the covariance matrix on the model space (defining the Gaussian a priori probability density).

Applied to the waveform inversion problem of estimating the elastic parameters and the density of
the earth, the minimization of the misfit function can be solved by iterative gradient methods.

The iterative process of a nonlinear inversion can be summarized as follows [3]: for a given
iteration k, from the current model mk (i.e., the discretized physical fields characterizing the medium),
we perform simulations of the wave in order to obtain the synthetic data dcal

k = g(mk). Thus,
comparing them to observed data dobs, we obtain the residuals δdk = dobs − dcal

k . These residuals
are weighted δ̂dk = C−1

D δdk (the hat denotes the dual space) and back-propagated using the wave
propagation equation again to obtain the gradient in the dual model space γ̂k = GT

k C−1
D δdk (where Gk

is the derivative of the function g over the model space at the point mk and where T denotes the
transpose operation) and consequently, the gradient in the model space γk = CMγ̂k. The gradient
indicates the steepest ascent direction of the misfit function in the model space. We modify this
direction using the conjugate gradient algorithm ϕk = γk + αkϕk−1, where ϕk is the conjugate
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gradient and αk is defined from the gradient [13]. Finally, using an additional simulation, we optimize
the step length µk [14] in the upgrading equation mk+1 = mk − µkϕk and we update the model.

3. Constraints on the Data Space

The quantification of uncertainties in seismic data is often neglected, because in many cases it is a
difficult task. For instance, data errors generated by receiver response are correlated in time, which
means accounting for them is not straightforward. To illustrate the possible contribution of constraints
provided by the analysis of uncertainties of data, we have performed two inversions from the synthetic
data experiment. The first inversion is done without any data constraints, whereas in the second one
we have incorporated polarization wave analysis in the covariance matrix CD. This matrix treats the
uncertainties on particle velocities according to the eigenbasis of the particle motion.

For the case of multi-component data, the uncertainty of a component may be correlated to
the uncertainty of the other components. For each time for each of the receiver components, we
can define a 2 × 2 matrix for 2-component data (as in the example bellow), or a 3 × 3 matrix for
3-component data. In that case, the covariance matrix on the data space CD is not a diagonal matrix.
In order to take into account polarization, we consider that the uncertainties are proportional to the
local cross-correlation matrix of the signal (the data) and that the signal is locally stationary (over 2
periods). The cross-correlation matrix between components i and j of the signal sr,t is computed with
zero lag (τ = 0) for any receiver r and any time t:

Cij
r,t(τ) =

∫ +∞

−∞
si

r,t(u)s
j
r,t(u + τ)du, (2)

where:
si

r,t(u) = di
r(u) wt(u)

with di
r(u) being the trace for the component i of the receiver r of the observed data and wt(u) a

Hamming time window centered on time t with a length of typically 2 periods. One can use other time
tapering windows classically used in spectral analysis (Blackman, Nuttall, etc).

3.1. Cross-Correlations and Polarization

The polarization of the multicomponent signal is estimated from this matrix Cij
r,t(τ = 0) and the

matrix of the uncertainties has the same eigenvectors (polarization directions) than the cross-correlation
matrix. The uncertainty has the same shape as the polarization of the signal. The ratios among the
eigenvalues are the same, in other words, the rectilinearity and planarity of the polarization [15]
is conserved.

The polarized signal for rectilinear polarization can be modeled by:

d(t) = a·s(t) + n(t), (3)

where d(t) is the 3C signal, a is the polarization vector, s(t) the scalar signal along the polarization
vector, and n(t) the 3C Gaussian noise.

In the frequency domain, the equation can be expressed as:

d̂( f ) = a·ŝ( f ) + n̂( f ), (4)

where the hat denotes the frequency domain.
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Let us consider the spectral matrix of the 3C signal defined by:

Ŝ( f ) = d̂( f )·d̂T
( f )

= (aŝ + n̂)·(aŝ + n̂)T

= a·aT ·ŝŝ + n̂·n̂T

= a·aT |ŝ( f )|2 + N̂( f ),

(5)

where the upper bar denotes the complex conjugate, T denotes the transpose operator and N̂( f ) being
the spectral matrix of the noise. Note that (aŝ)·n̂T = n̂·aT ŝ = 0 because noise and signal are considered
uncorrelated. The polarization vector is an eigenvector of the spectral matrix (for isotropic noise) for
any frequency f :

Ŝ·a = (a·aT |ŝ|2 + N̂)a
= |ŝ|2a·aTa + N̂a
= |ŝ|2a + (|n̂|2I)a
= (|ŝ|2 + |n̂|2)a.

(6)

When integrating the spectral matrix over R, one obtains the cross-correlation matrix C(τ = 0)
with zero lag with the same eigenvectors.

The structure of the covariance matrix on the data space CD is derived from the previous equations.
For instance, for a 2C receiver, a given source or receiver couple, and at any time t, the corresponding
2 × 2 submatrix is defined as:

CD = V·σD
2

(
1 0
0 λII

λI

)
·V−1

where V is the eigenvectors matrix (column), σD is the standard deviation of the (isotropic) noise
for this couple, and λI and λII are the max and min of the two positive eigenvalues of the spectral
matrix, respectively.

Let us consider the sub-matrix for the first data 2C-trace of the covariance matrix on the data space:

CD(rec = 1) ∝ CD(r = 1, t, τ = 0)

σ2
1,X ρ1σ1,Xσ1,Z0 0 0 · · · · · · 0 0

ρ1σ1,Xσ1,Z σ2
1,Z 0 0 · · · · · · 0 0

0 0 σ2
2,X ρ2σ2,Xσ2,Z · · · · · · 0 0

0 0 ρ2σ2,Xσ2,Z σ2
2,Z · · · · · · 0 0

...
...

...
...

. . . . . .
...

...
...

...
...

...
. . . . . .

...
...

0 0 0 0 · · · · · · σ2
nt,Z ρntσnt,Xσnt,Z

0 0 0 0 · · · · · · ρntσnt,Xσnt,Z σ2
nt,Z


where ρi, σi,X, and σi,Z are, respectively, the correlation coefficient, the standard deviation for the X
component, and the standard deviation for the Z component for a given time sample i, and nt being
the total number of time samples. The matrix CD is a block diagonal matrix and its inverse (i.e., C−1

D ,
is another block diagonal matrix), composed of the inverse of each block.

3.2. An Offset VSP Synthetic Example

In this numerical example, the acquisition geometry is an offset VSP with a unique source at 500 m
offset and the antenna is between 580 and 970 m depth in a vertical well (see Figure 1 for more details).
The isotropic elastic model depends only on the depth (1D model). The “true” model is defined in
Figure 1. The horizontal and vertical components of the “observed” data obtained from the true model
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are displayed in Figure 1. The direct problem (seismic modeling) is based on discretizing the wave
equation by the finite differences method (FDM) [16].

The inverted parameters are the P-wave velocity, the S-wave velocity, and the density. The starting
models are simple, the water layer is considered as known, and the other layers are replaced by a
constant vertical gradient for each parameter (gray solid lines in Figure 2). The test consists of
comparing the results of inversion when data uncertainties are isotropic and when the polarization is
included in the data uncertainties.
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As shown in Figure 2, the inversion results exhibits in both cases a good fit in the receiver zone, 
while the estimation is not good in the upper part of the model. One can clearly note that the S-wave 
velocity model is recovered with more detail than the P-wave velocity model. This is due to the fact 
that converted S-waves are present in borehole seismic data and also because the S-waves have a 
shorter wavelength than P-waves, hence, a better spatial resolution. The final residuals for both 
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is included are significantly better than for the isotropic uncertainties. More precisely, for the case of 
polarization, both P-wave and S-wave estimated velocity fields are well fitted in the antenna zone. 

Figure 1. Offset Vertical Seismic Profile (OVSP) numerical experiment: (a) Synthetic experiment
configuration where the asterisk near the surface denotes the source position for the unique shot point,
whereas the triangles in the well denote the location of the 40 two-component geophones. The “true”
model is composed of nine homogeneous layers, the first one being the water layer. This true model is
used both to model the observed data and as a reference to check inversion results; (b) the horizontal
(top) and vertical (bottom) components of the ground velocity field recorded at geophones—the fields
are obtained by modeling the wave equation in the true model (finite difference approximation).
The color represents the local polarization estimated using a 2-period time window.

As shown in Figure 2, the inversion results exhibits in both cases a good fit in the receiver zone,
while the estimation is not good in the upper part of the model. One can clearly note that the S-wave
velocity model is recovered with more detail than the P-wave velocity model. This is due to the
fact that converted S-waves are present in borehole seismic data and also because the S-waves have
a shorter wavelength than P-waves, hence, a better spatial resolution. The final residuals for both
inversion experiments are small; a few percent of the misfit. The inversion results when polarization
is included are significantly better than for the isotropic uncertainties. More precisely, for the case of
polarization, both P-wave and S-wave estimated velocity fields are well fitted in the antenna zone.
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solid line denotes the true model we want to retrieve by inverting the observed data; gray solid line 
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Figure 2. Two inversion experiments with and without polarization constraints. (a) Without polarization
constraints for P-wave velocity estimated model. (b) With polarization constraint for P-wave velocity
estimated model. (c) Without polarization constraints for S-wave velocity estimated model. (d) With
polarization constraints for S-wave velocity estimated model. In all plots: red thick solid line denotes
the true model we want to retrieve by inverting the observed data; gray solid line denotes the starting
model in the inversion process; blue, green, and black solid lines denote estimated models from
inversion, respectively, at iterations 10th, 30th, and 80th. The vertical thick black solid line indicates
the level of the receiver antenna. The constrained inversion contributes to the recovery of the sharp
interfaces, especially at the level of the receiver antenna.
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4. Constraints on the Model Space

We can distinguish two kinds of geological a priori information that can be incorporated in an
inversion process. On the one hand, information obtained by measurements (well logging), that we
consider as “objective” information, allows the definition of an a priori model at the well vicinity.
On the other hand, information coming from geological interpretations, such as geological layer dips,
that we qualify as “subjective” information, can be simplified and introduced into the covariance
matrix CM.

4.1. Quantification of Number of Degrees of Freedom

In order to evaluate the importance of constraints on an inversion, it is necessary to quantify the
number of degrees of freedom. This number can be estimated from the set of parameters as a function of
existing correlations among them and independently of their standard deviations. The number N of
free parameters is equal to the number n of parameters in the absence of correlations, and it is
reduced to 1 in the case of perfect correlations.

4.1.1. General Case

Let us consider a 1D Gaussian random field X, the domain is discrete and finite consisting of
a set of n points; this field is equivalent to the set of random variables (X1, X2, · · · , Xn). It can be
characterized by the following probability density function (or p.d.f.):

f (x) =
1

(2π)n/2det(C)1/2 exp
(
−1

2
(x−m)TC−1(x−m)

)
, (7)

where x is a realization, m is the expectation of the field (E(X) = m), and C is the covariance matrix of
the field.

The covariance matrix can be rewritten with the following form = SRS, where R is the correlation
matrix and S the diagonal matrix of the standard deviations.

If there is no correlation among the random variables Xi, then R = I and the covariance matrix
is diagonal and the number of free parameters is then n. If a correlation exists, we then use the LU
decomposition method to estimate the number of free parameters (see Appendices A and B for more
details). We can write R = MMT where M is the left lower triangle matrix of the LU decomposition of
the matrix R. The number of free parameters is then reduced to:

N = trace(M). (8)

4.1.2. Spatial Correlation on the Model Space

For illustration purposes, let us consider the special case where the spatial correlations are
described by an exponential model. Thus, for any pair of points M1 and M2 (belonging to the same
horizontal line), the correlation ρ between the pair of random variables X1 and X2 corresponding to
the points Mi can be expressed as a function of the distance:

ρ(X1, X2) = exp
(
−d(M1, M2)

r

)
, (9)

where d(·) is a distance and r is the range of the correlation.
By setting the variance for each variable to be constant σi = σ1 , the p.d.f. of Equation (7)

reduces to,

f (x) =
1

(2π)n/2·σn
√

det(R)
exp

(
−1

2

(
x−m

σ

)T
R−1

(
x−m

σ

))
, (10)



Geosciences 2019, 9, 45 8 of 20

This simplifies, as we will show below, the study of the relation between the matrix R and the
degrees of freedom using an exponential correlation function.

Let us consider the same Gaussian field X, but this time defined on a defined 1D domain regularly
sampled (as for a grid) containing n points. The distances between points are multiples of the step ∆x
and the correlation matrix has the following form (for ordered points):

R =


1 a a2 a3 a4 · · · an

a 1 a a2 a3 · · · an−1

...
...

...
...

...
. . .

...
an an−1 an−2 an−3 an−4 · · · 1

, (11)

where

a = exp
(
−∆x

r

)
≤ 1. (12)

One interesting property of the R matrix is that the M matrix of the LU decomposition has a
simple form

M =


1 0 0 0 0 · · · 0
a b 0 0 0 · · · 0
a2 ab b 0 0 · · · 0
...

...
...

...
...

. . .
...

an an−1b an−2b an−3b an−4b · · · b

, (13)

with b =
√

1− a2. This means that, in terms of a sequential simulation, the n− 1 variables, X2 to Xn,
have the same degree of freedom: b. The total degrees of freedom N of the field X is then:

N = 1 + (n− 1)·b, (14)

where for n parameters (or n grid points), the number of free parameters, considered as the degrees of
freedom, of the inversion is N. Figure 3 shows the relation between the range of the correlation
(expressed in number of steps, ∆x) and the values of b.
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4.2. Seismic Crosswell Numerical Experiment Example

This numerical example is an illustration how to incorporate the “subjective” geological
information that our medium is mainly tabular but might contain complex geological structures
using the covariance matrix on the model space.

4.2.1. Description of the Crosswell Experiment and Observed Data

The reference subsurface models are shown in Figure 4. The word “reference” indicates that this
model is used to generate the synthetic seismic data used as observed data (see Figure 5) during the
inversion process. It is also the model to be retrieved by applying the full-wave inversion method to the
observed data. The medium for wave propagation is elastic isotropic. The parameters to be inverted
are discretized physical fields: vertical P-wave and S-wave velocities. For simplicity, the density (ρ)
is not inverted—the field is constant with ρ = 2500 kg·m−3 and it fixed at the correct value in the
different inversions.
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Figure 4. The reference velocity models: (a) Reference P-wave velocity field; (b) reference S-wave
velocity field. The source borehole is located at 0 m distance and the nine asterisks (*) denote the source
locations for the nine shots. The receiver borehole is located at 280 m offset and the small triangles
denote the locations of the receivers. On can notice that the structures of these reference velocity fields
are the same for P- and S-wave. It is composed of 1D regions (invariance along the horizontal axis)
in the upper part of the model and at the bottom with homogeneous layers and other layers with
a velocity increasing linearly with depth (vertical constant gradient). The middle part of the model
exhibits complex 2D structures.
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first derivative of a Gaussian with a central frequency of 100 Hz and it acts as a stress source with the
following radiation coefficients σxx = 1 , σzz = 0.5, σxz = 0. These data are used as observed data in
the multiscale inversion process.

4.2.2. Multiscale Constrained Inversion

The inversion process consists of four successive inversions using the same observed data but
with decreasing correlation ranges in horizontal and vertical directions; therefore, it is a multiscale
inversion and each inversion is for a given “scale”. The model parameter results of each inversion are
used as initial model parameters for the next inversion.

Uncertainties on the model space are required for the definition of CM
−1. It can be defined by

specifying the spatial correlation ranges and the uncertainties on the parameters. Here the uncertainties
on the parameters are kept constant: σVp = 120 m/s and σVs = 100 m/s. The ranges of the horizontal
and vertical correlations do not depend on the parameters but on the spatial location. The horizontal
correlation depends on depth and both horizontal and vertical ranges depend on the inversion scale.
We define three types of a priori regions with respect to depth (see Table 1): “Quasi 1D” with large
correlation ranges, “2D” with short correlation ranges (where we expect to have complex geological
objects, see Figure 4), and “Transition”, with correlation ranges linearly varying with depth to match
the ranges of the two adjacent regions.

Table 1. A priori geological region type with respect to depth.

Depth (m) Region Type Number of Vertical Points

800–1120 Quasi 1D 161
1120–1180 Transition 29
1180–1340 2D 81
1340–1400 Transition 29
1400–1600 Quasi 1D 101

Table 2 lists the different correlation ranges associated with the four successive inversion scales
and for the a priori region types. The four successive inversion scales are denoted by (b), (c), (d), and (e)
in relation to the results displayed in Figures 6 and 7. The correlation ranges are gradually decreasing
with the successive inversion scales in order to solve first the large wavelengths in the model before
resolving the small wavelengths (i.e., the small model structures).
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Table 2. Horizontal and vertical correlation ranges for the different a priori region types and inversion scales.

Region Type Correlation
Ranges (m)

Inversion
Scale (b)

Inversion
Scale (c)

Inversion
Scale (d)

Inversion
Scale (e)

Quasi 1D (rx, rz) (1000, 24) (1000, 10) (1000, 6) (1000, 2)
2D (rx, rz) (320, 24) (80, 10) (20, 6) (5, 2)
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Figure 6. The results of the multiscale inversion process for the P-wave velocity field. Stars denote the
source location while the small triangles denote the receiver location: (a) The P-wave velocity starting
model; (b) the estimated P-velocity field obtained from the first inversion scale using correlation
ranges of rx = 320 m and rz = 24 m in the 2D region; (c) the estimated P-velocity field obtained from
the second inversion scale using correlation ranges of rx = 80 m and rz = 10 m in the 2D region;
(d) the estimated P-velocity field obtained from the third inversion scale using correlation ranges of
rx = 20 m and rz = 6 m in the 2D region; (e) the estimated P-velocity field obtained from the fourth
and last inversion scale using correlation ranges of rx = 5 m and rz = 2 m in the 2D region; (f) the
reference P-wave velocity model. The results for the first scale of the inversion do not allow recovery of
the 2D structures, as the correlation ranges are greater than the size of the objects. The 2D structures
start to appear from the second scale, improving from the third scale, and are well recovered for the
last scale.
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and last inversion scale using correlation ranges of 𝑟 = 5 m  and 𝑟 = 2 m in the 2D region; (f) the 
reference S-wave velocity model. The S-wave estimated field exhibits a better spatial resolution than 
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less constrained in this part of the model. 

Figure 7. The results of the multiscale inversion process for the S-wave velocity field. Stars denote the
source location while the small triangles denote the receiver location: (a) The S-wave velocity starting
model; (b) the estimated S-velocity field obtained from the first inversion scale using correlation
ranges of rx = 320 m and rz = 24 m in the 2D region; (c) the estimated S-velocity field obtained from
the second inversion scale using correlation ranges of rx = 80 m and rz = 10 m in the 2D region;
(d) the estimated S-velocity field obtained from the third inversion scale using correlation ranges of
rx = 20 m and rz = 6 m in the 2D region; (e) the estimated S-velocity field obtained from the fourth
and last inversion scale using correlation ranges of rx = 5 m and rz = 2 m in the 2D region; (f) the
reference S-wave velocity model. The S-wave estimated field exhibits a better spatial resolution than
the P-wave (see Figure 6) due to the smaller wavelength content associated with this mode. Small
artifacts can be observed around the 2D triangle structure, pointing out the fact that the problem is less
constrained in this part of the model.

The results of the multiscale inversion process for the P-wave velocity field are displayed in
Figure 6. The P-wave velocity starting model is obtained by a low-frequency full waveform inversion.
It is also used as the starting model for the unconstrained inversion; such starting models can also
be obtained from traveltime inversion, especially for crosswell data. The estimated P-velocity field
is obtained from the first inversion scale, i.e., using correlation ranges of 320 m and 24 m in the 2D
region, respectively, for the horizontal and vertical correlations. One can notice that the 2D structure
cannot be resolved, as the horizontal correlation range is larger than the size of the triangular object.
The 1D structures are partially retrieved. For the inversion scale (c), the estimated P-velocity field is,
obtained from the inversion scale (b), i.e., using correlation ranges of 80 m and 10 m in the 2D region,
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respectively, for the horizontal and vertical correlations. One can notice that the 2D structure start to
be resolved as both correlation ranges are smaller than the size of the triangle. The 1D structures
are well estimated, with some vertical smoothening due to the vertical correlation range of 10 m.
For the inversion scale (d), the estimated P-velocity field is obtained from the third inversion scale, i.e.,
using correlation ranges of 20 m and 6 m in the 2D region, respectively, for the horizontal and vertical
correlations. One can notice that the 2D structure is getting better spatial resolution, for both the
triangle and the lower zigzag interface. The 1D structures are well resolved. For the inversion scale (e),
the estimated P-velocity field is obtained from the fourth and last inversion scale, i.e., using correlation
ranges of 5 m and 2 m in the 2D region, respectively, for the horizontal and vertical correlations.
One can notice that the delineation of the 2D structure is close to the reference model. As expected,
the estimated field outside the zone between the two wells is not reliable.

The results of the multiscale inversion process for the S-wave velocity field are displayed in
Figure 7. The results are similar to the P-wave velocity field (Figure 6). The main difference is clear at
the fourth scale (e): the spatial resolution is almost perfect for the S-wave due to smaller wavelength
content associated to this mode. However, the inversion process provides an overestimation of velocity
contrast near the interfaces and some small oscillations in the estimated field clearly visible for the
light blue domain above the central triangle. It means that the number of degrees of freedom is too
high regarding the amount of information provided by the data.

The misfit function for the successive multiscale inversion continuously decreases from one
inversion scale to another (see Table 3).

Table 3. The misfit and iteration number for the different inversion scales.

Inversion
Parameters Inversion Scale (b) Inversion Scale (c) Inversion Scale (d) Inversion Scale (e)

Initial Misfit 45.5% 27.9% 6.55% 0.81%
Final Misfit 27.9% 6.55% 0.81% 0.14%
Iteration # 30 30 50 50

The number of degrees of freedom per point are provided in Table 4 for the different inversion
scales. These numbers of freedoms are calculated from Equation (14). The ratio of the number of
degrees with respect to the number of model parameters (i.e., grid points), in other words the number of
degrees of freedom per point, is provided. It is increasing slower for the quasi 1D region than for the
2D region because only the vertical correlation range is decreasing, while both horizontal and vertical
ranges are decreasing in the 2D region. These ratios are pointing out that the degrees of freedom are
significantly lower in the early scales of the multiscale inversion, allowing better constraint of the
problem and improving the stability by defining an overdetermined system. During the last scale
stages, the constraints are relaxed, allowing one to obtain a better resolution while avoiding artifacts in
the estimated fields. Even for the last scale, the ratio indicates about 5 times less free parameters than
in the unconstrained inversion.

Table 4. Number of degrees of freedom (DoF) per point for the successive multiscale inversions.

Region Type Inversion Scale (b) Inversion Scale (c) Inversion Scale (d) Inversion Scale (e)

Quasi 1D 1919 2812 3416 4554
Transition 267 468 622 857

2D 1022 2922 6792 15,725
All 3208 6202 10,830 21,136

DoF/point 2.8% 5.5% 9.6% 18.8%

For comparison purposes with the results of the constrained inversion, we performed an
unconstrained inversion. In the Figure 8, we display the results of the multiscale constrained
inversion with respect to the unconstrained inversion for the same misfit of 0.3%. We can notice
that the unconstrained inversion results are noisier than the constrained inversion. The main artifacts
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can be found near the sources (classical problem in borehole seismic full waveform inversion), below
the triangle structure, above the source or receiver zones (migration smile type artifacts), and in
the constant gradient 1D layers. These artifacts in the estimated fields are the consequence of the
instability of the least-squares inversion problem when the problem is not correctly determined for all
parameters, in other words, when it is partially underdetermined. The number of degrees of freedom
is too large regarding the information provided by the data. Reducing the number of degrees of
freedom of the problem taking into account prior geological information (i.e., constraining the fields
using spatial statistic where we have more prior information) allows one to overcome this problem,
reducing drastically the number and the magnitude of the artifacts.
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Figure 8. Comparison between results from the constrained inversion using the multiscale inversion
process results of the multiscale inversion process and results from the unconstrained inversion: (a) The
estimated P-wave velocity field for the multiscale inversion for a misfit of 0.3%; (b) the reference P-wave
velocity field; (c) the estimated P-wave velocity field for the unconstrained inversion for a misfit of
0.3%; (d) the estimated S-wave velocity field for the multiscale inversion for a misfit of 0.3%; (e) the
reference S-wave velocity field; (f) the estimated S-wave velocity field for the unconstrained inversion
for a misfit of 0.3%. Both P- and S-wave estimated fields show that the multiscale inversion results are
smoother than the unconstrainted inversion results, with well artifact and better reliability. The main
artifacts are near the sources, below the triangle structure, above the source or receiver zones and below
(less visible due to the color range), and in the constant gradient 1D layers. As expected, there is no
additional information outside the square delimited by the wells for the case of unconstrained inversion.
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5. Conclusions

In this paper, we have illustrated how to introduce, in the inverse problem, constraints consistent
with the least squares formalism (through covariance matrices) on both the data and the model space.

Constraining the seismic inverse problem in the data space is not straightforward but when
possible, it is a very powerful tool. In the case of a multicomponent borehole seismic data, using the
polarization in the inversion process allowed better recovery of the sharpness of the interfaces at the
level of the receivers.

Constraining the seismic inverse problem in the model space can be achieved by defining a priori
model parameters and evaluating the model uncertainties associated with this model. Horizontal and
vertical spatial correlation using Laplace distribution can be used to fill the model space covariance
matrix in order to introduce an a priori information favoring the tabular region versus more complex
regions, by varying accordingly the ranges of these correlations. The inversion favors solutions are
consistent with our a priori, whenever it does not contradict the information contained in the data.
Moreover, by adopting a multiscale type of inversion by relaxing the correlation ranges, it regularizes
the inverse problem.

The incorporation of all our a priori knowledge of the parameters and all statistical studies on the
data, allows not only the algorithmic stabilization of the inversion process, but also the reduction of
the solution set for an underdetermined problem, with the purpose being not necessarily to converge
quickly towards a good model (in term of residuals), but to prospect regions of the model space
populated by models that are sensible, a priori, and also yielding the lowest possible misfit.
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Appendix A

In this appendix, we will explicitly state the relation between the correlation matrix and the
degrees of freedom.

Appendix A.1 Generalities

Let us consider a 1D Gaussian random field X defined in section Quantification of number of
degrees of freedom and characterized by its p.d.f. given by Equation (7).

If the covariance matrix C is diagonal (i.e., no correlation between the random variables Xi),
Equation (7) can be rewritten:

f (x) = 1
(2π)n/2 ∏i σi

exp
(
− 1

2 ∑
i

(
xi−mi

σi

)2
)

= ∏
i

1√
2πσi

exp
(
− 1

2 ∑
i

(
xi−mi

σi

)2
)

= ∏
i

fi(xi),

(A1)

where σi is the standard deviation of the Gaussian random variable Xi for the ith point, and fi(xi)

the p.d.f. associated with this variable Xi. For a Gaussian field, when correlation coefficients are null,
the variables Xi are independent and as a consequence, the p.d.f. of the field is the product of the
marginal p.d.f. of the variables, the fi.

Assuming for simplicity that the mi and the σi are constant, the field is made of n independent
variables, identically distributed. Then, considering we have in this case n free parameters, we will
study the effect of the non-independence of variables on the number of the free parameters,
incorporating correlation between variables through a non-diagonal covariance matrix.
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Appendix A.2 Sequential Simulation

Whatever the discrete random field, the knowledge of the joint p.d.f. (like f defined in Equation (7)
for the Gaussian random field X) allows simulation of a realization of the field sequentially, using the
marginal-conditional decomposition (correct whatever the order of the indexes):

f (x1, x2, · · · , xn) = g1(x1)·g2(x2|x1 )·g3(x3|x1, x2)· · · · ·+ gn(xn|x1, x2, · · · xn−1), (A2)

where gi is the marginal-conditional p.d.f. of the random variable Xi, independently of the random
variables Xj for j > i and conditionally to the random variables Xk for k < i. More precisely, gi is
defined by the relation:

gi(xi|x1 , x2, · · · , xi−1) =

∫
dxi+1

∫
dxi+2 · · ·

∫
dxn f (x1, x2, · · · , xn)∫

dxi
∫

dxi+1 · · ·
∫

dxn f (x1, x2, · · · , xn)
. (A3)

Using Equation (A2), it is possible to simulate a realization of the field sequentially. First, we use
g1(x1) to generate a realization of the random variable X1, independently of all other variables.
Once x1 = x0

1 is determined, we use g2
(

x2
∣∣x0

1
)

to generate a realization x0
2 of the random variable

X2, dependent to the value x0
1, but independent of the other random variables X3 to Xn. We repeat

this procedure using g3, then g4, and so on, until the last value x0
n is determined, thereby obtaining a

realization x0 of the random field X.
We can link the degree of freedom of the variable Xi, when the values xi to xi−1 are known, to the

standard deviation σc
i of the Gaussian defined by the p.d.f. gi(xi|x1 , x2, · · · , xi−1). To account for the

correlation between the variables Xi, independently of the values of the standard deviations σi of the
marginal p.d.f. fi(xi), we can then define the degrees of freedom of the variable Xi (when x1 to xi−1
are known) as the following ratio:

d =
σc

i
σi

, (A4)

which equals one when Xi is not correlated to the variables (X1, X2, · · · , Xi−1) and zero when the
correlation is perfect.

Appendix A.3 The LU Simulation Technique

In order to simplify the calculation of the degrees of freedom, we introduce here the LU
decomposition technique for Gaussian field simulation, as this method can be interpreted in term of
sequential simulation using Equation (7).

A way to simulate a Gaussian discrete random field X defined by the p.d.f. in Equation (A2)
(n points with expectation m and covariance matrix C) is the use of the LU decomposition of the
covariance matrix C:

C = LU = LLT , (A5)

where L denotes the left lower triangle matrix and U the upper right one.
Considering a random field E constituted by n random variables, independently and identically

distributed following a Gaussian law with zero mean and unit standard deviation; the field m + LE
is then equivalent to X. Therefore, to simulate a realization x of the random field X, we can use a
realization e of the field E and write:

x = m + Le . (A6)
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Appendix A.4 Interpretation of the LU Decomposition of the Covariance Matrix

Let lij be the elements of the matrix L. The relation given by Equation (A6) can be interpreted
in term of sequential simulation: the first line gives x1 = m1 + l11e1, meaning that we simulate the
realization of X1 independently of the other variables, as if we used the 1D marginal p.d.f. g1(x1)

defined in Equation (A2):

g1(x1) =
1√

2πσ1
exp

(
−1

2

(
x1 −m1

σ1

)2
)

= f1(x1). (A7)

Once the value of x1 is fixed, the second line of the Equation (15) means that the second random
variable x2 can be written:

X2 = m2 + l21e1 + l22E2 = m2 + l21

(
x1 −m1

l11

)
+ l22E2, (A8)

Meaning that we simulate the realization of X2 independently of X3, · · · , Xn but dependent of the
value X1 = x1, as if we used the conditional marginal p.d.f. g2(x2|x1 ) (see Equation (A2)). A given line
i of the Equation (A6) means we can simulate a random variable Xi conditionally to the determined
values of the preceding variables x1 to xi−1, as if we used the proper marginal-conditional p.d.f.
gi(xi|x1 , x2, · · · , xi−1) (see Equation (A2)).

Let us come back to the estimation of the degrees of freedom. The standard deviations σc
i are

given here by the ith diagonal element lii of the matrix L. This standard deviation is lesser than
the standard deviation of the variable Xi, independently of the other variables (i.e., the standard
deviation σi of the Gaussian defined by the marginal p.d.f. fi(xi)). When correlation between Xi and
the variables X1 to Xi−1 is strong, the ratio lii

σi
is weak. When Xi is independent of the variables X1 to

Xi−1, the ratio equals 1, meaning the freedom of the variable is total. We can say that when variables
are independent (no correlation), the number of the free parameters is n = ∑i

1
1 and when correlation

exists, it is reduced to:

N = ∑
i

lii
σi

. (A9)

Appendix A.5 The LU Decomposition of the Correlation Matrix R

The covariance matrix can be written with the following form:

C = SRS, (A10)

where R is the correlation matrix and S the diagonal matrix of the standard deviations;

S =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

. (A11)

The LU decomposition of R gives: R = MMT , with L = SM. Therefore, the field X can be written
(see Equation (20)): X = m + LE = m + SME.

The number of free parameters is then:

N = ∑
i

lii
σi

= trace(M). (A12)
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Appendix B

Let us consider a pair of random variables (X, Y) characterized by the following p.d.f.:

f (x, y) =
1

2π
√

det(C)
exp

−1
2

(
x−mx

y−my

)T

C−1

(
x−mx

y−my

), (A13)

where C is the covariance matrix, we have:

C =

(
σ2

x ρσxσy

ρσxσy σ2
y

)
, det(C) = σ2

x σ2
y

(
1− ρ2

)
, C−1 =

1
1− ρ2

 1
σ2

x

−ρ
σxσy

−ρ
σxσy

1
σ2

y

,

where ρ is the correlation between the random variables X and Y. An example is given in Figure A1,
with the following values: mx = my = 0, σx = σy = 1, ρ = 4/5.

Equation (16) of the decomposition of the p.d.f. is written:

f (x, y) = f1(x) · f2(y|x ), (A14)

where

fx(x) = 1√
2πσx

exp
(
− 1

2

(
x−mx

σx

)2
)

fy|x(y|x ) = 1√
2πσy
√

1−ρ2
exp

(
− 1

2

(
y−my−ρσy( x−mx

σx )
σy
√

1−ρ2

)2
)

.
(A15)

We can note that the characteristics of these p.d.f. are given by the elements of the left triangle
matrix of the covariance LU decomposition:

L =

(
σx 0

ρσy σy
√

1− ρ2

)
. (A16)

Indeed, the first line corresponds to the standard deviation of the p.d.f. fx(x). The conditional
p.d.f. fy|x(y|x ) is plotted on Figure A1. It is characterized by its mean mc = my + ρσy

(
x−mx

σx

)
and

its standard deviation σc = σy
√

1− ρ2. In the second row, the first element corresponds to the scale
factor of the correction of the mean of the conditional p.d.f. fy|x and the second element to the standard
deviation of the conditional p.d.f. In summary, the diagonal elements are the standard deviations of
the random variables X and Y|X . The effect of the correlation ρ is to reduce, by the factor

√
1− ρ2,

the degree of freedom of the second variable Y when X is known, as we see in Figure A1. We then note
that the total degree of freedom of this pair is (taking as a reference the uncorrelated pair characterized
by the diagonal covariance matrix, ρ = 0):

d =
σx

σx
+

σy
√

1− ρ2

σy
= 1 +

√
1− ρ2. (A17)

We can note that d = 1 when the correlation is perfect (ρ = ±1) and d = 2 when the correlation is
inexistent (ρ = 0).
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Figure A1. The joint probability density 𝑓(𝑥, 𝑦) of the couple of random variables (𝑋, 𝑌) is plotted 
using contour levels (at level 0.9 ∙ 𝑓 , 0.7 ∙ 𝑓 , 0.5 ∙ 𝑓 , 0.3 ∙ 𝑓 and 0.1 ∙ 𝑓 ), the marginal 
probability densities for the variables themselves (𝑓 (𝑥) for 𝑋 and 𝑓 (𝑦) for 𝑌) are plotted on the 𝑥 
and the 𝑦 axes. The value 𝑥 = 1.5 has been fixed and the conditional probability density 𝑓 (𝑦) =𝑓 | (𝑦|𝑥 ) is plotted, the mean 𝑚 = 𝑚 = 0 and 𝑚  has been reported as the standard deviation 𝜎𝑥 = 𝜎𝑦 = 1 and 𝜎𝑐, the correlation 𝜌 = 0.8 appears only in the ellipticity of the ellipses for the joint 

Figure A1. The joint probability density f (x, y) of the couple of random variables (X, Y) is plotted
using contour levels (at level 0.9· fmax, 0.7· fmax, 0.5· fmax, 0.3· fmax and 0.1· fmax), the marginal probability
densities for the variables themselves ( fx(x) for X and fy(y) for Y) are plotted on the x and the y axes.
The value x0 = 1.5 has been fixed and the conditional probability density fc(y) = fy|x(y|x0 ) is
plotted, the mean mx = my = 0 and mc has been reported as the standard deviation σx = σy = 1 and σc,
the correlation ρ = 0.8 appears only in the ellipticity of the ellipses for the joint p.d.f. f . As Equation (A17)
shows, the number of free parameters of the couple (X, Y) is 1 + σc

σy
= 1 +

√
1− ρ2 = 1.6.
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