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Abstract: The main purpose of this study is to explore the impact of analysis scale on the performance
of a quantitative model for landslide susceptibility assessment through empirical analyses in
the northern Peloponnese, Greece. A multivariate statistical model like logistic regression (LR)
was applied at two different scales (a regional and a more detailed scale). Due to this scale
difference, the implementation of the model was based on two landslide inventories representing
in a different way the landslide occurrence (as point and polygon features), and two datasets of
similar geo-environmental factors characterized by a different size of grid cells (90 m and 20 m).
Model performance was tested by a standard validation method like receiver operating characteristics
(ROC) analysis. The validation results in terms of accuracy (about 76%) and prediction ability
(Area under the Curve (AUC) = 0.84) of the model revealed that the more detailed scale analysis
is more appropriate for landslide susceptibility assessment and mapping in the catchment under
investigation than the regional scale analysis.

Keywords: landslide susceptibility; analysis scale; landslide inventory; cell size; logistic regression;
GIS; Greece

1. Introduction

Landslides occur throughout the world, under all climatic conditions and terrains, costing billions
in monetary losses and being responsible for thousands of deaths and injuries each year [1].
The expanding urbanization and development (urban activities and transportation facilities) in
landslide-prone areas, in combination with the climate change of extreme meteorological events,
and the high seismic activity have contributed to the increase of landslide frequency worldwide,
during the last decades. In 2016, 4% of global natural hazards were associated with landslides [2],
while only in the first semester of 2017, the same percentage was 11% [3]. In terms of mortality,
the corresponding percentages were 5% and 25%, respectively, of the total of human life losses.

Greece can be characterized as a region highly prone and vulnerable to the occurrence of
landslides [4]. Due to (a) uncontrolled or not well planned development by ignoring the engineering
geological and geotechnical conditions, (b) excessive rainfall events generating high pore water
pressure, and (c) strong earthquakes resulting in ground shaking, more and more areas of the country
are affected by them [5,6]. Therefore, the need for reliable predictive maps is uncontested nationally,
in order to mitigate the phenomenon by avoiding the hazard or reducing the potential effects.

A landslide susceptibility (LS) map gives an indication of where future landslides are likely to
occur, based on the identification of areas of past landslide occurrences and areas where similar or
identical physical characteristics exist [7]. These maps are currently prepared analyzing a variety of

Geosciences 2018, 8, 261; doi:10.3390/geosciences8070261 www.mdpi.com/journal/geosciences

http://www.mdpi.com/journal/geosciences
http://www.mdpi.com
http://www.mdpi.com/2076-3263/8/7/261?type=check_update&version=1
http://dx.doi.org/10.3390/geosciences8070261
http://www.mdpi.com/journal/geosciences


Geosciences 2018, 8, 261 2 of 15

input data by either qualitative or quantitative models [8,9]. The qualitative models depend on the
knowledge and previous experience of the experts (low degree of objectivity). Such models, well known
and widely used, are the logical analytical models [10,11]. However, the quantitative models are based
on numerical expressions of the relationship between landslide occurrence and influencing factors
(high degree of objectivity). They include geotechnical engineering models [12,13], conventional
statistical models of bivariate or multivariate analysis [14–18], as well as more advanced data mining
models such as artificial neural networks, support vector machines, decision trees, and neuro-fuzzy
models [19–22].

Concerning the accuracy of the outcomes produced from the LS models, the quality of
available geographical input data plays a major role. One of the important—if not the most
important—properties of the geographical data which highly reveals their quality is spatial resolution.
For raster data structure, the spatial resolution of the data is expressed via the size of grid cells.
Grid cells are the basic spatial components in which a study area is partitioned and for which a LS
model is able to produce a prediction (susceptible/insusceptible). The size of grid cells can control
the precision of the spatial coupling between the input landslide data and geo-environmental factor
data [23]. The selection of the appropriate size mainly depends on the analysis scale. Large cells are
more beneficial to small scales, whereas small cells are more beneficial to large scales.

In the last fifteen years, several studies have examined the effect of different grid cell sizes in
LS assessment and mapping [23–26]. However, these studies have focused on the variations of the
estimated LS, by changing the grid cell size and retaining same the analysis scale. In contrast with them,
the present study examines the effect of different analysis scales on LS assessment for a catchment
in northern Peloponnese (Greece). This effect was evaluated by applying a quantitative model at
two different analysis scales (a regional scale of 1:250,000 and a more detailed scale of 1:50,000) with
different sizes of grid cells (90 m and 20 m, respectively), and comparing the results derived from the
model for these two analyses in terms of accuracy and prediction ability.

2. Study Areas

For applying the selected LS model at two different analysis scales, two study areas of different size
were required. For the analysis of regional scale, a system of catchments in the northern Peloponnese
was chosen as study area (Figure 1a). This area covers an extent of 3685 km2 and contains 42 catchments
with some of the most important rivers of Peloponnese. One of these catchments is the (main) study
area which was chosen for the analysis of more detailed scale. With an extent of 366 km2, this catchment
is drained by Selinous River, the largest (with a length of 49 km) Peloponnesian river (Figure 1b).
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In northern Peloponnese, agricultural areas and scrub/herbaceous vegetation are the dominant
land cover types. Topographically, the presence of large and steep gorges in a significant part of
its extent has to be noted. Moreover, lowland topography is detected, especially in its coastal zone.
Geologically, it mainly consists of Alpine formations from three Hellenic geotectonic zones: Pindos,
Tripolis, and Pelagonian zones [27]. Mostly, these formations are thickly bedded limestones, as well as
conglomeratic layers. The existence of alluvial deposits in its coastal zone is also worth mentioning.

The climate is typical Mediterranean, with a hot and relatively dry summer, and a wet season
during autumn, winter and spring [28]. The mean annual precipitation in northern Peloponnese ranges
from 697 to 1178 mm, with the highest rainfall frequency and intensity occur during November and
January. Due to these high precipitation levels, and the fact that a large part of the region consists of
easily erodible geological formations, the anticipated strong relationship between precipitation and
erosion can be considered as the main triggering factor for landslides.

Generally, the northern Peloponnese has experienced the occurrence of several detrimental
landslide events in the past. Many villages within its boundaries have been highly damaged by these
events. The most typical example is the landslide occurred in Karya, in 1962, resulting to the partial
destruction of the homonym village. The village was re-sited later to a nearby geologically stable area
where it is now situated [29]. Thus, considering the principle that “the past is the key to the future” [1],
it is evident that slope instability is one of the most severe hazards in the region.

3. Data

In order to accomplish the LS analyses, two spatial databases—one for each of the two analysis
scales—were designed and developed in GIS environment with the use of ArcGIS (ver. 10.2.2)
software package.

3.1. Landslide Inventory

A landslide inventory is a dataset referring to former landslides in an area under investigation [30].
Given that, it plays a major role for recognizing factors contributing to landslide occurrence, it is
considered as the most critical information in quantitative modeling for LS assessment. Landslide
inventory maps may be prepared by different techniques based on the analysis scale. Smaller-scale
maps may present only landslide locations, whereas larger-scale maps may identify the definite areas
of landslides [31].

In this study, two landslide data sources were firstly exploited for the detection of former
landslides: (a) A database about landslides in northern Peloponnese recorded by [32], covering a time
period from 1906 to 2003, and (b) a web database about landslides in the northern and western parts of
Peloponnese maintained by the Laboratory of Engineering Geology in the Department of Geology
at the University of Patras [33], covering a time period from 1920 to 2015. Two landslide inventory
maps were then created for the two different analysis scales. The first map for the regional scale
analysis was obtained using the landslide location information (spatial coordinates) from the two data
sources. It included 411 landslide locations, plotted as point features (Figure 1a), for the system of
catchments in northern Peloponnese. The second map for the more detailed scale analysis was realized
using high-resolution (Google Earth) satellite imagery interpretation, and field surveys. It referred to
the Selinous catchment and contained 76 landslides whose depletion and accumulation zones were
mapped together in an entire area forming a single polygon feature for each of them (Figure 1b).

Following the proposed landslide classification by [34], both point and polygon features mainly
represent shallow rotational and translational slides, as well as flows. Concerning the characteristics of
these landslide types, their velocity and volume vary from extremely slow (lower than 16 mm/year)
to extremely rapid (higher than 5 m/s) [34] and from 200 to 6,000,000 m3, respectively. Their size also
ranges from 10 to 650 m for the length and from 20 to 580 m for the width.
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3.2. Geo-Environmental Factors

Landslides, like most of the natural hazards, constitute the result of the interaction between
several geo-environmental factors. Theoretically, any geo-environmental factor relating to landslide
phenomenon can be introduced in a LS analysis, on condition that it can be expressed in a measuring
scale (continuous or categorical) and has spatial variability [35]. These factors can be subdivided into
two groups: (a) The causal factors that are expected to have an effect on the landslide occurrence,
and (b) the triggering factors that trigger it. Since the triggering factor data are derived from the
assessment of magnitude-frequency relations for multi-temporal recorded triggering events, such as
rainfalls and earthquakes, they have more utility when dealing with large areas on a small analysis
scale [36]. Due to this fact and the desire for similarity between the factors in the two different scale LS
analyses, only causal factors were used in the present study.

As regards the causal factors, there are no standard criteria for selecting them. Thus,
the physiography of northern Peloponnese, the data availability, as well as general literature
suggestions [21,26,37–39] were taken into account. Seven factors, such as elevation, slope angle,
profile curvature, distance to roads, stream density, geology, and normalized difference vegetation
index (NDVI), were selected to be included in the LS analyses.

As topography is one of the major factor types in any LS analysis, elevation, slope angle,
and profile curvature factors were created. The elevation, which corresponds to the height above the
mean sea level, is useful to classify the local relief and locate points of maximum and minimum heights
within terrains [18]. Generally, landslides preferentially affect steeper slope portions in many different
landscape settings. Therefore, an increased slope angle is correlated with an increased likelihood of
failure [40]. The profile curvature shows the curvature along the vertical profile of the topography [41].
Concave areas (negative values) are also correlated with an increased likelihood of failure since,
following heavy rain and thus erosion, they retain more water and sediment, and for a longer period
than convex areas (positive values).

Distance of the slopes to roads is considered as a potentially significant factor on landslide
occurrence. Road openings at the slope bases have negative impacts on slope stability. Stream density
is the ratio of the total length of drainage network to the area of the catchment. The higher the stream
density is, the lower the infiltration and the faster the mass movement will be [37]. The factors of
stream density and distance to roads were created within a GIS-based analysis framework by using
the proper tools. Given that different geological formations have different slope stability performances,
geology is a very important factor for LS assessment [15]. Furthermore, the landslide occurrence
is closely related to vegetation density. Barren slopes are more prone to landslides as compared to
those with higher vegetation coverage [39]. A well-known index for vegetation density is the NDVI
which is derived from the ratio (NIR − R)/(NIR + R), where NIR and R are the near-infrared and red,
respectively, bands of satellite imagery data [42]. The values of this index range between −1 and +1
indicating a lack of vegetation or dense vegetation, respectively [43].

The above causal factors were organized in the relative GIS data layers as they are presented in
Table 1 and Figure 2. The factors for the regional scale analysis were all converted into raster grids
with cell size 90 m, whereas the factors for the more detailed scale analysis were all converted into
raster grids with cell size 20 m.

Table 1. Geographic Information Systems (GIS) Layers of the datasets representing the causal factors.

Type Factors
Primary Data

FormatRegional Scale Analysis
(90 m Cell Size)

More Detailed Scale Analysis
(20 m Cell Size)

Topography

Elevation SRTM dataset Vector layers of 5 m contours and
elevation points Grid

Slope angle Derived from SRTM DEM Derived from vector-based DEM Grid

Profile curvature Derived from SRTM DEM Derived from vector-based DEM Grid
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Table 1. Cont.

Type Factors
Primary Data

FormatRegional Scale Analysis
(90 m Cell Size)

More Detailed Scale Analysis
(20 m Cell Size)

Hydrology Stream density

Vector layer of drainage
network (General Use Map

of Greece 1:250,000 by
Hellenic Military

Geographical Service)

Vector layer of drainage network
(General Use Map of Greece
1:50,000 by Hellenic Military

Geographical Service)

Grid

Road proximity Distance to roads Vector layer of main road
network (OpenStreetMap)

Vector layer of road network
(OpenStreetMap) Grid

Geology Geology

Generalized geological
formations (Geological Map

of Greece 1:50,000 by
Institute of Geology and

Mineral Exploration)

Detailed geological formations
(Geological Map of Greece

1:50,000 by Institute of Geology
and Mineral Exploration)

Vector (polygons)

Vegetation NDVI
Landsat-8 images (30 m

spatial resolution, taken in
February 2016)

Sentinel-2 images (10 m spatial
resolution, taken in April 2017) Grid
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4. Methodology

Logistic regression (LR) is a standard statistical model for LS assessment [16–18]. It is included in
a category of statistical models called generalized linear models, as it allows forming a multivariate
regression relation between a dependent variable and several independent variables [44]. LR is based
on the basic principle that the dependent variable is generally binary, i.e., it can have only two values
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(for instance, 0 and 1). The independent variables act as predictors of the dependent variable and can
be either continuous or categorical, or any combination of these two types.

In the case of LS assessment, the goal of LR is to find the best fitting model to describe the
relationship between the absence and presence (value of 0 and 1) of landslides (dependent variable),
and a set of causal factors (independent variables) [40]. The model can be expressed in its simplest
form as [45]:

P =
1

1 + e−z (1)

where P is the probability of landslide occurrence, which ranges from 0 to 1 on an S-shaped curve,
and z is a linear sum of a constant and the product of the independent variables and their respective
coefficients. The value of z varies from −∞ to +∞ and is calculated from the equation:

z = b0 + b1x1 + b2x2 + · · ·+ bnxn (2)

where n is the number of independent variables, xi (i = 1, 2, . . . , n) are the independent variables,
b0 is the constant of the model, and bi (i = 1, 2, . . . , n) are the coefficients. The coefficient represents a
measure of the association between a certain causal factor and the landslide occurrence. For a positive
association the coefficient is positive, whereas for a negative association it is negative. A coefficient
of or very close to 0 indicates a factor not being influential in landslide occurrence. The LR model
estimates the coefficients and statistics, based on the values of independent variables and the status
of the dependent variable in a sample of data, using a maximum likelihood method [46]. Using the
outcomes derived from the implementation of model on the selected sample, the probability of
landslide occurrence can be calculated.

The main steps of the methodology followed in both LS analyses are presented below:

(a) Data sampling for the dependent variable. An important issue in the LR modeling is the
sample of data used to create the dependent variable. In this study, each of the two landslide
inventories was split into two separate groups: A training dataset with 80% of landslide data
for the implementation of the model, and a validation dataset with 20% of landslide data for the
evaluation of LS outputs. Thus, for the regional scale analysis, among the 411 landslide location
points, 329 points were randomly selected as the training dataset, and the remaining 82 points
events made up the validation dataset. On the other hand, for the more detailed scale analysis,
among the 76 landslide polygons, 61 polygons were randomly selected as the training dataset,
and the remaining 15 polygons made up the validation dataset. These polygons were then
converted into points (centroids of grid cells) by tiling the entire study area (Selinous catchment)
into grid cells of size 20 m. It resulted to 5140 training landslide points and 446 validation
landslide points. Furthermore, for each of the two analyses, an equal number of points from the
landslide-not-occurrence part of the corresponding study area was randomly selected for both
the training (giving totals of 658 and 10,280 respectively, points) and validation (giving totals of
164 and 892, respectively, points) datasets. The target value of 1 was assigned to the landslide
points, while the target value of 0 to the non-landslide points.

(b) Preparation of independent variables. As it was mentioned above, the LR model allows the
integration of both continuous and categorical independent variables. However, combining data
with different measuring scales can lead to problems in the interpretation of final results [47].
The common method for resolving this issue is to normalize them. Thus, the factor data
needed to be categorized and normalized in order to generate an accurate model for both
analyses. The GIS-based “Natural Breaks (Jenks)” categorization was preferred for the factors
with continuous values (elevation, slope angle, distance to roads, stream density, and NDVI) in
both analyses, except for profile curvature factor whose categorization was executed in a manually
generalized way based on its presented values. In Natural Breaks, class breaks are identified that
best group similar values and that maximize the differences between classes, according to the
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deviations about the median [48]. Moreover, by grouping the initial categories based on their
common characteristics for the regional scale analysis and preserving the initial categories for the
more detailed scale analysis, the categorized geology factor was created (Figure 2). The factor
data were then normalized in the range 0.1–0.9 by coding and ranking their various categories
based on the relative landslide density values.

(c) Creation of input database. The totals of 658 and 10,280 respectively, training points were
matched with the relative normalized category values of causal factors, through a GIS-based
spatial analysis tool, to create a database for each of the two analyses.

(d) Multicollinearity checking. It was required to check the correlation of independent variables.
The calculation of tolerance (TOL) and variance inflation factor (VIF) indexes is the most known
method for this purpose [49].

(e) Implementation of LR model. The databases derived from step (c), with the seven normalized
causal factors as independent variables, and the presence and absence of landslide (binary target
value of 0 and 1) as dependent variable were imported into the LR algorithm within the SPSS
22.2 software package.

(f) Production of final LS map. After assigning coefficients to all the independent variables,
a GIS-based weighted overlay was applied using Equation (2). Consequently, by inserting
the output into the Equation (1), the final LS map was created for each of the two analyses.
These maps were categorized into five categories (“Very Low”, “Low”, “Moderate”, “High” and
“Very High” susceptibility) based on the “Natural Breaks (Jenks)” method.

(g) Validation of the models. Validation is an essential process to know the accuracy and prediction
ability of the LS assessment models. A validation method, named as receiver operating
characteristics (ROC) analysis, has been widely applied to evaluate the overall performance
of these models [50,51]. In ROC analysis, the model’s sensitivity is shown as a function of
the specificity. The sensitivity refers to the percentage of positively predicted cases among the
positive observations, whereas specificity refers to the percentage of negatively predicted cases
among the negative observations [52]. The relationship between sensitivity and specificity is
graphically represented by the ROC curve. The ROC graph consists of two axes: y-axis represents
the sensitivity and x-axis represents the difference 1–specificity. Thus, high sensitivity indicates
a high number of correct predictions, and high specificity (low 1−specificity) indicates a low
number of incorrect predictions [53]. Among the statistics derived from ROC analysis, the area
under the curve (AUC) value also plays a significant role. With a range from 0.5 to 1.0, the higher
this value is, the more optimal is the model. In this study, the ROC analysis was applied for both
analyses using the relative validation datasets.

5. Results

In multicollinearity checking TOL and VIF were calculated. For both analyses, these indexes
were found to be greater than 0.2 for TOL and less than 10 for VIF (Table 2) revealing that there is no
multicollinearity between any of the independent variables.

Table 2. Multicollinearity checking indexes for the causal factors.

Causal Factors
Regional Scale Analysis (90 m Cell Size) More Detailed Scale Analysis (20 m Cell Size)

TOL VIF TOL VIF

Elevation 0.908 1.101 0.933 1.072
Slope angle 0.891 1.122 0.748 1.337

Profile curvature 0.969 1.032 0.998 1.002
Stream density 0.930 1.076 0.936 1.068

Distance to roads 0.914 1.094 0.675 1.482
Geology 0.930 1.075 0.757 1.321

NDVI 0.940 1.063 0.904 1.106
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The model statistics and the coefficients of independent variables (Table 3) were then estimated
for both analyses. The results of the LR model reveal that all causal factors are positively related
to the landslide occurrence for both analyses (Table 3). For regional scale analysis, geology, NDVI,
and distance to roads are found to have the strongest effect (coefficients of 8.019, 6.856 and 6.227,
respectively) on landslides than the other factors. Elevation, and profile curvature are the factors with
the weakest effect (coefficients of 2.007 and 2.505, respectively). On the contrary, for the more detailed
scale analysis, the most important causal factors are found to be elevation, stream density, and slope
angle (coefficients of 9.178, 4.796 and 4.474, respectively). Distance to roads, and NDVI are the factors
with the lowest importance (coefficients of 2.258 and 2.880, respectively).

Table 3. Coefficients derived from logistic regression (LR) model for the causal factors.

Causal Factors
Coefficients

Regional Scale Analysis (90 m Cell Size) More Detailed Scale Analysis (20 m Cell Size)

Elevation 2.007 9.178
Slope angle 5.664 4.474

Profile curvature 2.505 3.056
Stream density 4.027 4.796

Distance to roads 6.227 2.258
Geology 8.019 3.475

NDVI 6.856 2.880
(Constant) (−8.333) (−7.309)

The two different scale LS maps derived from LR model are presented in Figure 3. In the regional
scale LS map, “High” and “Very High” susceptibility categories are mainly located in the central
and western mountainous areas of the system of catchments, including large parts across Selinous
catchment (Figure 3a). According to the results of regional scale analysis for the extent of Selinous
catchment, 20.6% and 19.9%, respectively, of the region (defined from the black boundary line in the
Figure 3a) are covered by the two susceptibility categories (Figure 4a). Regarding the more detailed
scale LS map, the corresponding susceptibility categories are concentrated in a limited area of central
part of Selinous catchment (Figure 3b). Their coverage percentages in the region are 8.5% and 6.4%,
respectively (Figure 4a).
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Figure 4. Diagrams with: (a) The coverage area percentages; and (b) the percentages of landslide points
for landslide susceptibility categories (VL: Very Low, L: Low, M: Moderate, H: High, VH: Very High)
derived from the two analyses focusing on the extent of Selinous catchment.

To enable the comparability between the results of the two different analysis scales, their produced
LS maps were cross-compared to the extent of Selinous catchment (Table 4). In terms of coverage
similarities and differences between the susceptibility categories, this cross-comparison indicated that
1.8% and 2.9% of the Selinous catchment are categorized as “High” and “Very High”, respectively,
susceptibility in both maps. The percentages of coverage similarities are higher for the “Very Low” and
“Low” susceptibility categories (7.5% and 7.3%, respectively). Considering the coverage differences,
1.8% of the Selinous catchment is categorized as “High” susceptibility in the regional scale map, but as
“Very High” susceptibility in the more detailed scale map. Furthermore, 2.2% of the catchment is
characterized as “Very High” susceptibility in the regional scale map, but as “High” susceptibility in
the more detailed scale map. The highest difference percentage (equal to 9.2%) is shown between the
“Low” susceptibility category of the regional scale map, and the “Very Low” susceptibility category of
the more detailed scale map.

Table 4. Coverage percentage (%)-based cross-comparisons for the landslide susceptibility (LS)
categories between the Selinous catchment from the regional scale analysis and more detailed
scale analysis.

Selinous Catchment from Regional Scale
Analysis (90 m Cell Size)

More Detailed Scale Analysis (20 m Cell Size)

VL L M H VH

VL 7.5 4.4 3.0 1.0 0.2
L 9.2 7.3 4.6 1.8 0.7
M 7.1 5.9 3.8 1.7 1.0
H 7.2 6.0 3.9 1.8 1.8

VH 5.9 5.2 3.9 2.2 2.9
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The overlay of LS maps with the relative landslide datasets indicated that, for both analyses,
the percentage of the landslide points is gradually increased from “Very Low” to “Very High”
susceptibility categories (Figure 4b). Specifically, based on the outputs of regional scale analysis
for the extent of Selinous catchment, 22.4% and 53.9% (total of 76.3%) of the landslide points occurred
in the region (the landslide points within the black boundary line in Figure 1a) fall within “High” and
“Very High”, respectively, susceptibility categories. From these percentages, 4% and 10%, respectively,
refer to Selinous catchment. On the other hand, for the more detailed scale analysis, 18.5% and 59.7%
(total of 78.2%) of the landslide points (derived from the landslide polygons in Figure 1b) in Selinous
catchment fall within the same susceptibility categories.

For the validation of the models, the validation datasets were matched with the categories of the
two LS maps. Then, the ROC curves were drawn (Figure 5) and the various statistics were calculated
(Table 5). The AUC value equal to 0.77 from the regional scale analysis indicates a good prediction
ability of LR model for the entire area of the system of catchments. From the same scale analysis,
this value is slightly lower (AUC = 0.74) focusing on the extent of Selinous catchment. On the contrary,
the LR model is found to have very good prediction ability (AUC = 0.84) for the Selinous catchment at
the more detailed scale.
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Figure 5. Receiver operating characteristics (ROC) curves of the LR model for the regional scale
analysis (referring to both the entire system of catchments and Selinous catchment) and the more
detailed scale analysis.

Table 5. ROC analysis results of the LR model for the regional scale analysis (referring both the entire
system of catchments and Selinous catchment) and the more detailed scale analysis.

ROC Analysis Results Regional Scale Analysis
(90 m Cell Size)

Selinous Catchment from Regional
Scale Analysis (90 m Cell Size)

More Detailed Scale Analysis
(20 m Cell Size)

Number of cases 164 31 892
Number correct 115 24 679

Positive cases missed 17 4 72
Negative cases missed 32 3 141

Accuracy (%) 70.1 69.6 76.1
Sensitivity (%) 79.3 82.6 83.9
Specificity (%) 61.0 62.5 68.4

AUC value 0.77 0.74 0.84

6. Discussion

In the last decade, main aspiration of landslide research works is to solve deficiencies and
difficulties in LS assessment in order to prepare reliable maps with as high as possible accuracy.
In this study, by applying a multivariate statistical model like LR, the relationship between landslide
occurrence and several causal factors was assessed and mapped at two different scales (a regional
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and a more detailed scale). Two landslide inventories were created using different manners for the
representation of landslide occurrence. The causal factors of elevation, slope angle, profile curvature,
distance to roads, stream density, geology, and NDVI were obtained as grids of different cell size (90 m
and 20 m, respectively).

LR model employs the use of a set of predictor variables to create a mathematical model that
predicts the probability of phenomenon occurrence in a certain area. Due to its flexible, non-linear
and non-parametric nature, this model has the advantage of being able to deal with a wide range
of data, and analyze variables that are non-symmetrical and show skewed distributions, typical in
the natural environment [54]. On the other hand, the performance of LR depends on the quality
of the data collected, and the correct identification of the causal factors in a given scale. Therefore,
the analysis scale has a substantial influence on the results of the model. If the analysis is based on
small-scale datasets, its results are not typically suitable for more detail-oriented scales. In contrast,
more exhaustive datasets, often not available, are required at the more detailed scale analysis.

Firstly, the coefficients assigned to causal factors from LR model are useful to assess the importance
of factors on the presence or absence of landslides (Table 3). In the current study, the findings from the
two LS analyses are completely different. Specifically, two of the factors (distance to roads and NDVI)
with the highest importance on landsliding at the regional scale analysis belong to the factors with the
lowest importance at the more detailed scale analysis. Reversely, the most important factor (elevation)
at the more detailed scale analysis is characterized as the least important factor at the regional scale
analysis. However, the findings from the more detailed scale analysis seem to agree with the findings
of the majority of LS assessment studies using LR which indicate elevation and slope angle as the most
important predictor variables for estimating the probability of landslide occurrence [18].

For each of the two analyses, the outputs of LR model were used to represent the spatial
distribution of the estimated LS (Figure 3). Focusing on the extent of Selinous catchment, the coverage
areas of “High” and “Very High” susceptibility categories from the regional scale analysis are found to
be significantly larger than these from the more detailed scale analysis (it is also confirmed from the
relative percentages in Figure 4a). Focusing on the extent of Selinous catchment, it can be mentioned
that as a result of these immensely high coverage areas, as well as the high sensitivity and low
specificity values (Table 5), the regional scale analysis shows an overestimation of LS.

With regards to the outputs of ROC analysis, it must firstly be noted that the regional scale
analysis for the entire system of catchments gives rather satisfactory results in terms of accuracy and
prediction ability (Table 5). These results corroborate previous findings indicating that the coarser
grids can be adequate for LS assessment, as the relationships between the size of grid cells and the
predictive performance of a model depend on various factors, including the selected study area and
the quality of the source data [23].

Despite this, the optimal resolution for LS assessment must be evaluated case by case. In the
present study, it is accomplished by the comparison of results of the two analyses for the extent of
Selinous catchment. Based on the extracted accuracy and AUC values (Table 5), the more detailed scale
analysis shows much higher accuracy and prediction ability than the regional scale analysis. Thus,
the high spatial resolution (smaller grid cells) of the input datasets at the more detailed scale analysis
provides more reliable information about the landslide-prone parts of Selinous catchment. This finding
confirms the fact that the optimization of the resolution for LS assessment depends on the size of the
study area [25]. By diminishing the size of grid cells as it was required from the diminution of the size
of study area, higher landslide susceptibility mapping accuracy was achieved.

Some assumptions and limitations of the two analyses and the data used in them have to be
pointed out. Although the point data in GIS environment are described by individual features of
spatial coordinates and do not reflect the landslide affected area, they are recommended to be used
when the landslide areas cannot be drawn as polygons due to the scale of the map. On the other
hand, for the polygon data, although some studies represent as polygon only the depletion zone
of the landslides [55,56], the non-possibility of differentiation between this zone and accumulation
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zone, as well as the fact that the majority of the mapped landslides are shallow failures with small
extent and limited transport length resulted to the assumption of the existence of similar conditions
in terms of causal factors for these two zones and consequently to the representation as polygon
of the total area for each landslide. During the sampling for the creation of dependent variable,
considerable simplification of the landslide data had to be undertaken by defining a centroid point
for each landslide cell. In this way, areas identified as landslide points were underestimated in some
instances. Furthermore, the process for obtaining the training and validation datasets affects both
the performance of the model and the accuracy of its results. It is expected that the training dataset
includes a sufficient amount of data belonging to the problem domain. In contrast, the data used in
the validation dataset should be distinct from the training data. Since there is no rule of thumb for
determining the appropriate size of the datasets, its selection is a subjective affair. The selected number
and type of causal factors, as well as their classification also contribute to the accuracy of the results.
The examination of alternative choices for these parameters could lead to different findings. Moreover,
the applied model of LR estimates the mean degree of impact of causal factors, which may differ locally
in different parts of the area under investigation. In fact, it represents the relation between landslide
occurrence and causal factors for the entire area without considering the spatial non-stationarity in
this relation. Finally, it should be noted that the produced LS maps illustrate only the predicted spatial
probability, and not the temporal probability of landslides.

7. Conclusions

Based on the fact that the scale of analysis has considerable influence on the performance of a
LS model, hazardous landslide areas were mapped using the outputs of LR model at two different
scales. The results revealed that the LS assessment can be substantially affected by the scale of analysis.
Furthermore, the spatial resolution constitutes a key factor on the accuracy of LS assessment and the
optimal size of grid cells depends on the size of the study area. The promising results of the regional
scale analysis indicate that it can be safely used for large regions with limited availability of detailed
data. However, focusing on the Selinous catchment, the confirmed with higher accuracy and reliability
LS map derived from the more detailed scale analysis could constitute an essential base in the primary
stage of landslide risk management and mitigation for the region. Specifically, the produced map could
aid the local authorities, decision makers and planners to identify land uses and infrastructures subject
to damage by future landslides and choose suitable locations for the implementation of developments.
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