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Abstract: An objective method for generating statistically sound objective regolith-landform maps 

using widely accessible digital topographic and geophysical data without requiring specific 

regional knowledge is demonstrated and has application as a first pass tool for mineral exploration 

in regolith dominated terrains. This method differs from traditional regolith-landform mapping 

methods in that it is not subject to interpretation and bias of the mapper. This study was undertaken 

in a location where mineral exploration has occurred for over 20 years and traditional regolith 

mapping had recently been completed using a standardized subjective methodology. An 

unsupervised classification was performed using a Digital Elevation Model, Topographic Position 

Index, and airborne gamma-ray radiometrics as data inputs resulting in 30 classes that were 

clustered to eight groups representing regolith types. The association between objective and 

traditional mapping classes was tested using the ‘Mapcurves’ algorithm to determine the ‘Goodness-

of-Fit’, resulting in a mean score of 26.4% between methods. This Goodness-of-Fit indicates that this 

objective map may be used for initial mineral exploration in regolith dominated terrains. 

Keywords: regolith-landform mapping; Geographic Information Systems (GIS); Mapcurves; 

regolith dominated terrains; unsupervised classification 

 

1. Introduction 

Regolith is the surface expression of the entire unconsolidated or secondarily recemented cover 

that overlies coherent bedrock that has been formed by weathering, erosion, transport, and/or 

deposition of older material [1]. Regolith is also known as the ‘Critical Zone’, the combination of 

chemical, geological, biological, and physical processes at the Earth’s surface preserved as sediments 

above bedrock [2,3]. Regolith connects to the underlying geology through weathering and commonly 

alters the surface expression of a buried ore body in a prospective region e.g., [4–7]. Approximately 

80% of basement rocks in Australia are covered by regolith [8,9]. Given that these basement rocks are 

known to host numerous economically viable ore deposits of various commodities in South Australia 

(e.g., Olympic Dam Cu-Au-REE-U; Carrapateena Cu-Au; Middleback Ranges Fe2O3: Figure 1), they 

are highly prospective for mineral exploration. Therefore, regolith mapping is becoming an 

increasingly used tool to assist in identifying key regions for mineral exploration e.g., [10,11]. 

Regolith mapping contributes to understanding the geomorphology and landscape evolution of 

a region, but it is not a wholly objective method [5,7] and there are known spatial and compositional 

inconsistencies arising from differences in subjective interpretations of experts [12]. Significant 

progress has been made in standardizing regolith-landform mapping techniques within Australia 

e.g., [13–15]—although are subject to the preferred interpretation of the mapper. Some forms of 
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remotely sensed data are used when creating traditional regolith-landform maps but are usually 

utilized as an interpretative tool [16,17]. Similarly, landform mapping has traditionally been 

performed through visual interpretation of aerial photography and field surveys [17–19]. Landforms 

provide an understanding of past geologic and geomorphic processes and can also be used as a 

surrogate for regolith mapping due to genetic and spatial links [12,20,21]. Although landforms can 

improve the understanding of previous processes, similar landforms can represent differing regolith 

domains [20]. To assist in this discrimination, the use of scale is vital as well as examining the 

relationship between other regolith-landform features and field validation [22]. 

Spatial GIS methods have evolved to enrich geomorphological maps [23] but there are few 

standards established for digital regolith mapping. An objective regolith map using a standard set of 

spatial analytical methods may therefore provide higher consistency across a region or continent [24]. 

The work in [4] provides an example of digital regolith mapping in a tropical environment, 

successfully mapping regolith and basement geology using an unsupervised classification of 

radiometric data and Landsat TM imagery followed by an interpretation of the weathering and 

geomorphic history. Integrating regolith and landforms spatially has been beneficial for mineral 

exploration success by identifying appropriate target regions or sampling media e.g., [12,25,26]. 

Recent work [27–31] has used a variety of machine learning methods to digitally map lithology 

and regolith using a range of geophysical and remote sensing data. A majority of this work has been 

done at regional scales, but machine learning methods have also been applied at a continental scale 

[32]. Although these machine learning methods have been shown to be beneficial in a range of 

settings, they are all advanced forms of supervised classifications. To the best of our knowledge, an 

unsupervised classification using geophysical and remote sensing data has not been used to produce 

a useful regolith-landform map in Australia. 

In this paper, we create an objective mapping method to map broad regolith-landforms based 

on readily available digital landform and gamma-ray spectrometry data. The example is from the 

southern Gawler Ranges in South Australia, which is host to several prospective targets including 

the Paris silver deposit and the Nankivel porphyry copper prospect (Figure 1). We present and 

discuss a statistical comparison between the newly proposed objective mapping method and 

traditional regolith-landform mapping followed by the examination of this application of this 

technique to mineral exploration. 

2. Background 

2.1. Geological Setting 

The area used in this study covers 3866 km2 within the southern region of the Gawler Craton 

(Figure 1) and includes a variety of landscape and vegetation features. The study area includes the 

‘Gawler’ region and ‘Gawler volcanics’ and ‘Myall Plains’ sub-regions of the Interim Biogeographic 

Regionalisation for Australia (IBRA) [33]. The landscape is broadly characterized by hills, hill foot 

slopes, and sandy plains [34]. The vegetation varies across the sub-regions but mainly comprises low 

open woodlands of Western Myall (Acacia papyrocarpa) and Black Oak (Casuarina pauper) trees over 

sparse shrub understoreys of Bluebush (Maireana spp.), Saltbush (Atriplex spp.), and Spinifex (Triodia 

spp.). 

The oldest basement rocks are preserved in the south of the study area and are poorly exposed. 

These rocks are part of the Sleaford Complex (ca. 2550–2440 Ma) and the unconformably overlying 

Palaeoproterozoic Hutchinson Group [35–37]. The Warrow Quartzite is the oldest unit of the 

Hutchinson Group within the study area and has an age of ca. 2008 Ma [38,39]. The Gawler Range 

Volcanics (GRV) are well exposed in the north of the study area and variably exposed throughout 

the southern and central thirds of the study area. Within the study area, the GRV is defined as the 

Lower GRV (Figure 1) which has an extrusion age of ca. 1591–1588 Ma [40]. The Hiltaba Suite is co-

magmatic to the GRV but has a longer extrusion time of ca. 1598–1574 Ma [39,41]. It occurs widely 

throughout the Gawler Craton and is known to be associated with the major tectonothermal and 

metallogenic episode that impacted much of the Gawler Craton e.g., [35,37] (Figure 1). 
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The composition and formation of the regolith in the study area is described in detail by [42]. 

Archean and Palaeoproterozoic basement rocks are uncomfortably overlain by much younger 

Cenozoic sediments. Limited regolith was deposited throughout the Paleogene and Neogene, and 

mostly comprises ferricrete, silcrete, some colluvial sediments, and palaeochannel sediments of the 

Garford Formation. The Garford Formation occurs in low relief areas and includes carbonaceous clay 

and silt with other fluvial and lacustrine sediments. 

Development of ferricrete and silcrete continued into the Quaternary, cementing host lithologies 

and fragments of quartz and other material. A variety of sediments were deposited including aeolian, 

terrestrial, colluvial, and lacustrine. Colluvial sediments comprise ferruginous and poorly sorted 

pebbly conglomerate and sandstone. Calcrete formed throughout the Quaternary as laminated sheets 

of nodular aggregates now generally exposed in erosional terrains near alluvial channels and in areas 

of deflation. During the Pleistocene, aeolian sediments dominated and are characterized by fine to 

medium grained sands, some of which formed ridges and swales. The most recent sediments 

deposited were aeolian quartzose sands draped over lacustrine and other aeolian deposits on the 

leeward side of playas [42]. 

 

Figure 1. Simplified geological map showing the location of the study area and other known major 

deposits throughout the Gawler Craton. The dark grey area in inset map corresponds to the extent of 

the Gawler Craton. Modified after Forbes, et al. [43]. 



Geosciences 2018, 8, 318 4 of 19 

 

2.2. Regolith Mapping 

A regolith unit is a subdivision of the regolith with visibly distinguishable boundaries at a 

mappable scale. The term can also be used for zones or horizons of weathering profiles [1]. There are 

many ways regolith unit are classified but the most common schemes are TI (Transported or In-situ) 

or RED (Relict, Erosional, or Depositional) [11,44]. Following this classification, the units may be 

categorized according to sediment origin e.g., marine or terrestrial. Then units may be distinguished 

based on physical attributes such as grain size, thickness, composition, to create detailed descriptions. 

If possible, age will also be included in the definition to provide an understanding of landscape 

formation processes that occurred in the region. Some units also include information on predominant 

vegetation cover. 

Traditional regolith mapping of the Yardea and Port Augusta 1:250,000 map sheets was 

completed in 2016 by [42], and the study area for this work is a small section of this mapping area 

where there are known exploration targets. The original mapping involved a combination of visual 

interpretation and some field assessment of a number of available data sets including: state geological 

mapping, Landsat TM5 and ETM7 imagery, 1 and 3 s Digital Elevation Models (DEMs), and gamma-

ray radiometric data [45]. Ten attributes were assigned to mapping units including regolith materials, 

landform names, Regolith Terrain Map (RTMAP) code, and TI scheme. Bedrock weathering intensity 

and regolith thickness were not able to be inferred from the data used but are available as individual 

products from the Geological Survey of South Australia. The final product was based on the 1:100,000 

geology mapping using the RTMAP scheme developed by [14]. 

3. Materials and Methods 

The methods for this work were multi-faceted and are detailed in the following subsections with 

an overview presented in Figure 2. 

 

Figure 2. Flowchart illustrating the methodology workflow. 

3.1. Clustering of Traditional Regolith Map 

Figure 3 shows the regolith map of [42] for the study area. This map shows 19 regolith-landform 

units that depict the fine scale detail throughout the map area. The landscape is clearly dominated 

by a few regolith types with a majority of others sparsely distributed and limited in extent (Figure 3). 

Due to the limited extent of some regolith units, the 19 regolith map units were aggregated into eight 
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types based on their spatial distribution and description of regolith material origin. The topological 

integrity of the mapping was retained although the number of overall regolith classes was reduced. 

An example of this was aggregating silcrete, calcrete, and ferricrete together (Duricrusts) to retain 

topology as they are expressed with the same landform at surface. Similarly, the palaeochannel 

deposits and playa lake deposits were also spatially limited and were clustered together to preserve 

map topology and include these regolith types as an exclusive class, water related formation 

processes (Lake/Palaeochannel sediments, Table 1). The accuracy of the DEM methodology that is 

applied in this work does not allow to discriminate them. 

Although this aggregation retained some types of regolith, others were clustered to provide 

greater clarity. For example, the Sandplains/dunes, mostly aeolian origin regolith type (herein 

referred to as ‘Sandplains/dunes’) includes sediments formed by wind formation processes, 

longitudinal sief dune field deposits and aeolian sand sheet deposits (Table 1). Colluvial sediments 

occurring in the north and south of the study area were clustered together as they are derived from 

the same formation processes (erosion–weathering–transport–deposition sediments). 

Some regolith types were particularly distinctive and were not aggregated in the Clustered 

Regolith Mapping Unit (CRMU) map (Figure 4) as they were considered to be unrelated to other 

regolith types. These included Alluvial sediments, GRV bedrock, and Undifferentiated Quartz. It is 

known that GRV and Non-GRV bedrock are compositionally different [35,46] and undergo differing 

formation processes, therefore it was reasonable to keep these regolith types separate in the clustering 

process (Figure 4, Table 1).  

Table 1 shows the clustering of the original 19 regolith types of [42] to form the CRMU map 

shown in Figure 4. The reduction of detail in the CRMU map has simplified regolith primarily in the 

southern two-thirds of the study area (Figure 4). Clustering the traditional regolith map based on 

formation processes alone can introduce some bias and subjectivity in this method. 

 

Figure 3. Regolith map of the study area. Regolith spatial data from Krapf [42]. 
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Table 1. Matrix showing aggregation of 19 regolith types from Figure 3 into 8 Clustered Regolith 

Mapping Units (CRMU) in Figure 4. Each color represents the color of the aggregated class displayed 

in Figure 4. 

Title CRMU Regolith Types (Figure 6) 

Traditional Regolith Types (Figure 2) 
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Alluvial deposits         

Colluvial deposits associated with 

Archean to Palaeoproterozoic 

undifferentiated bedrock 

        

Colluvial deposits associated with 

Mesoproterozoic felsic volcanic 

bedrock 

        

Older ferruginous colluvial deposits         

Mesoproterozoic felsic volcanic 

bedrock 
        

Palaeochannel deposits (Garford 

Formation) 
        

Playa lake deposits         

Archean Palaeoproterozoic bedrock         

Mesoproterozoic granitic bedrock         

Aeolian sand capping dune and sand 

sheet deposits 
        

Aeolian sand sheet deposits         

Depositional plain deposits         

Longitudinal sief dune field deposits         

Sandplain deposits         

Source bordering dune deposits         

Calcrete         

Ferricrete         

Silcrete         

Undifferentiated quartz veins and 

quartz bodies 
        

3.2. Regolith-Landform Analysis 

The data used to perform the regolith-landform analysis was selected for its comprehensive 

extent and high spatial resolution. This data is also of high quality for this remote region of South 

Australia. All data and data transformations used in this work are freely available, produced by 

Geoscience Australia and cover the entirety or vast majority of Australia providing the ability to 

replicate this method. 

3.2.1. Spatial Data and Transforms 

Spatial data used in the analysis includes a Digital Elevation Model (DEM), Topographic 

Position Index (TPI), and Slope Position Classification (SPC) derived from the smoothed DEM (DEM-

S) derived by Geoscience Australia from the 1-second Shuttle Radar Topography Mission (SRTM) of 

NASA in 2000 with a spatial resolution of 30 m [47] (Figure 5). 
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Figure 4. Clustered Regolith Mapping Unit (CRMU) map of the study area after aggregation based 

on the description of regolith material. 

 

Figure 5. 1-s Digital Elevation Model (DEM) used as an input for the unsupervised classification, 

sourced from Geoscience Australia. 

The TPI developed by [48,49] has been used to interpret numerous landscapes globally and 

across disciplines e.g., [50,51]. TPI is calculated as the mean elevation within a focal window of a 

specified radius around each cell in a DEM [48]. This index is scale dependent, with fine scales more 

appropriate for exploring soil erosion and coarse scales appropriate for studying regional landforms. 

The study area was analyzed at a coarse (2000 m radius) and fine (300 m radius) scale using ArcGIS 

10.3 Toolbox [52]. 

The TPI is an index of curvature and while mathematically meaningful is not easily interpreted. 

However, the SPC classifies this index into a more interpretable form that describes the slopes in the 

study area. SPC is not a geometric classification of a landscape, it uses the local elevation and slope 
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conditions for each point based on the TPI using standard deviation thresholds listed in Table 2, as 

defined by [48]. These thresholds are appropriate across different terrains, as shown by [51,53]. The 

SPC algorithm applied to both TPI grids to visualize the landscape patterns at the different scales 

(Figure 6). 

Table 2. Slope position classification thresholds. Reproduced from Weiss [48]. 

Class Description Breakpoints (Standard Deviation Units) Slope (Degrees) 

1 Ridge > 1 N/A 

2 Upper slope > 0.5 ≤ 1 N/A 

3 Middle slope > −0.5 < 0.5 > 5 

4 Flats slope ≥ −0.5 ≤ 0.5 ≤ 5 

5 Lower slopes ≥ −1 < 0.5 N/A 

6 Valleys < −1 N/A 

Figure 6a shows the fine scale SPC at 300 m radius, illustrating many local ridge formations 

across the landscape and flat slopes with some valleys apparent in the north of the study area, 

whereas Figure 6b (2000 m radius) highlights the ridge and valley features with only some 

intermediate slopes. 

 

Figure 6. Slope Position Classification at (a) fine scale (300 m); and (b) coarse scale (2000 m) derived 

using Dilts [52] ArcGIS 10.3 Toolbox. SPC is based on the local elevation and slope of each point. 
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3.2.2. Gamma-Ray Radiometrics 

Digital maps of potassium, thorium, and uranium emissions were obtained through the South 

Australian Resources Information Gateway (SARIG: https://map.sarig.sa.gov.au/) with a spatial 

resolution of 100 m (Figure 7). The data were derived through interpolating data of previously flown 

airborne radiometric surveys based on methods from the Australia Wide Airborne Geophysical 

Survey [54,55]. 

 

Figure 7. Ternary composite gamma ray radiometric map of the study area, sourced from SARIG. 

3.3. Unsupervised Classification 

An unsupervised classification was used to cluster and identify spatial patterns in the input data 

sets. Inputs for the unsupervised classification were elevation from the DEM; two TPIs of different 

radii (2000 m and 300 m); and gamma-ray radiometric grids for potassium, equivalent thorium, and 

equivalent uranium (Figures 5–7). An Iso Cluster Unsupervised Classification was performed 

classifying the gridded data into 30 classes. These were clustered to eight classes using a class 

similarity threshold applied to a dendrogram of between-class distance of sequentially merged 

classes. This threshold was informed by visual interpretations of the spatial distribution and 

coherence of the classes produced. 

3.4. Relationship between Mapping Methods 

The relationship between the aggregated unsupervised classification and the CRMU map classes 

was evaluated using the Mapcurves ‘Goodness-of-Fit’ (GOF) measure developed by [56]. This measure 

evaluates the spatial concordance between the two maps (Equation (1)).  

𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠 𝑜𝑓 𝐹𝑖𝑡 =  ∑ [(
𝐶

𝐵 + 𝐶
) (

𝐶

𝐴 + 𝐶
)] (1) 

where A is the total area of the category on the compared map, B is the total area of the category on 

a reference map, and C is the amount of intersection of a category between two maps. 

This method was selected because of its ability to be applied to maps with differing numbers of 

categories and as it is independent of resolution [56,57]. Mapcurves analysis has been successfully 

used to compare categorical maps in a variety of disciplines including species distribution and 

biogeographical region modelling e.g., [58,59]. Mapcurves analysis was implemented using 5000 
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points generated randomly across the study area. For each of these points, the mapped class and 

regolith type was sampled for each mapping method. The Mapcurves implementation of [60] was 

applied using 400 iterations of the algorithm using a random subsample of 500 of the 5000 points. 

Finally, we considered the sensitivity of the statistics from the 400 Mapcurves outputs. 

4. Results 

4.1. Aggregation of Traditional Regolith-Landform Map 

With the number of regolith mapping units of the traditional regolith map reduced to eight, it 

becomes much easier to visualize the distribution of broad regolith types. Figure 4 shows that the 

landscape is dominated by Sandplains/dunes and the Gawler Range Volcanics in the north of the 

study area. The landscape also contains a large proportion of Colluvial sediments, generally 

surrounding bedrock, mostly around the Gawler Range Volcanics in the north of the study area. 

Figure 4 also highlights the prevalence of Non-Gawler Range Volcanics bedrock in the south and 

western regions of the study area. There are smaller units of Duricrusts and Lake/Palaeochannel 

sediments across the study area. Duricrusts mostly occur in the eastern portion of the study area, and 

are in proximity of Colluvial sediments and Non-GRV bedrock. Alluvial sediments appear as they 

did in Figure 3, as they were not aggregated with other regolith types.  

4.2. Aggregated Unsupervised Classification 

The unsupervised classification produced 30 classes which were clustered hierarchically into 

eight broad groups. Figure 8 shows the aggregation of the classes, indicating the threshold used to 

establish the aggregated unsupervised objective mapping (herein referred to as ‘the image map’) 

classes displayed in Figure 9. Table 3 displays the average values of input variables for each derived 

class with the average crustal abundances of radiometric variables included for comparison. The 

distribution of Slope Position Classes, both coarse and fine scale for each mapping class are shown in 

Figure 10. 

 

Figure 8. Dendrogram produced from the initial unsupervised classification illustrating the 30 classes 

that were hierarchically clustered to eight for the image mapping product each color represents the 
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color of the final aggregated class displayed in Figure 9, the black line indicates the threshold used 

for aggregation. 

Figure 9. Image map of eight classes resulting from the unsupervised classification. Each class is based 

on a common topographic and radiometric signature. 

Table 3. Summary statistics for each defined class derived from input data. Average crustal 

abundance for radiometric elements are provided here for reference (data from Minty [61] and 

Rudnick and Gao [62]). 

Class Average Values 1 3 6 13 16 18 26 28 

DEM (m) NA 202.73 177.13 250.03 346.91 165.14 229.41 293.46 306.80 

K (%) 1.90 0.59 1.08 1.26 0.93 2.20 3.17 3.69 3.67 

Th (ppm) 8.50 1.08 7.38 10.41 10.46 13.22 21.44 26.36 26.86 

U (ppm) 2.70 1.26 1.01 1.31 1.20 1.81 2.90 3.99 3.87 

 

Figure 10. The proportion of SPC of the total area for each class, for both coarse and fine scales of 

slope analysis. 
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4.3. Composition and Distribution of the Image Mapping Classes 

Class 3 accounts for 24.7% of the study area. It is mostly located across the western-central region 

of the study area with some small areas located in the far east and north. The raw radiometric data 

(Figure 7) indicates that this region is rich in thorium, confirmed in Table 3 with approximately 

average crustal abundance values for thorium and below average abundances for potassium and 

uranium. At the coarse SPC analysis, this class is predominately made up of valley features; whereas 

at the fine scale, a higher proportion of flat slopes and upper and lower slopes are evident. 

Class 1 is distributed in the south east and across some of the southern margin of the study area 

and makes up 6% of the study area. It has an average elevation of 202 m, with below-average 

abundance of all radiometric elements. At the coarse scale of topographic analysis, this class 

comprises mostly ridge features with 35% valley features (Figure 10). At the fine scale, much of this 

is identified as flat slopes, accounting for 36% of the terrain. 

Class 6 is the largest class, making up 31.2% of the study area but more commonly in the east. 

This class has an average elevation of 250 m with some enrichment in thorium and uranium. This 

class has above-average abundance of thorium but below-average values of potassium and uranium. 

Class 6 contains approximately half ridge and half valley features at the coarse scale with the fine 

scale illustrating upper, flat, and lower slopes forming 64% of this class. 

Class 13 is the most geographically restricted class at <1% of the total area, confined to high 

ridges in the southern and central regions. This class contains the highest mean elevation at 346 m 

above average thorium and approximately half the average abundance of potassium and uranium. 

The coarse SPC shows this class has 95% ridge features but 45% ridge features combined with valley 

and other slope features at the fine scale. 

Class 16 is restricted to the north and the southern boundary of class 18 in the west of the study 

area. This class contains the lowest average elevation at 165 m. Figure 7 suggests that this class would 

be high in uranium, but the abundance in Table 3 indicates that this class contains 1.81 ppm, below 

average. Thorium and potassium are both above average crustal abundance. Valley features make 

up over 70% of the coarse SPC, whereas the fine scale indicates contains a higher occurrence of flat 

slopes at 61%. 

Class 18 is the second largest class derived, making up 27.5% of the study area. It is mostly 

located in the central to western region of the study area with some small areas located in the north. 

Figure 7 indicates that this class is high in all three radiometric elements and Table 3 attests that this 

class contains average or clearly above average abundances. The coarse scale highlights the large 

proportion of valley features for this class with approximately 30% ridge features. At the fine scale, 

intermediate slope types make up a large proportion of the SPC result and ridge and valley features 

are reduced in their proportion. 

Class 26 is the smallest of all classes at 0.85% of the area and it is spatially restricted, likely due 

to its representation of specific landscape features. It contains above-average radiometric values 

across all elements with all three elements, with potassium and uranium being the greatest of all 

classes. The coarse scale indicates an approximately equal division between ridge and valley features 

whereas the fine scale clearly shows the high proportion of valley features within this class. This class 

also has one of the highest average elevations of all classes at 293 m. 

Class 28 makes up 3.4% of the total area and is distributed across the northern region with 

exceptions in the central and southern margins. This class has the second-highest average elevation 

at 306 m with Figure 7 and Table 3 in agreement that this class is high in all three radiometric 

elements. This class is represented by primarily ridge features at the coarse and fine scale. Class 28 

illustrates the most dominant relationship with one slope type compared to all other classes identified 

in the final mapping method. 

Classes 13, 16, and 26 were not aggregated with other classes and are noticeably distinct (Figure 

8, Table 3). Class 1 is a relatively unique class as it is formed from two classes during aggregation but 

has some similarity to Classes 3 and 6 in the thorium and uranium content. Coincidentally, Classes 

1, 3, and 6 are adjacent across the southern two-thirds of the study area (Figure 9). 
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4.4. Spatial Concordance between Mapping Methods 

The iterative Mapcurves function produced Goodness-of-Fit (GOF) scores between map classes 

ranging from 22.4–38.5% with a mean GOF of 26.4%. Table 4 shows the mean GOF for each 

intersection between the CRMU and the image mapping classes, indicating the highest GOF scores 

for each image mapping class. The intersection of Class 3 and Sandplains/dunes has the largest GOF 

score at 35.98%, followed by Class 18 and Colluvial sediments at 31.8%. Other large GOF scores also 

occur between Class 28 and 18 and Gawler Range Volcanics and Class 13 and Non-Gawler Range 

Volcanics CRMU regolith types. 

When comparing the image map to the CRMU map, Classes 1, 3, 6, and 16 have the highest GOF 

with Sandplains/dunes. The Gawler Range Volcanics CRMU regolith type has multiple 

correspondences with Classes 26 and 28. None of the 5000 randomly generated points fell within the 

Undifferentiated Quartz regolith type due to its small area, therefore it was not included in the 

Mapcurves analysis. 

Table 4. Mean GOF (%) from Mapcurves analysis: bold values are the highest GOF for the comparison 

of image mapping with the CRMU regolith type, and italicized values are the highest GOF for the 

comparison of CRMU regolith type with the image mapping classes. Values bold and italicized are 

the highest GOF for both comparison directions. 

CRMU Regolith Type 
Image Mapping Class 

1 3 6 13 16 18 26 28 

Alluvial sediments 0 0 0.21 0 1.21 2.29 0 0 

Colluvial sediments 0 0 3.57 0.93 0.37 31.8 0.14 0 

Gawler Range Volcanics 0 0 0.07 0.03 0.01 23.3 35.98 25.71 

Lake/Palaeochannel sediments 0 1.61 0.01 0 2.37 0.04 0 0 

Non-Gawler Ranges Volcanics 0.03 0.23 2.90 11.66 0.07 0 0 0.11 

Sandplains/dunes 9.24 35.98 30.41 0.03 5.97 1.04 0 0 

Duricrusts 0 0.03 1.17 1.59 0 0.03 0 0 

5. Discussion 

5.1. Relationship between Maps and Input Variables 

Sandplains/dunes has two large GOF scores with Classes 3 and 6 at 35.98% and 30.41% 

respectively. When examining Figure 9 in conjunction with Table 4, it can be seen that Classes 3 and 

6 make up a majority of the central region of the study area. Comparison with Figure 4 demonstrates 

that both classes have high GOF scores with this CRMU regolith type due to the majority of the 

CRMU map comprising Sandplains/dunes with other regolith types scattered throughout the central 

region of the study area. The image map shows two different classes (Classes 3 and 6) that make up 

approximately the same area (Figure 9). It is likely that this is due to elevation and SPC input data. It 

can be seen in Figure 5 that an area of high elevation on the eastern side and centre of the study area, 

corresponds with Sandplains/dunes in Figure 4. From Table 3, elevation and radiometric thorium 

content will likely explain the separation of Classes 3 and 6 and hence their similar GOF scores. 

Although there are strong relationships between Sandplains/dunes and Classes 3 and 6, there 

are much smaller GOF scores with this CRMU regolith type and Classes 1 and 16 (Table 4). Figure 4 

shows that the south western corner and central northern portion of the study area are 

sandplains/dunes but these have been separated in the image mapping as Classes 1 and 16 

respectively likely due to the differences in both radiometric response and elevation from Figures 4 

and 6 and Table 3. This means that Classes 1 and 16 are not as well predicted from Sandplains/dunes 

and they make up a smaller proportion of this CRMU regolith type, explaining their low GOF scores. 

Class 18 has strong correspondence with both Colluvial sediments and the Gawler Range 

Volcanics (Table 4). The northern regolith types are distinct in the radiometric input data (Figure 7) 

as they are high in all radiometric elements, confirmed in Table 3. Figure 4 shows the extent of the 
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GRV in the north of the study area and when comparing this to Figure 9, it can be seen that Class 28 

is not as extensive. The strong similarities of the radiometric responses explain the separation of 

classes and therefore high GOF scores for both Colluvial sediments and GRV with Class 18. 

While there are areas of higher GOF, there are also many minor GOF values which still indicate 

some relationship between map classes (Table 4). The GOF between Colluvial sediments and Class 6 

at 3.57% is due to the aggregation of the unsupervised classification. Class 6 includes some Colluvial 

sediments in the eastern half of the study area when comparing Figures 3 and 8. This type of 

interaction between mapping methods also occurs with Class 18 and Alluvial sediments. 

5.2. Mapcurves for Comparison of Regolith-Landform Maps 

The choice of map to use as the reference is subjective and will produce differing outcomes. 

Mapcurves analysis permits the comparison of mapping methods to be made in both directions, i.e., 

using the traditional map or the image map as the reference for the comparison between classes. The 

comparison that produces the greatest GOF is considered to be the best direction of concordance 

between the maps and may also indicate which map is finer scale [56]. It has been suggested by [63] 

that the coarser map would be advantaged when selecting the highest Mapcurve result. However, 

given the similarity in scales of the two maps compared in this study this seems unlikely to be an 

influencing factor in the results. 

The Mapcurves result suggests that in this case the traditional map should be used as the 

reference as the greatest GOF score (26.4%) is for the comparison of the image map to the traditional 

map. This Goodness-of-Fit indicates that our objective regolith-landform map describes some of the 

same pattern as the traditional subjective map, but also contains significant additional information, 

probably resulting from the topographic indices and radiometric data. An unsupervised regolith-

landform map is easily evaluated using Mapcurves as shown in this study. Mapcurves can provide 

confidence in this mapping method due to its numerous advantages, such as application beyond a 

pair-wise comparison with multiple maps and resolution independence. This work has identified, 

analyzed, and interpreted the GOF scores and intersections between classes (Table 4) to bring greater 

interpretation to the objective regolith-landform map and how it relates to the traditional map. 

5.3. Regolith-Landform Mapping without Prior Knowledge 

The generation of an objective map from digital data that is comparable to the pre-existing 

regolith-landform map demonstrates that it is not necessary to have extensive knowledge of a site 

prior to using this method. This is because the image map is data driven and the methodology 

identifies meaningful patterns in the data. The characteristics of the image mapping classes have been 

derived from summary measures of the input variables. When used as a first-pass analysis tool, the 

objective mapping method can provide a basis for targeted field work to further describe and 

characterize regolith units. 

Although most classifications of landforms are attempting to replicate a manual classification 

[64], an objective method that provides similarities to a traditional map does have its place. In this 

case, the objective mapping method illustrates the effectiveness of using easily and freely accessible 

data and simple methodology. The image mapping could also be accomplished on open source 

software such as QGis. It can be argued that this method is faster, taking only days versus weeks of 

field work followed by quality control, meaning turnaround time of a regional regolith-landform 

product is reduced and that publication of products to be used in a number of applications, such as 

mineral exploration, are more accessible. 

While this method results in faster production of regolith-landform maps, it is not intended to 

be a replacement for ‘boots on ground’ mapping. The objective mapping method presented here gives 

an indication of the distribution of broad scale regolith-landform features. Therefore, if the traditional 

mapping method were to be discarded detailed descriptions and interpretations of regolith and soil 

types would be lost. This highlights why ‘boots on ground’ mapping and regolith expertise will 

always be useful and could be incorporated into a data-driven methodology. Other research 

comparable to this study primarily focused on providing descriptive attributes for each defined class 
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rather than an overview and statistical measure of fit e.g., [19,65,66]. Supervised classification 

methods, including machine learning methods such as fuzzy k-means or Self-Organizing Maps, 

provide continuity between classes and are described as more of a continuous classification method 

[24,32,67]. However, they require training data or an accuracy assessment to verify their resulting 

product unlike this study which used a statistical measure to evaluate the objective method. 

The relationships between the image map classes and regolith types mapped by traditional 

methods for the southern Gawler Ranges study area demonstrates that this mapping method based 

on digital data analysis could be implemented in other regolith dominated terrains. In regions of 

sporadic or no coverage of regolith mapping, this method could be used prior to a field campaign to 

gain insight and understanding of the landscape without the time or expense required for traditional 

mapping. Digital data including geology and high-resolution satellite imagery that provide insights 

to alternative landform features are example avenues that could be considered as additional input 

datasets. 

5.4. Application for Mineral Exploration 

Objective mapping methods can be beneficial in expanding geological understanding prior to 

entering an area for purposes such as mineral exploration. As knowledge of the geomorphology and 

landscape is improved with mapping, exploration models can be adapted to be better suited for the 

environment of the explorer [68]. The extensive, and in places very deep, sedimentary cover across 

regions such as the Gawler Craton can be a huge barrier to explorers considering exploration targets. 

This method could assist in identifying a specific regolith-landform type and identifying areas of rock 

exposure with negligible time and monetary expense. 

It is advantageous to integrate both regolith and landforms to enhance possible geochemical 

exploration success by identifying appropriate sampling media once a regolith-landform map has 

been produced [12,25,26]. For some initial geochemical soil sampling, this image mapping could 

provide an intuitive guide to the regolith-landform characteristics and highlight where sampling 

could take place. For example, if a company wanted to employ a stream-sediment geochemical 

survey within the study area, this objective regolith-landform map could indicate that Class 16 might 

be the most appropriate sampling unit. 

Other types of remotely sensed data at a variety of spatial and spectral resolutions are also 

becoming increasingly available, including ASTER imagery at a national and state level plus a range 

of standard spectral data products that are regularly used in mineral exploration. These data have 

the potential to be incorporated into an objective mapping method such as the one presented here. 

6. Conclusions 

Characterizing and interpreting regolith and landforms is vital for exploration success. This 

work has shown that an unsupervised objective mapping method can produce a regolith-landform 

map with a relationship to a traditionally derived map that could be used for first-pass mineral 

exploration. The Goodness-of-Fit indicates the similarity of mapping methods but also highlights the 

additional information that is possible to interpret from the objective regolith-landform map. Using 

open access data and an accessible unsupervised classification makes this method is easily useable 

for a variety of applications. This objective method has the advantage of removing much of the 

subjectivity in regolith-landform mapping. The spatial extent of the data used suggests that this 

method could be used across much of Australia with traditional regolith and additional remote 

sensing data being integrated to create a final product. 
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