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Abstract: This laboratory study aimed at investigating the mean and turbulent characteristics of a
densely vegetated flow by testing four different submergence ratios. The channel bed was covered by
a uniform array of aligned metallic cylinders modeling rigid submerged vegetation. Instantaneous
velocities, acquired with a three-component acoustic Doppler velocimeter (ADV), were used to
analyze the mean and turbulent flow structure. The heterogeneity of the flow field was described
by the distributions of mean velocities, turbulent intensities, skewness, kurtosis, Reynolds stresses,
and Eulerian integral scales. The exchange processes at the flow–vegetation interface were explored
by applying the turbulence triangle technique, a far less common technique for vegetated flows based
on the invariant maps of the anisotropic Reynolds stress tensor.
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1. Introduction

Aquatic and riparian vegetation is a fundamental feature of riverine systems, and its presence
deeply affects the hydraulic resistance, mass and momentum transport, and turbulent flow
structure [1,2] with a variety of ecological and physical implications [3,4]. The presence of a submerged
macro-roughness represented by a vegetative obstruction deeply alters the mean and turbulent
structure of the flow with implications for mass and momentum exchange across the flow–vegetation
interface. The hydrodynamic structure of the flow over a submerged canopy was investigated with
reference to two main vegetation models: (1) rigid vegetation, in which the vegetative obstruction
is generally represented by an array of rigid cylinders or prismatic elements [5–7], and (2) flexible
vegetation, generally simulated by blade-shaped vegetation [8,9].

The rigid cylinder model is not able to reproduce a variety of flow-influencing mechanisms
exhibited by natural vegetation, generally presenting a wide range of different biomechanical
properties [10] and velocity-dependent drag characteristics [11,12]. Nevertheless, rigid cylinder models
can be considered qualitatively effective for simulating the cross-section scale effects on the turbulence
structure and describing morphodynamic processes of channels with vegetated floodplains [13].
Because of the practical importance of modeling turbulence in natural watercourses and coastal
wetlands, an increasing interest in describing the turbulent flow structure in vegetated flows [14–16],
highly rough beds, and obstructed flows [17] is noticeable.

The flow over rigid submerged vegetation has been widely investigated in order to assess
the effects of vegetation (density and submergence) on the flow structure and the implications for
the hydraulic resistance, turbulent structures, mixing processes, and sediment transport [5,6,18–21].
A distinctive feature of such vegetated shear flows is represented by the anisotropy of Reynolds stresses,
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which reflects, to a large extent, the presence of organized motions. Indeed, the anisotropic Reynolds
stress component is the only part of the total stress responsible for the momentum transport [22],
and, therefore, its study is crucial for the understanding and modeling of turbulence in vegetated flows.

The anisotropy pattern within the flow domain can be investigated using the technique of the
anisotropy invariants proposed by Lumley and Newman [23]. This technique, fairly less common
for the analysis of vegetated flows, allows for the characterization of the spatial distribution of the
anisotropy degree and nature. Only few examples of the application of this methodology are available
in the literature, and these mainly refer to numerical and experimental analyses of flows over highly
rough beds [24,25].

In this study, the turbulent structure of the flow over a submerged array of rigid cylinders was
experimentally investigated by coupling the traditional approach based on the spatial distributions
of velocity statistics and spectral analysis [5,6,26] with a new methodology adopted for providing
the overall description of the turbulence anisotropy, represented by the turbulence triangles [27].
Specifically, the effects of the variability of the submergence, that is, the ratio between the uniform
flow depth and the cylinder’s height, on the mean velocity profiles, the distributions of higher-order
velocity statistics, quadrant analysis, and the distribution of integral time and length scales were
analyzed with reference to the anisotropy pattern resulting from the invariant maps.

2. Materials and Methods

2.1. Laboratory Flume

The experiments were carried out in an 8 m long, 0.4 m wide, and 0.4 m high Plexiglas-walled
recirculating flume in the Laboratory of Hydraulics and Hydraulic Structures at the University of
Naples Federico II (Figure 1a). The channel was supplied by a 4.5 m3 tank into which water was led
through the water supply system of the laboratory from a water tower. Specifically, in order to stabilize
flow rates in the channel, water was not directly pumped into the flume but, from the recirculating
system reservoir, was led to a water tower with a pumping station.

The discharge was measured by a magnetic flow meter (to an accuracy of ±0.1 L/s) installed on
the feeding pipeline of the channel. The discharge ranged up to 30 L/s. The channel slope was set to
1%. At the inlet section, a parabolic transition from the feeding tank to the experimental channel was
placed in order to reduce the disturbance at the inlet and to damp the related turbulence.
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Figure 1. (a) Experimental facility. The laboratory flume was 8 m long with a 0.4 m wide and 0.4 m 
deep rectangular cross-section. The bed of the flume was uniformly covered by an array of rigid 
cylinders. (b) Geometry of the array of aligned cylinders and specification of diameter (d), spacing (ܮ௫ 
and ܮ௬), and cylinder height (k). 

All the tests were carried out under uniform flow conditions with different cylinder 
submergences. In the range of considered flow rates, a uniform flow reach was identified by 
analyzing the backwater profiles, experimentally determined using a gauging needle (with an 
accuracy of 0.1 mm). For all the test runs, uniform flow conditions were observed to be restored at 

Figure 1. (a) Experimental facility. The laboratory flume was 8 m long with a 0.4 m wide and 0.4 m deep
rectangular cross-section. The bed of the flume was uniformly covered by an array of rigid cylinders.
(b) Geometry of the array of aligned cylinders and specification of diameter (d), spacing (Lx and Ly),
and cylinder height (k).

All the tests were carried out under uniform flow conditions with different cylinder submergences.
In the range of considered flow rates, a uniform flow reach was identified by analyzing the backwater
profiles, experimentally determined using a gauging needle (with an accuracy of 0.1 mm). For all the
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test runs, uniform flow conditions were observed to be restored at approximately 4.5 m from the outlet
section. Measurements were taken at 2.5 m from the channel inlet, within the uniform flow section of
the flume and sufficiently downstream from the inlet.

2.2. Rigid Vegetation Model

This experimental study was performed by considering a uniformly vegetated channel bed in
which metallic cylinders were used to simulate rigid, submerged vegetation (Figure 1b). The 45 mm
long rods of 4 mm diameter, installed in holes bored into the Plexiglas bed panels, were arranged in an
aligned pattern with a constant density all over the channel bed. The spacing between cylinders, in the
streamwise Lx and spanwise Ly directions, was equal to 25 mm (Figure 1b). Consequently, the number
of cylinders per unit bed area n was equal to 1600 m−2. The vegetation density was described by three
other parameters:

• the frontal area per canopy volume a = d/
(

LxLy
)
, equal to 6.4 m−1;

• the frontal area per bed area λ, also known as the density roughness, computable as ak for
vertically uniform vegetation, and equal to 0.288;

• the solid volume fraction occupied by the canopy elements φ, evaluable as (π/4)ad for cylindrical
elements and equal to 0.020.

The considered vegetation geometry and density, typical of dense canopies [28], were comparable
to those commonly exhibited by aquatic submerged vegetation, as reported in Table 1.

Table 1. Comparison between the current vegetation model and aquatic vegetation (from [28]).

Vegetation Type d (mm) φ (—) a (m−1)

Current vegetation model 4 0.02 6.4
Marsh grasses 1–10 0.001–0.01 1–7

Mangroves 40–90 ≤0.45 ≤2
Seagrasses — 0.01–0.1 1–100

2.3. Test Cases and Velocity Measurements

The effects of the submergence ratio on the flow structure were experimentally investigated for
the hydraulic conditions reported in Table 2. Specifically, four different submergence ratios were
considered: 2.4, 2.8, 3.1, and 3.4. For each condition, the canopy edge velocity (Uk), the measured
friction velocity at the canopy edge (U∗ =

√
−u′w′), and the bulk velocity (Ub = Q/Bh) were evaluated.

Furthermore, the relevant Reynolds numbers (the roughness Rek = kU∗/ν, flow Reh = hUb/ν,
and vegetation element Red = dU∗/ν), and the flow Froude number are indicated (Table 2).

Table 2. Details of experimental conditions.

Q
(L/s)

h
(cm)

h/k
(—)

Uk
(cm/s)

U∗

(cm/s)
Ub

(cm/s)
Rek
(—)

Reh
(—)

Red
(—)

Fr
(—)

15 10.9 2.4 29.2 5.4 34.56 13,121 37,500 218 0.34
20 12.5 2.8 32.3 6.3 40.00 14,517 50,000 254 0.36
25 13.9 3.1 35.4 7.2 44.96 15,916 62,500 290 0.39
30 15.1 3.4 37.2 7.9 49.54 16,747 75,000 316 0.41

Under the considered conditions of shallow submerged canopies [28,29], with h/k < 5,
both turbulent stress and potential gradients drive the flow within the canopy [30].

Instantaneous velocity measurements were performed with a SonTek 16 MHz MicroADV (SonTek,
San Diego, CA, USA), a three-axis acoustic Doppler velocimeter (ADV) with a down-looking probe.
In order to describe the turbulence structure within and above the canopy, the maximum available
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sampling frequency of the instrument was adopted, that is, 50 Hz. In order to achieve well-converging
higher-order moments, a sample size of more than 50,000 values was assumed [31].

ADV data were filtered by assuming a threshold correlation and signal-to-noise-ratio level of 70%
and 30 dB, respectively. Finally, data were de-spiked using the phase-space threshold method [32]
as modified by Wahl [33]. Velocity measurements were performed in the uniform flow reach,
along a vertical line in the channel midline (Figure 2a,b). The sampling volume (SV) was approximately
cylindrical with a 4 mm diameter and 4.5 mm height (Figure 2a); therefore, the distances between each
acquisition point were selected to be equal to 10 mm, in order to avoid overlapping the SVs of each
measurement point.
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Figure 2. (a) Position of measurement stations and geometry of sampling volume. (b) Location of
inspected vertical within the cylinder array.

Considering the distance between the center of the SV and the acoustic transmitter of the probe
(50 mm), the flow was investigated up to 50 mm from the water surface (Figure 2a). The orientation
of the probe was defined to identify the streamwise axis of the channel with the x-axis of the probe;
y is the spanwise direction (positive leftwards), and z is the vertical direction (positive upwards).
The good alignment and the verticality of the instrument were addressed with a laser cross-level and a
three-dimensional (3D) bubble level.

3. Results and Discussion

3.1. Mean Velocity Profiles

In Figure 3, the mean velocity profiles of U, V, and W (for x, y, and z directions, respectively) are
shown. The velocity and distance from the bed were made dimensionless with the streamwise mean
velocity at the canopy top and the vegetation height, respectively.Geosciences 2018, 8, x FOR PEER REVIEW  5 of 16 
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The selected scaling velocity parameters and the resulting velocity profiles shown in Figure 3
were consistent with the results of previous studies [5,6,34,35]. The discontinuity in drag at the
vegetation top modified the longitudinal velocity profile, characterized by an inflection point at the top
of the canopy, resembling a canonical mixing layer [28]. Specifically, the drag exerted by the canopy
decelerated the flow in the vegetated layer; as firstly addressed by Raupach et al. [34], this effect
dominates the transfer of momentum across the flow–vegetation interface. This effect, slightly more
pronounced for higher values of h/k, is characteristic of dense canopies and, specifically, canopies
with ak >≈ 0.23 [28]. The large interfacial coherent structures, also called canopy-scale vortices,
occupy the surface layer and partly penetrate the vegetation layer, depending on the canopy density.
Nepf et al. [35] defined a parameter describing the scaling for the penetration depth (δe):

δe =
0.23± 0.06

CDa
, (1)

where CD is the drag coefficient of vegetation elements. In this study, for CD = 1, δe varied between 27
and 45 mm and δe/k varied between 0.6 and 1.

The turbulent flow in the investigated region of the channel was fully developed, and, considering
that the leading edge of the canopy was located approximately 2.5 m upstream from the measurement
section, the canopy-scale vortices and the penetration depth reached a stable condition.

3.2. Turbulent Intensities

In Figure 4, the turbulent intensities in the three directions, defined as the root-mean-square
values for the three velocity components, made dimensionless with the measured friction velocity at
the canopy top, are shown.

The profiles showed a similar trend, collapsing together along the same curve. The maximum
longitudinal turbulent intensities occurred at the top and directly above the canopy. The turbulent
intensity decreased within the vegetation layer and towards the free surface. Indeed, the vegetation
damped the turbulence, and this effect was observed to be slightly more pronounced for higher
submergence ratios. At the canopy top, the normalized vertical fluctuating velocity component
was ≈1 for each submergence. For dense canopies, the characteristic value is about 1.1, which is
typical for mixing layers, in agreement with Raupach et al. [34] and Poggi et al. [5]. Larger values,
up to 1.3, are typical for sparse canopies. At the canopy top, the normalized streamwise and vertical
fluctuating velocity components attained values in agreement with Raupach et al. [34], Poggi et al. [5],
and Nezu et al. [6] for dense canopies.
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3.3. Skewness and Kurtosis

The skewness of the velocity fluctuations is shown in Figure 5. A non-zero skewness indicates an
asymmetric probability density function of the considered variable, which means that larger excursions
in one direction were more probable than in the other direction, depending on the sign of the statistics.
The profiles of Figure 5 describe a clear trend for the skewness in u to take positive values inside the
canopy and negative values outside and, complementarily, for the skewness in w to take negative
values inside the canopy and positive values outside. This trend indicates the dominant role of sweep
events inside the cylinder array and the ejection events above the canopy, in agreement with the
results of other experimental analyses [5,6,14]. The intensity of these effects, as confirmed by quadrant
analysis, increased with the submergence ratio because of the increasing momentum transfer between
the vegetated and non-vegetated zones. A normal distribution could be assumed for the fluctuations
in the spanwise direction.
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The kurtosis profiles evaluated for the three velocity fluctuation components, shown in Figure 6,
consistent with the results of Poggi et al. [5] for dense canopies, tended to assume higher values in
the regions immediately around the canopy top. This effect, as confirmed by the quadrant analysis
illustrated in the next section, confirmed the dominant role of sweep and ejection events for the
Reynolds shear-stress production and the momentum transport at the canopy top.
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Within the canopy, Kuv was observed to attain values of >1, consistent with the lateral fluctuations
related to the von Karman vortex shedding process induced by the presence of cylinders.

3.4. Reynolds Shear Stress

In Figure 7, the Reynolds shear stresses −u′ iu′ j, normalized by the squared friction velocity at the
canopy top, are plotted along the inspected vertical for the four different submergences. The Reynolds
stress −u′w′ profile attained a peak at the canopy top (z/k = 1) and exhibited a sharp decrease within
the canopy. This effect, as observed by other authors [6,30], was due to the presence of the canopy
elements, which inhibited the momentum transfer between the surface layer and the underlying
vegetated layer.
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The penetration depth (Table 3), estimated as the elevation at which the Reynolds stress −u′w′

decays to 10% of its maximum value [30], was evaluated from Figure 7 for the different submergence
ratios, showing a good agreement with the estimation of the scaling of Equation 1. Depending only on
the vegetation density, approximately constant values were observed for all the test runs.

Table 3. Penetration depth.

h/k (—) δe (mm)

2.4 35
2.8 33
3.1 34
3.4 33

As the submergence increased, the shape of the normalized xy shear-stress profile changed,
exhibiting higher values. These effects were ascribable to the growing effects of the secondary currents
inside the experimental channel [6], considering that the aspect ratio of the channel (B/(h− k)) ranged
from 3.8 to 6.2.

3.5. Quadrant Analysis

The trend emerging from the skewness and kurtosis distributions was confirmed by the results of
the quadrant analysis. This simple conditional-sampling technique can provide useful information for
the interpretation and the detection of organized coherent structures in the flow, allowing the nature of
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contributions to the Reynolds stress u′w′ from the different events to be understood [36]. In quadrant
analysis [36–38], the velocity fluctuation components are plotted on a u′ − w′ plane. The plane is
divided into four quadrants; each one is characteristic of a different event:

• quadrant 1: outward interaction (u′ > 0, w′ > 0);
• quadrant 2: ejection (u′ < 0, w′ > 0);
• quadrant 3: inward interaction (u′ < 0, w′ < 0);
• quadrant 4: sweep (u′ > 0, w′ < 0).

In order to highlight the contribution of extreme events to the overall Reynolds stress, a hyperbolic
threshold was introduced, given by the expression |u′w′| = Hu′rmsw′rms [5,6,36], which defines, on the
u′ − w′ plane, a hyperbolic hole; the parameter H, the size of the hole, was assumed to be equal to
2 [36]. At any point in the flow domain, the total contribution of each quadrant to the Reynolds stress
can be calculated as follows [18]:

Si =
1

u′w′
lim

T→∞

1
T

∫ T

0
u′(t)w′(t)Iidt, (2)

where the subscript i refers to the ith quadrant and Ii is a dummy variable equal to 1 if u′(t)w′(t)
belongs to the ith quadrant and equal to 0 otherwise. Clearly, S1 + S2 + S3 + S4 = 1.

The contribution of the extreme events of each quadrant, instead, can be calculated as follows [36]:

Si,H =
1

u′w′
lim

T→∞

1
T

∫ T

0
u′(t)w′(t)Ii,Hdt, (3)

where H is the threshold level defining the size of the hyperbolic hole region and the subscript i refers
to the ith quadrant. Ii,H is a dummy variable equal to 1 if u′(t)w′(t) belongs to the ith quadrant and
|u′(t)w′(t)| > Hu′rmsw′rms and equal to 0 otherwise.

In Figure 8, the contribution of each quadrant to the Reynolds stress is plotted as a function of
the normalized distance from the bed. The contributions of the different events were firstly evaluated
considering H equal to 0 and secondly by considering H equal to 2 (Figure 8), to make more evident
the role played by sweep and ejection events in the Reynolds stress production.
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(�) and circles ( ). The different colors refer to the four different considered conditions: blue: 30 L/s;
green: 25 L/s; yellow: 20 L/s; red: 15 L/s.
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The quadrant analysis confirmed the central role of sweep within the canopy and,
complementarily, the dominant role of ejection events in the region above the canopy, only slightly
affected by the submergence. Inward and outward interaction event contributions were almost equal
and negligible. At z/k ≈ 1.5, the contributions of sweep and ejection were approximately equal.

3.6. Turbulence Anisotropy

In order to provide an overall description of turbulence in the flow over the rigid
vegetated bed, mean time invariant analyses were performed using the turbulence triangle [23,27],
an anisotropy-invariant map. The anisotropy of turbulence is described by the Reynolds stress
anisotropy tensor:

aij = u′ iu′ j −
1
3

u′ku′kδij. (4)

The non-dimensional form of the anisotropy tensor, recognized in the trace of the Reynolds stress
tensor as twice the turbulence kinetic energy (K = 1

2 u′ iu′ i), is given by

bij =
u′ iu′ j

2K
− 1

3
δij. (5)

The invariants of bij can quantify the different states of turbulence and the relative strength of the
fluctuating velocity components, that is, the componentality of the turbulence field [39].

Anisotropy-invariant maps are two-dimensional (2D) domains based on invariant properties of bij.
Specifically, in the turbulence triangles, the axis variables are linear combinations of the Reynolds stress
anisotropy eigenvalues λi; the map defines the domain of all possible turbulent flows. Each boundary
of the map is characteristic of a particular turbulence state (vertices are related to one-dimensional
(1D), 2D, and 3D turbulence; edges are related to specific turbulent processes: axisymmetric expansion,
axisymmetric contraction, and two-component turbulence). More details on linear and non-linear
invariable maps and the shape and meaning of boundaries can be found in [40].

In Figure 9, the structure of the flow over the rigid vegetated bed is described through a turbulence
triangle. Each point has coordinates η =

√
I I/3 and ξ = 3

√
I I I/2 [40], where I I and I I I are the

quadratic and cubic invariants of the Reynolds stress anisotropic tensor, respectively.
The patterns defined by the points of the invariant map, in the range of the considered Reynolds

numbers and submergences, were clear and approximately equal for all the considered conditions.
Moving from the bed toward the water surface, the points of the invariants of the Reynolds

stress tensor described a peculiar path. Near the channel bed, at z/k approximately equal to 0.1,
the turbulence approached a 2D state. Moving upwards, the turbulence reached, at the top of the
canopy (z/k = 1), a quasi-1D state: the fluctuation in the streamwise direction was dominant because
of the presence of the large-scale coherent structures, and the shape of the turbulence was cigar-like.
Specifically, for all the investigated conditions, the 1D characteristic and the degree of anisotropy were
maximums at z/k = 1. Above the canopy (z/k > 1), the path described by the points of the invariants
moved through the axisymmetric expansion tending to an isotropic state. Because of the dimension of
the ADV SV, for each submergence, the last measurement point was 5 cm from the surface (for the
highest flow condition, the last point was at z/k equal to 2.1; the water surface was at z/k equal to 3.4);
therefore, the evolution of the path to the water surface is not shown. Nevertheless, because of the
presence of the water surface, which inhibits the vertical fluctuations, the turbulence structure was
expected to become 2D [25].

The 2D state of the turbulence inside the canopy, and, specifically, in the lower part of the vegetated
layer, indicated the growing importance of the lateral fluctuations due to the von Karman vortex
shedding process triggered by the cylinder array, as shown also by the plots of Figure 6. The onset of
this process was ensured by the local high stem Reynolds number Ud/υ ≈ 850 > 150–200 [41].

In Figure 10, the dimensionless power density spectra of the lateral velocity fluctuations, evaluated
at z/k = 0.1 for all the investigated conditions, are shown together. The spectral density was normalized
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by dividing by the product of the root-mean-square level of the local longitudinal velocity and the
stem diameter. The frequency is given in terms of Strouhal number (St = f d/U). A concentration of
energy in the range of the Strouhal number between 0.2 and 0.1 was observed, in agreement with the
frequency of the vortex shedding process observed by Poggi et al. [5] and Zong et al. [42] for cylinder
arrays. The von Karman vortex shedding peak in the power density spectra was only slightly visible
because of the deep penetration of the canopy-scale structures within the array (Table 3).Geosciences 2018, 8, x FOR PEER REVIEW  10 of 16 
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In order to highlight the effects of the rigid cylinders on the turbulent structure, a comparison
between the anisotropy-invariant maps of the vegetated bed (i.e., Figure 9d) and the correspondent
maps from LES applied to an open channel flow over a smooth bed at Re = 13,680 [25] is shown in
Figure 11.
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Although the two plots refer to flows with different Reynolds numbers (13,680 and 75,000 for the
smooth and uniformly vegetated beds, respectively), the comparison allows the main differences in
terms of the turbulence anisotropy pattern to be seen. While in the viscous sublayer, directly above the
flume bed, a two-component isotropic turbulence was expected for both the conditions; at z/k = 0.1
(z/h ≈ 0.04) the behavior was different and the turbulence in the vegetated case presented a 2D
structure. On the contrary, in the smooth bed, as expected for a canonical boundary layer, the turbulence
was highly anisotropic and 1D. Moving upwards, the evolution of the pattern was still different,
and, while for the vegetated bed the anisotropy progressively increased and a 1D characteristic was
observed, for the smooth bed, the turbulence gradually returned to isotropy via an axisymmetric
expansion process. For the vegetated bed, turbulence at z/k≈ 2 (z/h≈ 0.6) still presented a high degree
of anisotropy and a cigar-like shape, because this area of the flow was dominated by the canopy-scale
coherent structures. For the smooth bed, the turbulence became quasi-isotropic at z/h ≈ 0.7 and then
presented, approaching the free surface, a tendency toward a 2D structure.

3.7. Integral Scales

In order to investigate the time and spatial extent of the coherent structures dominating the
flow, the calculation of Eulerian integral scales was performed. Specifically, an integral time scale is
a measure of the memory effect in the flow field of the persistence of a large-scale eddy at a fixed
Eulerian point. In Figure 12a, integral time scales evaluated by means of Equation (6) for the three
directions along the inspected vertical and for the different considered conditions are shown.

TE,i =
∫ τ1/e

0
R(τ)dτ =

∫ τ1/e

0

u′ i(t)u′ i(t + τ)

u′ iu′ i
dτ (6)

The integration domain for the determination of the integral time scale ranged from zero up to
the value at which the autocorrelation function fell to 1/e [43,44] so as to define an integration domain
independent of the shape of the autocorrelation function [45]. Large eddies persist for a long time and
are advected slowly; thus the integral scale was large.

The Eulerian integral length scales could be estimated from the single-point integral time scales
by applying Taylor’s frozen-turbulence hypothesis and assuming the mean local longitudinal velocity
U as the convection velocity Uc of the mean eddies using the equation LE,i = UTE,i.
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The integral length scales evaluated for the four different conditions are shown in Figure 12b.
The results confirmed the interpretation of the flow structure drawn from the anisotropy analysis.
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length scales.

The turbulence exhibited a quasi-2D structure near the channel bed, within the vegetation layer,
as a result of the dominant effects of the stem-scale turbulence and von Karman vortices. Moving
toward the vegetation top, while LE,y tended to decrease, LE,x and LE,z showed a progressively
increasing trend, confirming the axisymmetric expansion process shown by the invariant maps.
Specifically, at the canopy top, LE,x and LE,z were approximately equal to k and 0.4k, showing that, in
the upper vegetated layer, the dominant eddy size was in the order of k, consistent with the results of
Raupach et al. [34] and Nezu et al. [6]. Over the canopy, the three integral length scales became larger;
in this region the flow was dominated by the canopy-scale turbulence.

In Figure 13, the good fit between the integral length scales relative to runs 3 and 4 and the results
of Nezu et al. for dense canopies [6] are shown.
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length scale profile along the vertical direction for the x component; (b) integral length scale profile
along the vertical direction for the z component. In the plot, only the profiles evaluated for the two
highest submergence conditions are reported.

In comparison with terrestrial canopy, aquatic canopy is depressed by the free surface, while,
on the contrary, terrestrial canopy is unconfined. This result confirms how, in aquatic canopy,
eddies may be influenced by the submergence.

4. Conclusions

The results of this experimental analysis provided an exhaustive picture of the effects of increasing
submergence on the mean and turbulent structure of the flow over an array of submerged rigid
cylinders modeling dense vegetation. Specifically, rigid cylinders were arranged in an aligned pattern,
modeling submerged rigid vegetation. Different submergence ratios were investigated.

A variation of approximately 50% of h/k was observed not to significantly affect the flow structure,
indicating that, in the range of the tested submergences, the stem density played a major role in the
hydrodynamic structure of the flow, as reported by Nezu et al. and Poggi et al. [5,6].

The mean velocity profiles presented a characteristic inflected shape because of the different flow
velocities within and above the vegetation; this was slightly more pronounced for the higher values
of submergence. This effect, related to the high density of the cylinder array, was the main feature of
the considered obstructed flow, and the consequent Kelvin–Helmholtz-type instability dominated the
momentum exchange across the vegetated interface.

The higher-order moments and the quadrant analysis allowed the Reynolds stress production
process and distribution throughout the water depth to be characterized, confirming the dominant role
of sweep and ejection bursting events. The maximum Reynolds stress was observed at the top of the
canopy. A sudden decay of τzx within the vegetation, due to the significant contribution of the drag
force to the momentum balance, was observed. The integral length scales showed a trend characteristic
of dense aquatic canopy, allowing eddies of the flow field to be characterized.

The invariant maps, generally used for verification of numerical model results and here applied
for the interpretation of the componentality of the turbulence in the vegetated flow, gave very
interesting results, showing their usefulness in interpreting the turbulent structure of vegetated
flows. In particular, the flow structure picture emerging from the anisotropy analysis was consistent
with the traditional statistical analysis of turbulence, providing a complete description of the flow
field. Specifically, the method can be easily transferred to more complex vegetation models and
configurations and, together with traditional analysis, can contribute to the understanding of
turbulence in vegetated contexts.
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