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Abstract: The association between elevation (agro-climatic zones, ACZs) and the mean annual
total rainfall (MATRF) is not straightforward in different parts of the world. This study sought to
estimate the amount of MATRF across four elevation zones of Jema watershed, which is situated
in the northwestern highlands of Ethiopia, by employing an appropriate interpolation method.
The elevation of the watershed ranges from 1895 to 3518 m a.s.l. For the sake of this study, 34 sample
MATRF data were extracted from satellite and nearby gauge stations that were recorded from 1983
to 2010. These data sources were reconstructed by International Research Institute for Climate
and Society at Columbia University, USA, at a scale of 10 km by 10 km. An elevation data set
generated from a digital elevation model with 30-m resolution (DEM 30 m) was considered as
a covariable to estimate the MATRF. To identify the optimal interpolation model, mean errors
were computed using cross-validation statistics. The root-mean-square error (RMSE) analysis
showed that ordinary cokriging (OCK) was the most accurate model with a predictive power of
87.3%. The root-mean-square standardized (RMSSE) analysis showed that the best precision value
(0.72) occurred in OCK. Stable and Gaussian trend lines together with local polynomial types of
trend removal, and an elliptical neighborhood search function could perform best to maximize the
accuracy and the precision of estimating MATRF. Elevation, as a covariable, enhanced the degree
of accuracy and precision of estimation. The value of the trend line function (least square) between
the MATRF and elevation was very weak (R2 = 0.07), whereas the value of trend line function
(least square) between the MATRF and the longitude coordinates (east–west direction) was medium
(R2 = 0.34). The estimated MATRF for the entire watershed under study ranged from 1228 to 1640 mm.
To conclude, elevation could contribute to the estimation of the MATRF. The value of the MATRF
showed a declining pattern from the lower to higher elevation areas of the watershed.

Keywords: rainfall; elevation; geostatistics; micro-scale climate; watershed; tropical highlands

Geosciences 2019, 9, 22; doi:10.3390/geosciences9010022 www.mdpi.com/journal/geosciences

http://www.mdpi.com/journal/geosciences
http://www.mdpi.com
https://orcid.org/0000-0002-9226-7225
http://www.mdpi.com/2076-3263/9/1/22?type=check_update&version=1
http://dx.doi.org/10.3390/geosciences9010022
http://www.mdpi.com/journal/geosciences


Geosciences 2019, 9, 22 2 of 17

1. Introduction

Previously, studies in various parts of the world [1–3] have been conducted on climate change
and related issues for different purposes. References [4–10] are examples of studies which involve the
spatial distribution of rainfall in Ethiopia at the regional and national levels. However, policy-relevant
studies on the spatial distribution of rainfall amount at a local (larger) scale are lacking [4]. In Ethiopia,
especially in the upper Blue Nile River basin region, a larger scale analysis is necessary to estimate
soil moisture, as the area exhibits a considerable spatial variability in rainfall [5–8]. According to [9],
this basin is characterized by arid, semi-arid, sub-moist, moist, sub-humid, and humid to per-humid
climatic conditions. This climatic diversity is observed partly because of the existence of complex
topography [10].

Jema watershed, located in the Ethiopian highlands, experiences complex interactions of
atmospheric circulation patterns, low-level horizontal moisture fluxes, and surface topography that
create challenges for the estimation of regional precipitation. Based on the local classification system [9],
the site consists of moist-cool highlands (Weyina-Dega), cold highlands (Low-Dega), moist-cold
highlands (High-Dega), and sub-alpine (Low-Wurch) agro-climatic zones (ACZs). The slope of the
watershed ranges from 0 to 45% (as generated from digital elevation model (DEM) 30 m) and the
steepness increases from northwest to southeast.

In a study conducted in Portugal [11], monthly rainfall was shown to be moderately correlated
with elevation. This study also noted that the use of elevation data improved the estimation of rainfall
with the cokriging method. This was mainly because the nugget effect of the cross semivariogram
between rainfall and elevation was small. According to [12], a geostatistical method that uses elevation
as the only auxiliary information is probably too simplistic to exhaustively represent the complexity
of the spatial pattern of rainfall data. Reference [12] further noted that the orientation and exposure
of a given place are important factors in determining the spatial distribution of rainfall across four
elevation zones. Reference [13] observed a negative correlation between rainfall and elevation in China,
and this became stronger with global warming. Moreover, reference [14] found that the correlation
between precipitation variation trends and elevation was different for the three elevation regions of
China: below 200 m, 200 to 1500 m, and above 1500 m. In most of the Tibetan Plateau, for instance,
where the elevation is greater than 1500 m, a weak negative correlation was observed. The relationship
between topography and precipitation at a smaller spatial scale has presented many questions and has
been the subject of many research studies [15].

Estimating climatic variables such as rainfall is challenging due to the highly variable nature
of meteorological processes, the effects of terrain and geography, and the difficulty in establishing
are representative network of stations [16]. In places where the gauge stations are scarce, satellite
precipitation products provide alternatives for gauge precipitation, which have experienced significant
success in the past decade [17–19]. However, satellite imagery-based rainfall algorithms have major
limitations in reproducing rainfall fields in mountainous regions of East Africa [16]. Studies noted that
geostatistical methods could potentially provide the opportunity for mapping climatic variables in data
scarce regions [20]. In Reference [21], the global digital elevation model was incorporated as an ancillary
variable into spatial predictions of the average annual precipitation using the geostatistical method.
This method showed a high level of performance in the prediction of precipitation. The geostatistical
method performs better than that of estimating areal averages, the estimation of uncertainties, and the
possibility of using secondary information, e.g., elevation [22–24]. Likewise, reference [22] stated
that the cokriging model with elevation generally produces higher estimates of annual precipitation
than kriging models. As noted by [18], the elevation effects have a significant influence on estimated
precipitation as it may lead to the growth of precipitation related to an increase in precipitation due to
surface topography.

In reference [11], among the cokriging methods, ordinary kriging was shown to yield more
accurate predictions when the correlation between rainfall and elevation was moderate. While the
prediction of precipitation for any given event may be difficult, various lines of evidence suggest



Geosciences 2019, 9, 22 3 of 17

that the patterns of topographic precipitation, even on scales of a few kilometers, are much more
robust [15].

Because of variation in the topographic complexity [14] and the rain-bearing wind system [13],
the same spatial interpolation method may not perform consistently for the surfacing of the mean
annual total rainfall (MATRF) of various places. References [25–28] noted that the cokriging model is
the most powerful model to estimate rainfall as it is optimal (accurate) and valid (precise). That is,
the kriging model with topographic effect gave slightly better krigged rainfall estimates than that of
the kriging model without topographic effects. On the other hand, reference [11] concluded that among
the geostatistical algorithms that account for elevation as a covariable, simple kriging techniques yield
slightly better results than the more complex ordinary cokriging method. Simple and ordinary kriging
models were used to prepare prediction maps of rainfall [7]. Other studies have stated that the kriging
method does not show significantly greater predictive power than simpler techniques, such as the
inverse square distance method [29]. It was found by reference [27] that a significant correlation
(r = 0.75) between the mean annual rainfall and elevation in Nevada and southeastern California.
In this regard, incorporating elevation and employing the cokriging method seems useful for mapping
rainfall. In a study conducted at the Columbian River drainage site, USA, the incorporation of elevation
as a covariable improved the accuracy of rainfall interpolation. This occurred in a situation where
rainfall and elevation correlated inconsistently.

With respect to the association between rainfall (precipitation) and elevation, previous studies
conducted in various parts of the world have shown inconsistent findings. This inconsistency is also
true with regard to the role of elevation as a covariable to estimate the spatial distribution of rainfall
across elevation zones. As noted in reference [29], elevation explains 0 to 90% of the variance in
the mean annual precipitation in different regions of Switzerland. References [9,10] noted a direct
correlation between the MATRF and elevation in Ethiopia. It was explained by reference [30] that in the
Blue Nile River Basin, Ethiopia, the MATRF varies from >2000 mm in the southwest to about 1000 mm
in the northeast. It was found by reference [31] that the MATRF is higher in the western than in the
eastern part of Amhara Regional State, Ethiopia. In the Lake Tana sub-basin, where the current study
site is situated, the MATRF was shown to decline from north to south [32]. In the Ethiopian highlands,
the spatial distribution of rainfall is influenced by a topographic effect [10]. The shape and length of
a watershed and the direction of air movement are governed by the nature of the topography [33].
Ethiopian rainfall occurs in the summer and spring and is mainly driven by the westerly winds coming
from the Atlantic Ocean and the easterly winds coming from the Indian Ocean [30]. Mainly because
of this fact, the MATRF over the basin decreases from the southwest to the northeast [31]. On the
other hand, references [10,30] indicated that the MATRF in Ethiopia increases with elevation. In this
regard, a spatial analysis of the ecosystem including rainfall, using a watershed and ACZ [34,35] as a
geographical framework, is appropriate.

To date, there has not been a consistent finding on the association between MATR and elevation
across different corners of the world. Similarly, the performance of interpolation models (stochastic
and deterministic) in estimating rainfall values has been contrary in various studies. This study
investigated the spatial variability of the MATRF across the elevation zones of the Jema watershed in
northwestern part of the Ethiopian highlands by employing an appropriate geostatistical method.

2. Materials and Methods

2.1. Description of the Study Area

As computed from a digital elevation model with 30-m resolution (DEM 30 m), the Jema watershed
is situated at 11◦22′0′ ′ N to 11◦3′30′ ′ N and 37◦2′0′ ′ E to 37◦23′30′ ′E [36]. It is part of the northwestern
highlands of Ethiopia in the Lake Tana sub-basin and the Upper Blue Nile River Basin (Figure 1).
Its area covers 48,244.12 ha (~483 km2) and it has an elongated physical structure. The road line
distance that it takes to get to the watershed is estimated to be 80 km south of Bahir Dar, the capital of
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the regional state, and 500 km north of Addis Ababa, the country’s capital. As stated in reference [37],
80% of Ethiopia’s farming activity is situated in the highlands.
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Figure 1. Location map of the agro-climatic (elevation) zones of the Jema watershed.

Volcanic rocks of late Tertiary to Quaternary age dominate the geology of the watershed [38].
The site is characterized by a complex terrain with gentle slopes, a hilly landscape, and steep slopes.
As computed from DEM 30 m, the elevation of the site ranges from 1895 to 3518 m a.s.l. (Figure 1).
The elevation declines from southeast to northwest. The site is generally characterized by moist
highlands [9,10]. Based on the local classification system [9], the site consists of moist-cool highlands
(Weyina-Dega), cold highlands (Low-Dega), moist-cold highlands (High-Dega), and sub-alpine
(Low-Wurch) ACZs. The area coverage of the agro-climatic zones of Jema watershed is presented in
Table 1.
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Table 1. Area coverage of the agro-climatic zones (ACZs) of the Jema watershed as computed from the
digital elevation model with a 30-m resolution.

Agro-Climatic Zones (ACZs)

Moist-Cool Cold Moist-Cold Sub-Alpine Watershed

Elevation range (m a.s.l.) 1895–2300 2301–2700 2701–3200 3201–3518 1895–3518
Area (ha) 28,690.53 14,863.51 4253.62 436.46 48,244.12

Proportion (%) 59 31 9 1 100

The slope of the watershed ranges from 0 to 45% (as generated from DEM 30 m). The steepness
increases from northwest to southeast [36]. About 80% of the total rainfall occurs during summer
(Kiremt) [39]. The MATRF is ~1400 mm [40]. On average, the monthly maximum temperature and
monthly minimum temperature are ~25 ◦C and ~7 ◦C, respectively. The National Meteorological
Agency of Ethiopia showed that the maximum temperature was recorded in March during spring
(Belg) [40]. Heavy clay, clay, and clay loam were identified as the major texture classes of soil in the
lower, middle, and upper parts of the watershed, respectively [36].

At the regional level (the Amhara Regional State), the population density is
~189.4 persons/km2 [41]. As stated in the work of [36], the livelihood of inhabitants is dependent on
subsistence scale mixed farming; i.e., food crop production and livestock rearing. Farming heavily
depends on the presence of a rainfed system with scanty small holding irrigation. The main livestock
types include cattle, sheep, goats, horses, donkeys, mules and poultry. The land use/land cover
(LULC) types at the site are cropland, grazing land, settlement land, bare land, bush land, wood land,
riverine trees, water bodies, and forest land.

2.2. Datasets

Most of the Ethiopian meteorological datasets have been inconsistently recorded [7,40]. This was
a big challenge for the climate variability analysis. The problem was more serious in ordinary (class 4
and 3) stations that are situated in rural villages and towns [40]. To fill this gap, the Ethiopian
Meteorological Agency, in collaboration with International Research Institute for Climate and Society
at Columbia University, USA, reconstructed the incomplete meteorological datasets using satellite
observation records (NASA EOS mission, MODIS). Data calibration and validation were undertaken
by Reading University, UK [7]. The reconstructed gridded data was collected from 1983 to 2010 at
a spatial scale of 10 × 10 km2. With regard to the quality of the reconstructed datasets, the results
showed a strong correlation (r = 0.80) between the station and satellite-derived data [7]. Accordingly,
sample MATRF data of this study were collected from nearby 34 stations. Elevation (m) was another
dataset that was generated from the DEM 30m. The source of this elevation data set was the United
States Geological Survey (USGS).

2.2.1. Methods of Spatial Estimation of Rainfall

Exploring Geostatistical Functions

It is believed that spatial interpolation of the precipitation data inmountainous areas is technically
challenging as it needs to be performed taking into consideration complex topography of the
terrain [18]. Hence, in order to estimate the spatial distribution of the MATRF, it was essential to choose
an appropriate geostatistical method. In the estimation analysis, the MATRF dataset was a predict and
variable, whereas the elevation (m) dataset generated from the DEM 30m was an auxiliary variable.

The geospatial interpolation method can be used to characterize patterns of rainfall over various
spatial scales, provided that the data are spatially dependent [13]. This method is more appropriate
when a dataset exhibits a smooth and consistent pattern of spatial dependence within a given study
area [42,43]. As part of an exploration of the geostatistical function, spatial autocorrelation needs to
be assessed by applying the semivariogram function. This function is defined in Equation (1). If two
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locations, s1 and s2, are close to each other in terms of the distance measure of d(s1, s2), they are
expected to be similar, so the difference in their values, Z(s1) − Z(s2), will be small. As s1 and s2 get
farther apart, they become less similar, so the difference in their values, Z(s1) − Z(s2), becomes larger.

γ(s1,s2) = 1/2var (Z(s1) − Z(s2)) (1)

where, var is the variance; s is the observed location in terms of distance (d); and Z is the observed
value of a given variable situated in a given location (geographical distance).

In a semivariogram model, one can notice that at a certain distance, the model levels out (Figure 2).
The distance where the model first flattens out is known as the range. Sample locations separated
by distances closer than the range are spatially auto-correlated, whereas locations farther apart than
the range are not. The value that the semivariogram model attains at the range (the value on the
y-axis) is called the sill. The partial sill is the sill minus the nugget. The nugget effect is attributed to
spatial sources of variation at distances smaller than the sampling interval and/or measurement errors.
Natural phenomena may vary spatially over a range of scales. A spatial variation at micro-scales
smaller than the sampling distances may appear as part of the nugget effect. Accordingly, before
collecting data, it is essential to gain some understanding of the scales of variation.
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Figure 2. Attributes of a semivariogram model adapted from [13]. NB: Sill refers to the value that the
semivariogram model attains at the range; the nugget effect can be attributed to measurement errors or
spatial sources of variation at distances smaller than the sampling interval or both; the partial sill is the
sill minus the nugget; and range refers to the distance value where the model first flattens out.

The lag size (spatial distance) to be determined in semivariogram modeling can affect the sill,
nugget, partial sill, and range values, and ultimately, the performance of the whole interpolation
method (Figure 2). For larger lag sizes, it is possible for short range spatial autocorrelation to be
masked [13]. In the process of deciding the lag size, if the range of the fitted semivariogram model is
very small relative to the extent of the empirical semivariogram, the lag size needs to be minimized.
Conversely, if the range of the fitted semivariogram model is large relative to the extent of the empirical
semivariogram, the lag size needs to be maximized. Depending on how well they fit the data, several
semivariogram models (exponential, Gaussian, circular, and spherical) may be employed [44]. As a
rule, a semivariogram model that fits empirical data should pass as closely as possible to the mean
values, and/or it should pass the center of the cloud, and/or it should pass as closely as possible to
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the lines (Figure 2). The steeper the curves near the origin of the graph, the more influence the closest
neighbors will have on the prediction [45].

Moreover, the performances of circular versus spherical functions, exact versus inexact smoothing,
and local versus global trend geostatistical functions were examined in this study. The spherical
(directional effect) function is expected to be appropriate for interpolating environmental variables that
show directional variability [45]. However, the geographical scale of analysis, the degree of variability
of predictor variables, and the existence of multiple geospatial features, like exponential and non-linear
variation and global and local trends, could reverse the result [13]. For example, local trends perform
better in situations where local variability (multiple trends) exists [43].

The ordinary kriging (OK), simple kriging (SK), universal kriging (UK), disjunctive kriging
(DK), (ordinary cokriging (OCK), inverse distance weighting (IDW), (global polynomial interpolation
(GPI), local polynomial interpolation (LPI), and radial basis function (RBF) interpolation models were
examined in this study. The models were run with the help of ArcMap 10.2 software. The first five
models are stochastic, whereas the last four models are deterministic (mathematical) in nature [13].

IDW estimates cell values by averaging the values of sample data points in the neighborhood
of each processing cell. The closer a point is to the center of the cell being estimated, the more
influence, or weight; it has in the averaging process. While GPI fits a polynomial to the entire
surface, LPI fits many polynomials; each within specified overlapping neighborhoods.The search
neighborhood can be defined by using the size and shape, number of neighbors, and sector
configuration. Being exact interpolators, the RBF methods differ from the global and local polynomial
interpolators, which are exact interpolators that do not require the surface to pass through the measured
points. When comparing RBF to IDW (which is also an exact interpolator), IDW will never predict
values above the maximum measured value or below the minimum measured value [13]. Kriging is
an advanced geostatistical procedure that generates an estimated surface from a scattered set of points
with z-values. Kriging models differ from each other in the trend in terms of the random function that
is considered in their algorithm [11]. For instance, SK considers the trend to be known and constant all
over the study area. The trend is unknown in the OK and is considered to fluctuate locally, maintaining
the stationarity within the local neighborhood. The UK considers that the trend smoothly varies within
each local neighborhood and is modeled as a linear combination of functions of the spatial coordinates.
If auxiliary information is considered together with the primary data, some multivariate extension of
kriging (cokriging) could result in better estimates [11].

Unlike the other methods, stochastic methods enable the user to analyze error terms. It is only
in stochastic methods that both the accuracy and precision of predictions can be analyzed (Figure 3).
Some of the stochastic models work best for environments with irregular variability, whereas others
work better for regular variability [13]. Similar description about the models is also noted in the
ArcMap program.

Evaluating Model Performance

The models were evaluated with a comparison of the possible committed error values including
mean error (ME), root-mean-square standardized error (RMSSE), root-mean-square error (RMSE),
mean standard error (MSE), and standardized root-mean-square error (SRMSE) (2)–(6)). The evaluation
involved the use of the leave-one-out cross validation geostatistical technique with a confidence
interval of 95%. This technique uses all of the data to estimate the trend and autocorrelation models.
The technique removes each data location, one at a time, and predicts the associated data value.
In general terms, the best model is the one that has the smallest root-mean-squared prediction error,
the mean standard error nearest to the root-mean-squared prediction error, the standardized mean
nearest to zero, and the standardized root-mean-squared prediction error nearest to one [46]. ME and
RMSSE are used to identify the most optimal model, whereas RMSE and ASE are used to identify the
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most valid model. These geostatistical methods have been used in several studies [47,48]. The variables
are defined in Equations (2)–(6).

ME =
1
n

n

∑
i=1

(pi − oi) (2)

RMSSE = [
1
n ∑n

i=1(psi − osi )
2]

1/2
(3)

RMSE = [
1
n ∑n

i=1(pi − oi )
2]

1/2
(4)

MSE = [
1
n ∑n

i=1(pi − (∑n
i=1 pi)/n)2]

1/2
(5)

SRMSE =
RMSE

Estimatedmax − Estimatedmin
(6)

where ME is the mean error; RMSSE is the root-mean-square standardized error; RMSE is the
root-mean-square error; MSE is the mean standard error; n is the number of observations or samples;
o Is the observed value at place i; p is the predicted/estimated value at place i; osi is the standardized
observed value at place i; psi is the standardized predicted/estimated value at place I; and SRMSE is
the standardized root-mean-square error; Estimatedmax is the maximum estimated value of rainfall;
Estimatedmin is the minimum estimated value of rainfall.

As part of validating the performance of interpolation models, a bias of estimators was also
computed. The raster layer of the rainfall value estimation, summary table value of estimation error
and error graph were used to preset the result of the study; whereas histogram was used to describe
the data set. For the sake of simplicity, it was preferred to present a table value of mean error for all
of the interpolation models; and raster layer, error scatter plot and bias table only for the model that
showed the best performance in the process of estimation. The summary of the procedure that was
followed in interpolating MATRF is presented in Figure 3.
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3. Results and Discussion

The sample stations considered for the interpolation were located in the north, south, east,
and west directions of the Jema watershed (Figure 4). The samples were situated within a ~40 km
radius of the center of the watershed. As shown in Table 2, the skewness coefficient value becomes 0.4
after log transformation. Although data normality is not a requirement in the application of kriging
models, the descriptive statistics implies the presence of normal distribution in the sampled data set.Geosciences 2019, 9, x FOR PEER REVIEW 9 of 18 
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3.1. An Appropriate Geostatistical Function

Initially, due to the existence of a poor correlation between the observed MATRF values (as a
predictand variable) and observed elevation values (as a covariable), it was planned that only kriging
methods would be employed. In the trend function (least square method) analysis, the value was
weak (R2 = 0.07) (Figure 5). On the other hand, in the neighborhood search analysis, a pattern was
observed in the spatial distribution of MATRF and elevation. Mainly because of this observation, it was
determined that it was reasonable to incorporate elevation as a covariable to test the performance of
the cokriging model in estimating the MATRF of the watershed.
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Figure 5. The association between the mean annual total rainfall and elevation.

In the process of interpolating the predictand variable, specifically, during the neighborhood
search analysis step, it was possible to detect a kind of MATRF spatial pattern that followed the
variation in elevation in some corners of the krigged surface. Accordingly, it was reasonable to test the
cokriging model in addition to kriging models.

3.1.1. Geostatistical Autocorrelation

In the semivariogram modeling, Gaussain model became the best fit to the spatial autocorrelation
of the observed average MATRF data set. The model (trend line) passed through the binned value,
and the mean values were distributed near the mode line. As presented in Figure 6, semivariogram
parameters (nugget effect = ~0, sill = ~14, range = ~100 km, lag size = 20 km, number of lags = 6) could
be obtained in most of the kriging and cokriging models.
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3.1.2. Neighborhood Searching and Directional Influence

Interpolation models can be used effectively with local polynomial trend removal (local variation),
a non-power function (non-weighted mean) and 6 to 2 maximum-minimum local neighbor searches.
The sector type was found at 4 and 45 degrees with a major range of 0.66 km in the east to west direction
and a minor range of 0.28 km in the north to west direction. In the geostatistical analysis, an anisotropy
effect was identified with an elliptical neighborhood search strategy shape at the scale of the watershed,
the MATRF declines from northwest to southeast, i.e., from areas of lower elevation to higher elevation
(Figures 7 and 8). However, for the entire sample site, there was a weak spatial association between
the MATRF and elevation values (Figure 5). The results showed the existence of direction influence
and non-linear smooth variation in the MATRF distribution for the entire interpolated (sample) site.
The result shows the existence of a number of ups and downs in the spatial distribution of the MATRF
throughout the whole sample site.

The result in Figure 8 implies that the equatorial (southeasterly) winds from the Indian Ocean
enhance the MATRF received in the main rainy season (Kiremt) to the entire sample site—part of the
northwestern highlands of Ethiopia. Accordingly, the highlands in the west of the sample site are
situated alongthe wind-ward side (of the southeasterlies) and receive relatively higher MATRF.

Similar to the result of this study, references [30,49] found that the MATRF declines from northwest
to southeast. On the other hand, the finding of this study is contrary to previous observations made
in Ethiopia [10,39] which showed an increase in the MATRF with elevation. However, this study
shares the general conclusions of references [10,39] that Ethiopian highland rainfall is influenced by
topography. That is, due to the distribution of the MATRF, the mountains create wind-ward and
lee-ward side effects.
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3.1.3. Cross Validation Statistics

The smallest RMSE (157.9 mm) and the smallest range statistic between RMSE and ASE (i.e.,
the range between 157.9 and 231.8) were observed in the OCK model (Table 3). The standardized value
of the indicated RMSE would be 0.127. The predictive power of the model was 87.3%. Compared to the
other models, in terms of estimating rainfall value, OCK was found to be the most appropriate for the
study site. It was shown to enhance the predictive power of estimation in the range of 1.05% (15 mm)
to 11% (134 mm). Furthermore, in terms of precision, the RMSSE values indicated that all models were
similar. The same multivariate model showed the best precision value (0.72 mm), which is the lowest
among others (Table 3). As presented in Figure 6, OCK became the most appropriate model at values
of the following semivariogram parameters (nugget effect = ~0, sill = ~14, range = ~100 km, lag size
= 20 km, number of lags = 6). The indicated nugget effect implies the absence of sampling interval
and/or measurement errors. As part of validating the estimation, bias was computed considering
the observed and estimated MATRF values. The lowest bias is observed in OCK model (bias = 0.26).
The error graph of OCK is presented in Figure 9. Similarly, the other stochastic interpolation models
could also perform better at the same values of the indicated parameters.

Table 3. Cross-validation statistics computed for interpolation models.

Mean Errors’
Estimation

Method (Model)

DK UK SK OK IDW GPI LPI RBF OCK

ME 5.78 11.86 11.53 11.56 8.90 −2.42 −16.53 1.86 15.24
RMSE 178.2 177.6 172.1 171.5 205.6 291.7 218.7 219.4 157.9
MSE 0.01 62.36 0.03 0.03 * * * 0.04

RMSSE 0.78 1.26 0.76 0.76 * * * 0.72
ASE 239.9 0.15 244.9 244.3 * * * 231.8

* Not Applicable; ME: mean error; RMSE: root-mean-square error; MSE: mean standardized error, RMSSE:
root-mean-square standardized error; ASE: mean standard error; DK: disjunctive kriging; SK: simple kriging;
OK: ordinary kriging; IDW: inverse distance weighting; GPI: global polynomial interpolation; LPI: local polynomial
interpolation; RBF: radial basis function; OCK: ordinary cokriging.
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Because of the presence of the east to west and southeast to northwest spatial pattern for elevation
and MATRF respectively, the use of topography as a covariable improved the performance of the
multivariate geostatistical estimation techniques. This estimation was observed in a situation where the
trend line values between the MATRF and the longitude coordinate (east–west direction) was found to
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be average (R2 = 0.34) (Figure 7). Elevation, as a covariable, played a role in minimizing the degree
of error estimation. It happened in the absence of a statistical association between the MATRF and
elevation. Hence, when choosing environmental a covariable, in addition to the correlation strength
between the predicted variable and covariable, one may need to look at the nugget effect of the cross
semivariogram between rainfall and elevation. Furthermore, the spatial association that was not
detected by the simple non-geospatial correlation analysis (Figures 5 and 7) could be observed by
applying a kriging geostatistical analysis (Table 4, Figures 8 and 9).

Table 4. The krigged values of the mean annual total rainfall (MATRF) in the agro-climatic zones
(ACZs) of the Jema watershed.

Acro-Climatic Zones (ACZs)
Elevation Mean Annual Total Rainfall (MATRF)

(Meter Above Sea Level) (mm)

Sub-Alpine 3201–3518 1228–1310
Moist-Cold 2701–3200 1311–1380

Cold 2301–2700 1381–1496
Moist-Cool 1895–2300 1497–1640

In congruence with the results of the new study, the benefit of using elevation data to estimate
the spatial distribution of precipitation was observed in previous study [50]. As stated by [51],
elevation-dependent spatial interpolators were accurate. In reference [21], the global digital elevation
model was incorporated as an ancillary variable into the spatial prediction of the average annual
precipitation using the geostatistical method. For this reason, the geostatistical analysis could perform
better than other deterministic interpolation techniques for rain gauge data. As noted by [52]
interpolation methods provide similar spatial distributions of rainfall wherever observation network is
dense. However, the inclusion of geographical variables to the interpolation method should improve
estimates in areas where the observation network density is low.

3.2. The Estimated MATRF among the Agro-Climatic (Elevation) Zones

Based on the extracted krigged values, the Jema watershed receives between 1228 and 1640 mm
of MATRF (Table 4 and Figure 8).

Finally, analysis of variance (ANOVA) was used to test whether there was a statistical difference
between the MATRF values among the ACZS. The two-tailed p-value (0.04) was below 0.05. Thus,
H0 (the null hypothesis stating that there is no significant variation between groups) was rejected.
This indicates the existence of a significant variation in the MATRF among the ACZs of the watershed.

Similar to the argument of reference [30] and in contrast to the general observation of reference [9],
the results of this study showed a decline in the amount of MATRF from the northwest (lower
elevation) to the southeast (higher elevation) of the Jema watershed. Nevertheless, the same pattern of
MATRF was not observed all over the study corners that were included in the interpolated surfaces.
The temporal and spatial variation of the mean rainfall of Ethiopia is mainly determined by its
topography [10]. Another study explained that for large mountain ranges, precipitation is maximized
over the wind-ward slopes, whereas for smaller hills, the maximum tends to occur nearer the crest [50].
Ethiopian rainfall occurs in summer and spring and is mainly driven by the westerly winds coming
from the Atlantic Ocean and the easterly winds coming from the Indian Ocean [30]. Mainly because of
this fact, the MATRF over the basin decreases from southwest to northeast Ethiopia [31]. On the other
hand, [10,30] indicated that the MATRF increases with elevation in Ethiopia.

As stated by [53,54], the summer rainfall in Ethiopia is controlled by several climatological factors,
including a seasonal northward advance of the inter-tropical convergence zone (ITCZ) which persists
over Ethiopia and the southerly/southwesterly cross-equatorial moisture flow from the Southern
Indian Ocean. For this reason, places situated at higher elevations (above 2000 m a.s.l.) are expected to
receive a lower MATRF than the lower elevated areas.
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Based on the MATRF received, the study watershed could be categorized as a moist highland
region. This categorization is supported by [10]. In terms of the total moisture obtained from rainwater,
the farming systems of the ACZs located at the lower elevations have an advantage. This might be
true with respect to the rainwater harvesting potential that could be utilized as a backup in times of
unexpected shortages of rainwater. As stated in the Plan for Accelerated and Sustainable Development
to End Poverty (PASDEP), the enhancement of water harvesting and irrigation potential is a key
priority in the agricultural sector to allow adaptation to climate stresses like rainfall variability and
temperature change [41].

4. Conclusions

Geostatistical methods can be used to estimate rainfall values to areas where rain gauge data is
lacking. In the case of the Jema watershed, the cokriging interpolation method, specifically the ordinary
cokriging model, was shown to be superior to the deterministic and kriging methods. The MATRF
across the Jema watershed ranges from 1228 to 1640 mm. Elevation contributes as a variable to
the estimation of the MATRF. Moreover, the MATRF showed a spatial association with longitudinal
coordinate values, i.e., in the northwest to southeast direction. The rainfall declines from northwest
to southeast, i.e., from lower to higher elevations. It happens in a situation where a weak trendline
association exists between elevation and MATRF. The association between the MATRF and elevation
is not straightforward in the entire sample sites. That is, the spatial pattern of the MATRF does not
follow the same pattern across the entire sample site where the current study watershed is situated.
Overall, in river basins with complex topographies, the estimation of MATRF needs a micro-scale,
watershed-level analysis employing a local trend geostatistical model.
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in Serbia (1961–1990) by using regression kriging. Theor. Appl. Climatol. 2013, 112, 1–13. [CrossRef]

22. Diro, G.T.; Grimes, D.I.F.; Black, E.; O’Neill, A.; Pardo-Iguzquiza, E. Evaluation of reanalysis rainfall estimates
over Ethiopia. Int. J. Climatol. 2009, 29, 67–78. [CrossRef]

23. Martínez-Cob, A. Estimation of mean annual precipitation as affected by elevation using multivariate
geostatistics. Water Resour. Manag. 1995, 9, 139–159. [CrossRef]

24. Gouvas, M.; Sakellariou, N.; Xystrakis, F. The relationship between altitude of meteorological stations and
average monthly and annual precipitation. Stud. Geophys. Geod. 2009, 53, 557–570. [CrossRef]

25. Buytaert, W.; Celleri, R.; Willems, P.; De Bievre, B.; Wyseure, G. Spatial and temporal rainfall variability in
mountainous areas: A case study from the south Ecuadorian Andes. J. Hydrol. 2006, 329, 413–421. [CrossRef]

26. Dingman, S.L.; Seely-Reynolds, D.M.; Reynolds, R.C. Application of kriging to estimating mean annual
precipitation in a region of orographic influence 1. J. Am. Water Resour. Assoc. 1988, 24, 329–339. [CrossRef]

27. Hutchinson, M.F. Interpolating mean rainfall using thin plate smoothing splines. Int. J. Geog. Inf. Syst. 1995,
9, 385–403. [CrossRef]

28. Phillips, D.L.; Dolph, J.; Marks, D. A comparison of geostatistical procedures for spatial analysis of
precipitation in mountainous terrain. Agric. For. Meteorol. 1992, 58, 119–141. [CrossRef]

29. Sevruk, B. Regional dependency of precipitation-altitude relationship in the Swiss Alps. In Climatic Change
at High Elevation Sites; Springer: Dordrecht, The Netherlands, 1997; pp. 123–137.

30. Conway, D. The climate and hydrology of the Upper Blue Nile River. Geogr. J. 2000, 166, 49–62. [CrossRef]
31. Seleshi, Y.; Zanke, U. Recent changes in rainfall and rainy days in Ethiopia. Int. J. Climatol. 2004, 24, 973–983.

[CrossRef]
32. Bewket, W. Rainfall variability and agricultural vulnerability in the Amhara region, Ethiopia. Ethiop. J.

Dev. Res. 2008, 29, 1–34. [CrossRef]
33. Haile, A.T.; Rientjes, T.; Gieske, A.; Gebremichael, M. Rainfall variability over mountainous and adjacent

lake areas: The case of Lake Tana basin at the source of the Blue Nile River. J. Appl. Meteorol. Climatol. 2009,
48, 1696–1717. [CrossRef]

34. Desta, L.; Carucci, V.; Wendem-Agenehu, A.; Abebe, Y. Community Based Participatory Watershed Development:
A Guideline; Ministry of Agriculture and Rural Development: Addis Ababa, Ethiopia, 2005.

http://dx.doi.org/10.1016/S0022-1694(00)00144-X
http://dx.doi.org/10.1002/joc.1131
http://dx.doi.org/10.1146/annurev.earth.33.092203.122541
http://dx.doi.org/10.1016/j.envsoft.2015.01.011
http://dx.doi.org/10.3390/w10111705
http://dx.doi.org/10.3390/w10111665
http://dx.doi.org/10.1175/2009JAMC2298.1
http://dx.doi.org/10.1080/03650340.2015.1065607
http://dx.doi.org/10.1007/s00704-012-0702-2
http://dx.doi.org/10.1002/joc.1699
http://dx.doi.org/10.1007/BF00872465
http://dx.doi.org/10.1007/s11200-009-0039-1
http://dx.doi.org/10.1016/j.jhydrol.2006.02.031
http://dx.doi.org/10.1111/j.1752-1688.1988.tb02991.x
http://dx.doi.org/10.1080/02693799508902045
http://dx.doi.org/10.1016/0168-1923(92)90114-J
http://dx.doi.org/10.1111/j.1475-4959.2000.tb00006.x
http://dx.doi.org/10.1002/joc.1052
http://dx.doi.org/10.4314/ejdr.v29i1.38642
http://dx.doi.org/10.1175/2009JAMC2092.1


Geosciences 2019, 9, 22 17 of 17

35. Simane, B.; Zaitchik, B.F.; Foltz, J.D. Agroecosystem specific climate vulnerability analysis: Application of
the livelihood vulnerability index to a tropical highland region. In Mitigation and Adaptation Strategies for
Global Change; Springer: Berlin, Germany, 2016; Volume 21, pp. 39–65.

36. Taye, M.; Simane, B.; Selsssie, Y.G.; Zaitchik, B.; Setegn, S. Analysis of the Spatial Variability of Soil Texture
in a Tropical Highland: The Case of the Jema Watershed, northwestern Highlands of Ethiopia. Int. J. Environ.
Res. Public Health 2018, 15, 1903. [CrossRef]

37. Economy, C.R. Ethiopia’s Climate Resilient Green Economy: Green Economy Strategy; FDRE: Addis Ababa,
Ethiopia, 2011.

38. Poppe, L.; Frankl, A.; Poesen, J.; Admasu, T.; Dessie, M.; Adgo, E.; Deckers, J.; Nyssen, J. Geomorphology of
the Lake Tana basin, Ethiopia. J. Maps 2013, 9, 431–437. [CrossRef]

39. Agreement, A.A.; Virus, B.B.; Certificate, C.C.; Di ammonium Phosphate, D.A.; Authority, E.E.;
Assessment, E.E.; Authority, E.E.; Action, E.E.; Authority, E.E.; Authority, E.E.; et al. Convention on
Biological Diversity (CBD) Ethiopia’s 4th Country Report; Institute of Biodiversity Conservation: Addis Ababa,
Ethiopia, 2009.

40. NMA (National Meteorological Agency, Ethiopia). Initial National Communication of Ethiopia to the United
Nations Framework Convention on Climate Change (UNFCCC); NMA: Addis Ababa, Ethiopia, 2007.

41. BOFED (Bureau of Federal Economic Development). Population Affaires Core Process Based on 2012 Inter-Censal
Survey. Amhara National Regional State Development Indicator; BOFED: Bahir Dar, Ethiopia, 2014; p. 15.

42. Mohammad, Z.M.; Taghizadeh-Mehrjardi, R.; Akbarzadeh, A. Evaluation of geostatistical techniques for
mapping spatial distribution of soil pH, salinity and plant cover affected by environmental factors in
Southern Iran. Notulae Sci. Biol. 2010, 2, 92–103.

43. Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2007.
44. Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4; University of Twente:

Enschede, The Netherlands, 2008.
45. Bachmaier, M.; Backes, M. Variogram or semivariogram? Understanding the variances in a variogram.

Precis. Agric. 2008, 9, 173–175. [CrossRef]
46. Robinson, T.P.; Metternicht, G. Testing the performance of spatial interpolation techniques for mapping soil

properties. Comput. Electron. Agric. 2006, 50, 97–108. [CrossRef]
47. Johnston, K.; VerHoef, J.M.; Krivoruchko, K.; Lucas, N. Using ArcGIS Geostatistical Analyst; Esri: Redlands,

CA, USA, 2001.
48. Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R. Impact of climate change on the

hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour. Res. 2011, 47. [CrossRef]
49. Levin, N.E.; Zipser, E.J.; Cerling, T.E. Isotopic composition of waters from Ethiopia and Kenya: Insights into

moisture sources for Eastern Africa. J. Geophys. Res. Atmos. 2009, 114. [CrossRef]
50. Lloyd, C.D. Assessing the effect of integrating elevation data into the estimation of monthly precipitation in

Great Britain. J. Hydrol. 2005, 308, 128–150. [CrossRef]
51. De Amorim Borges, P.; Franke, J.; da Anunciação, Y.M.; Weiss, H.; Bernhofer, C. Comparison of spatial

interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil. Theor. Appl.
Climatol. 2016, 123, 335–348. [CrossRef]

52. Moral, F.J. Comparison of different geostatistical approaches to map climate variables: Application to
precipitation. Int. J. Climatol. 2010, 30, 620–631. [CrossRef]

53. Segele, Z.T.; Lamb, P.J. Characterization and variability of Kiremt rainy season over Ethiopia. Meteorol. Atmos.
Phys. 2005, 89, 153–180. [CrossRef]

54. Fekadu, K. Ethiopian seasonal rainfall variability and prediction using canonical correlation analysis (CCA).
Earth Sci. 2015, 4, 112–119. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/ijerph15091903
http://dx.doi.org/10.1080/17445647.2013.801000
http://dx.doi.org/10.1007/s11119-008-9056-2
http://dx.doi.org/10.1016/j.compag.2005.07.003
http://dx.doi.org/10.1029/2010WR009248
http://dx.doi.org/10.1029/2009JD012166
http://dx.doi.org/10.1016/j.jhydrol.2004.10.026
http://dx.doi.org/10.1007/s00704-014-1359-9
http://dx.doi.org/10.1002/joc.1913
http://dx.doi.org/10.1007/s00703-005-0127-x
http://dx.doi.org/10.11648/j.earth.20150403.14
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Description of the Study Area 
	Datasets 
	Methods of Spatial Estimation of Rainfall 


	Results and Discussion 
	An Appropriate Geostatistical Function 
	Geostatistical Autocorrelation 
	Neighborhood Searching and Directional Influence 
	Cross Validation Statistics 

	The Estimated MATRF among the Agro-Climatic (Elevation) Zones 

	Conclusions 
	References

