
geosciences

Article

A Javascript GIS Platform Based on Invocable
Geospatial Web Services

Konstantinos Evangelidis * ID and Theofilos Papadopoulos

Technological Educational Institute of Central Macedonia, Terma Magnesias, 62124, Serres, Greece;
priestont@gmail.com
* Correspondence: kevan70@gmail.com; Tel.: +30-694-727-8769

Received: 28 January 2018; Accepted: 17 April 2018; Published: 20 April 2018
����������
�������

Abstract: Semantic Web technologies are being increasingly adopted by the geospatial community
during last decade through the utilization of open standards for expressing and serving geospatial
data. This was also dramatically assisted by the ever-increasing access and usage of geographic
mapping and location-based services via smart devices in people’s daily activities. In this paper,
we explore the developmental framework of a pure JavaScript client-side GIS platform exclusively
based on invocable geospatial Web services. We also extend JavaScript utilization on the server
side by deploying a node server acting as a bridge between open source WPS libraries and popular
geoprocessing engines. The vehicle for such an exploration is a cross platform Web browser capable
of interpreting JavaScript commands to achieve interaction with geospatial providers. The tool is
a generic Web interface providing capabilities of acquiring spatial datasets, composing layouts and
applying geospatial processes. In an ideal form the end-user will have to identify those services,
which satisfy a geo-related need and put them in the appropriate row. The final output may act
as a potential collector of freely available geospatial web services. Its server-side components may
exploit geospatial processing suppliers composing that way a light-weight fully transparent open
Web GIS platform.

Keywords: open source GIS; geospatial Web services; geospatial Web semantics; Web GIS; Node.js;
JavaScript; OGC services

1. Introduction

Geospatial functions range from simple image map acquisition to a complex geoprocess over
a Spatial Data Infrastructure (SDI). Nowadays, a wide range of users exploit geospatial functions in
their routine activities. Such users are practitioners, scientists and researchers involved in geosciences
and engineering disciplines, as well as individuals employing Geographic Information Systems
(GIS) [1,2]. In addition, today we face the ever-increasing access and usage of geographic mapping
and location-based services via smart devices in people’s daily activities [3]. For this reason, emerging
computing paradigms show high penetration rates in geospatial developments, with the latest and yet
most significant one the Cloud computing [4,5]. As a result, existing systems are transformed from
proprietary desktop GIS software applications of the early 80′s to free and open source interoperable
Cloud GIS solutions built upon geospatial Web services (GWS) [6].

GWSs and service-oriented architecture (SOA) are the key components to achieve interoperability
in Web GIS applications. GWSs allow self-contained geospatial functions to operate over the Web while
SOA facilitates interoperability between these GWSs by establishing communication and data exchange
for requesters and providers in a uniform way [7,8]. The dominant GWS standards adopted by the
geospatial community are those introduced by the Open Geospatial Consortium (OGC) including
the Web map service (WMS) to visualize [9], the Web feature service (WFS) and the Web coverage

Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139 www.mdpi.com/journal/geosciences

http://www.mdpi.com/journal/geosciences
http://www.mdpi.com
https://orcid.org/0000-0002-9595-1268
http://www.mdpi.com/2076-3263/8/4/139?type=check_update&version=1
http://www.mdpi.com/journal/geosciences
http://dx.doi.org/10.3390/geosciences8040139

Geosciences 2018, 8, 139 2 of 15

service (WCS) to acquire [10,11], the catalogue service for the Web (CSW) to discover [12] and also the
emerging Web processing service (WPS) to process, spatial data [13].

In this respect, numerous research projects and business solutions rely on the above standards to
achieve geospatial data interoperability between custom applications and to satisfy project-specific
needs [14,15]. Furthermore, in European Union (EU) level, project actions have to be aligned with
regulation No. 1312/2014 [16], implementing INSPIRE directive [17] as regards interoperability of
spatial data services. According to this, all geospatial data have to be served under invocable spatial
data services. As a result, most applications are nowadays based on Web services, use data provided
over the Web or generated by users [18] and are executed on cross-platform browser-based interfaces.
In the geospatial community, GWSs and XML-based open geospatial data formats, such as Geography
MarkUp Language (GML), have become basic components of desktop and Web GIS software solutions.
For example, the ESRI’s ArcGIS commercial product supports WMS connections through its popular
‘Add data’ interface [19]. QGIS open solution also supports connection to GWSs through appropriate
plug-ins [20]. For individual Web-based applications it is possible to develop a custom GIS capability
through open JavaScript libraries such as for example Openlayers (http://openlayers.org/) and
GeoExt (https://geoext.github.io/geoext2) and have it executed on the client-side without the need of
installing anything but an updated Web browser.

The development of research and commercial projects that utilize open or proprietary Web services
and spatial application frameworks is rapidly growing. [21–28]. Several other Cloud GIS solutions
are served as software, as platforms, as infrastructure under the popular service models, SaaS, PaaS
and IaaS respectively [4]. A separate and special reference has to be made for Boundless Server [29]
very recently announced: a reliable server solution for publishing a range of data and workflows over
the web. However, an exclusively service-based application composed of open interoperable Web
services could be an effective case. The developer would have to identify the appropriate GWSs and
bind them between each-other in the correct order, same way as it happens in the well-known “ArcGIS
model builder” [30]. The final outcome would be transparent to the user Web interface consisting of
an interconnected set of Web services. This case may be extended to a Web GIS platform that gathers
available GWSs and acts as a platform for building GIS projects.

In this paper, we explore the developmental framework for exploiting invocable GWSs,
which satisfy routine geospatial needs. A comprehensive and sophisticated implementation might
include a Web interface allowing the end user to select between task descriptions composing a GIS
project. We demonstrate (http://gws.prieston.tech/) such an implementation which is exclusively
based on open standards and services, a light-weight client-side pure JavaScript platform that performs:
(a) data discovery from public data providers; (b) layer-based data view; (c) data selection by attributes;
(d) feature data acquisition and preview and (e) simple geoprocessing tasks. For the last ones, we also
explore the applicability of JavaScript, for implementing geoprocesses. Prior to this, the paper explores
the effects of semantic Web technologies on fundamental geospatial elements and discusses critical
architectural and development issues.

2. The Influence of Geospatial Web Semantics on GIS

The major components and principal operations and characteristics of an interface implemented
according to geospatial Web semantics technologies, are identified and reviewed throughout GIS
timeline from desktop and proprietary Web applications to open service-based GIS systems in the
Cloud. The historical point that generally represents the geospatial evolution is when Web semantics
technology standards were adopted by the geospatial community [31]. The three major areas briefly
discussed in the following are (a) Formats, (b) Interoperability and (c) Automations.

http://openlayers.org/
https://geoext.github.io/geoext2
http://gws.prieston.tech/

Geosciences 2018, 8, 139 3 of 15

2.1. Geospatial Data Formats

2.1.1. Vector Data

Vector data are considered the dominant component of a GIS System, holding the critical
properties of the spatial entities that they represent such as their shape and spatial representation and
topology. Traditionally, vector data were handled by geographers and GIS experts as the valuable form
of spatial data, beyond others, for two reasons: their independence from scale and the capability of
associating on them, unlimited amount of descriptive information. In addition, vector data production
is expensive and time consuming since they are obtained by digitizing map images or as a result of
GPS field data collection.

Various forms of vector data were adopted throughout GIS timeline from coverage and shapefile
to proprietary and open geographic database formats. Today spatial coordinates of the vertices
composing a vector graphic may be easily modelled through XML-based open formats (KML, GML,
SVG) and transferred through OGC-WFS service requests.

2.1.2. Raster Data

Traditionally, raster data in the form of scanned maps (gif, jpeg, tiff etc.) were used as the
base for producing vector data through digitization tasks. Therefore, the more detailed and of high
resolution, a raster was the more analytical and precise was the digitization process. As a result, raster
data were usually heavy-sized and their management in a desktop GIS environment required high
efficiency computer hardware resources. Servicing maps and satellite images through static Web
pages or through raster data repositories were also tasks dependent to hardware efficiency including
internet infrastructures.

When the first map servers appeared, raster data were being served over the Web as textures of the
ground surface, mainly satisfying navigation experience in earth browsers. Today image compression
and tiled rendering techniques along with extremely high wireless internet connections make it
possible to employ high quality raster data as the background for location-based services provided to
smart device users. Raster data used as cartographic background are transferred through OGC-WMS
service requests. Other raster formats like GeoTIFF that are used for coverage purposes (e.g., elevation
or results from geoprocessing) are served via OGC WCS standard.

2.1.3. Descriptive Data

A fundamental structural characteristic of a GIS is the capability of associating the spatial features
with descriptive data related to them. That way it is possible to perform sophisticated cartographic
representations for decision and policy makers as well as to execute complex processes over descriptive
data and produce valuable geoinformation. Descriptive data were normally easy to manage throughout
GIS timeline because of the simultaneous emergence of database technologies. The external data
sources to be associated with spatial features included a wide range of alternatives from simple
comma separated values and single database files to relational geographic databases installed in
remote servers.

Today the Web of Data and associated semantic technologies, support interoperability and
standard formats to model and transfer descriptive data. ISO 191xx series and RDF are XML encoded
data standards employed in the geospatial web [32].

2.2. Geospatial Interoperability

Geospatial interoperability became an issue, when the need for data communication and exchange
between diverse geospatial stakeholders became a necessity. Till early ’90s, GIS vendors used their
own proprietary formats, however they agreed to common standards and formats and they established
connections to commonly shared repositories. As the technologies that developed by World Wide

Geosciences 2018, 8, 139 4 of 15

Web Consortium (W3C) matured, OGC introduced appropriate spatial related technologies to achieve
syntactical and semantic interoperability.

2.2.1. Syntactical Interoperability

Syntactic interoperability assures data transfer between connected systems through Web services. In the
geospatial community, it is currently achieved through OGC Services. For example, the WFS/GetFeatures
request provides the standard interface and message types for Web services transferring features through
XML. In the past, syntactical interoperability could be considered as the result of applying SQL commands
through ODBC connectivity.

2.2.2. Semantic Interoperability

Semantic interoperability is the ideal situation where the exchanged content is machine
understandable. To be such it has to be conceptualized formally and explicitly through appropriate
specifications, such as GML, the standard for the exchange of service-based spatial data. Traditionally,
semantic interoperability could only be achieved via pre-constructed data formats resulting from
predefined domain specific data models (e.g., ArcFM [33], UML data models).

2.3. Geospatial Automations

A GIS project is usually a composition of single geospatial activities which normally begin with
the acquisition of thematic layers and other data involved and the application of geospatial processes,
depending on the exact domain of the geoscientific field of expertise. Automating these activities
under a workflow of sequentially executed processes may be achieved by creating specialized batch
files, or scripts. Traditionally, geospatial automations are implemented through sophisticated modules
of the popular desktop GIS environments offering tools to manage geospatial processes, such as,
for example, ModelBuilder [30] or Processing Modeller [34].

Now that all types of geospatial activities may be served through geospatial Web services,
automation is achieved by ‘orchestrating’ these Web services. Orchestration “describes collaboration of
the Web services in predefined patterns based on local decision about their interactions with one another at the
message/execution level” [35]. OGC WPS can be designed to call a sequence of web services [13].

Table 1 collects all related terminology in the above specified sections before and after Geospatial
Web Semantics influence.

Table 1. Impact of Web semantics on geospatial technologies.

Title Past Today

Geospatial Data Structures

Vector data
Binary files (Shapefiles, coverages etc.),

proprietary database formats
(e.g., ESRI geodatabase)

Text files in XML-based formats
(GML, SVG, KML)

Raster data Image files (Raster) Image files (Raster)

Descriptive data Text files, proprietary database formats Text files in XML-based formats
(ISO 191xx, RDF etc.)

Geospatial Interoperability

Syntactic Common data formats, ODBC connections to
spatial databases OGC Services

Semantic Common data models (e.g., UML data models) OWL, GML, RDF

Geospatial Automations

Workflows Batch files and scripts
Special model builders and process modellers

Web service orchestration
(OGC WPS)

Geosciences 2018, 8, 139 5 of 15

3. Software Prototype Design & Development

3.1. Functional Architecture

The successful operation of an application based on GWSs prerequisites the existence of available
open geospatial Web services for data acquisition and data processing purposes. The end user interface
should support access to the services via a Web browser, without the need of installing additional
software. Figure 1 represents graphically the functional architecture of such an implementation,
which includes:

• Free WMS and WFS geospatial services provided either by open-source (e.g., Boundless) or
commercial (e.g., ESRI) GIS product leaders, satisfy the need of obtaining features and images

• Accessible processing platforms like 52◦ North initiative, or JavaScript node servers developed to
support custom WPS implementations.

• a HTML browser-based interface developed in JavaScript, undertakes to serve user needs over a
functional GIS-based environment as described below

Geosciences 2018, 8, x FOR PEER REVIEW 5 of 15

3. Software Prototype Design & Development

3.1. Functional Architecture

The successful operation of an application based on GWSs prerequisites the existence of

available open geospatial Web services for data acquisition and data processing purposes. The end

user interface should support access to the services via a Web browser, without the need of installing

additional software. Figure 1 represents graphically the functional architecture of such an

implementation, which includes:

 Free WMS and WFS geospatial services provided either by open-source (e.g., Boundless) or

commercial (e.g., ESRI) GIS product leaders, satisfy the need of obtaining features and images

 Accessible processing platforms like 52° North initiative, or JavaScript node servers developed

to support custom WPS implementations.

 a HTML browser-based interface developed in JavaScript, undertakes to serve user needs over

a functional GIS-based environment as described below

Figure 1. Functional architecture of a system exploiting geospatial web services (GWSs).

3.2. Development

3.2.1. Raster and Vector Layer Views

To get raster and vector layers, WMS and WFS services, respectively, are employed. The user

interacts with the following ways:

 Asking for available maps in the form of raster or image views of vectors through a

WMS/GetCapabilities request and receiving a list with the offered layers along with further

metadata descriptions in XML format

 Requesting for available features through a WFS/GetCapabilities request and receiving a list

with the offered feature layers along with further metadata descriptions in XML format

 Requesting for a specific raster (or image views of a vector) layer through a WMS/GetMap

request and receiving an image file

Figure 1. Functional architecture of a system exploiting geospatial web services (GWSs).

3.2. Development

3.2.1. Raster and Vector Layer Views

To get raster and vector layers, WMS and WFS services, respectively, are employed. The user
interacts with the following ways:

• Asking for available maps in the form of raster or image views of vectors through a WMS/GetCapabilities
request and receiving a list with the offered layers along with further metadata descriptions in
XML format

• Requesting for available features through a WFS/GetCapabilities request and receiving a list with
the offered feature layers along with further metadata descriptions in XML format

Geosciences 2018, 8, 139 6 of 15

• Requesting for a specific raster (or image views of a vector) layer through a WMS/GetMap request
and receiving an image file

• Requesting for a specific vector layer through a WFS/GetFeatures request and receiving
an XML file

Figure 2 illustrates an example of a WMS/GetCapabilities request coded in JavaScript along with
the server XML response:

• The client makes an AJAX (Asynchronous JavaScript and XML) request using the XMLHttpRequest,
either WMS or WFS with a URI parameter ‘request = GetCapabilities’.

• The server responds with XML data that will thereafter be parsed to JSON object and finally be
viewed by the user as paged table data.

Geosciences 2018, 8, x FOR PEER REVIEW 6 of 15

 Requesting for a specific vector layer through a WFS/GetFeatures request and receiving an XML

file

Figure 2 illustrates an example of a WMS/GetCapabilities request coded in JavaScript along

with the server XML response:

 The client makes an AJAX (Asynchronous JavaScript and XML) request using the

XMLHttpRequest, either WMS or WFS with a URI parameter ‘request = GetCapabilities’.

 The server responds with XML data that will thereafter be parsed to JSON object and finally be

viewed by the user as paged table data.

Practically, the above interaction takes place, whenever the user declares a potential service

provider and checks geospatial data provision.

Figure 2. Requesting a web map service (WMS)/GetCapabilities request and receiving the XML

response.

3.2.2. Geospatial Processes

Geospatial processes were implemented by employing the 52° North WPS HTML interface freely

provided through the wps-js JavaScript library. This way, an HTML form was generated, through which

it is possible to encode and parse XML-based WPS requests (GetCapabilities, DescribeProcess, Execute)

for the geospatial processes offered by 52° North initiative WPS interface implementation, as well as

some other OGC WPS compatible geoprocessing servers (e.g., GeoViQua) [36].

To contribute over the above, a Node.js server was developed in the present work, in order to

interface user generated WPS requests with GDAL/OGR library functionalities. These OGC

compliant WPS requests are transmitted through 52° North WPS client interface where the Node.js

server was also declared in it.

Figure 3 provides a step by step representation of how interaction between client (WPS

Client)—server(Node.js)—Cloud servers (WPS Servers) is taking place to complete a WPS request with

wps-js and Node.js server.

Figure 2. Requesting a web map service (WMS)/GetCapabilities request and receiving the XML response.

Practically, the above interaction takes place, whenever the user declares a potential service
provider and checks geospatial data provision.

3.2.2. Geospatial Processes

Geospatial processes were implemented by employing the 52◦ North WPS HTML interface freely
provided through the wps-js JavaScript library. This way, an HTML form was generated, through
which it is possible to encode and parse XML-based WPS requests (GetCapabilities, DescribeProcess,
Execute) for the geospatial processes offered by 52◦ North initiative WPS interface implementation,
as well as some other OGC WPS compatible geoprocessing servers (e.g., GeoViQua) [36].

To contribute over the above, a Node.js server was developed in the present work, in order to
interface user generated WPS requests with GDAL/OGR library functionalities. These OGC compliant
WPS requests are transmitted through 52◦ North WPS client interface where the Node.js server was
also declared in it.

Geosciences 2018, 8, 139 7 of 15

Figure 3 provides a step by step representation of how interaction between client (WPS
Client)—server(Node.js)—Cloud servers (WPS Servers) is taking place to complete a WPS request with
wps-js and Node.js server.Geosciences 2018, 8, x FOR PEER REVIEW 7 of 15

Figure 3. Utilizing Node.js as a Proxy server to achieve cross-origin connections with

Open Geospatial Consortium (OGC) implementations.

3.2.3. Descriptive Data Management

Descriptive data involved in OGC services are an essential part of the development process

because they specify the parameters of any type of request. These parameters are

composed/expressed/edited in many ways and four of them are mentioned below. (1) and (2)

concern requests submitted to geospatial servers, while (3) and (4) concern handling of the requests

on the client-side:

(1) HTTP GET Requests

HTTP is the simplest way to submit a request to an OGC service implementation through the

browser’s URL bar and may also be incorporated in a JavaScript interface using AJAX requests. The

URL expression below represents a WFS request for getting features from a geospatial server

http://nsidc.org/cgi-bin/atlas_north?

service=WFS&

version=1.1.0&

request=GetFeature&

typename=greenland_elevation_contours

(2) HTTP POST XML Requests

OGC services may support the “POST” method of the HTTP protocol and the request message

is formulated as an XML document. XML tags, host the values of the parameters composing a

request in a tree structure. In addition, they host the features and attributes of a vector layer. In any

case, XML files establish OGC based interoperability acting as the medium for data and processes

exchange between machines. The XML code represented below provides a WPS request which

returns to the requester the description of all the geospatial processes offered by a WPS server.

<?xml version=”1.0” encoding=”UTF-8”?>

<wps:DescribeProcess service=”WPS” version=”1.0.0”

xmlns:wps=”http://www.opengis.net/wps/1.0.0” xmlns:ows=”http://www.opengis.net/ows/1.1”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://www.opengis.net/wps/1.0.0

http://schemas.opengis.net/wps/1.0.0/wpsDescibeProcess_request.xsd”>

<ows:Identifier>all</ows:Identifier>

</wps:DescribeProcess>

Figure 3. Utilizing Node.js as a Proxy server to achieve cross-origin connections with Open Geospatial
Consortium (OGC) implementations.

3.2.3. Descriptive Data Management

Descriptive data involved in OGC services are an essential part of the development process because
they specify the parameters of any type of request. These parameters are composed/expressed/edited in
many ways and four of them are mentioned below. (1) and (2) concern requests submitted to geospatial
servers, while (3) and (4) concern handling of the requests on the client-side:

(1) HTTP GET Requests

HTTP is the simplest way to submit a request to an OGC service implementation through the
browser’s URL bar and may also be incorporated in a JavaScript interface using AJAX requests.
The URL expression below represents a WFS request for getting features from a geospatial server

http://nsidc.org/cgi-bin/atlas_north?

service=WFS&

version=1.1.0&

request=GetFeature&

typename=greenland_elevation_contours

(2) HTTP POST XML Requests

OGC services may support the “POST” method of the HTTP protocol and the request message is
formulated as an XML document. XML tags, host the values of the parameters composing a request
in a tree structure. In addition, they host the features and attributes of a vector layer. In any case,
XML files establish OGC based interoperability acting as the medium for data and processes exchange

Geosciences 2018, 8, 139 8 of 15

between machines. The XML code represented below provides a WPS request which returns to the
requester the description of all the geospatial processes offered by a WPS server.

<?xml version=“1.0” encoding=“UTF-8”?>
<wps:DescribeProcess service=“WPS” version=“1.0.0”

xmlns:wps=“http://www.opengis.net/wps/1.0.0” xmlns:ows=“http://www.opengis.net/ows/1.1”

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=“http://www.opengis.net/wps/1.0.0

http://schemas.opengis.net/wps/1.0.0/wpsDescibeProcess_request.xsd”>

<ows:Identifier>all</ows:Identifier>

</wps:DescribeProcess>

Another example has been presented in Figure 2.

(3) GeoJSON

XML files are transformed to GeoJSON using the new specification RFC 4976 in order to be
expressed as native JavaScript objects and handled appropriately, in terms of parsing and generating
the parameters of OGC service requests. Being JSON objects they may be easily visualized as paged
tables, may be modified by the end-user and may be reconstructed in XML code. An example of the
bounding box property of a layer coded as properties of a JSON JavaScript object is shown below:

“type”: “Feature”,

“geometry”: {

“type”: “Point”,

“coordinates”: [125.6, 10.1]

},

“properties”: {

(4) Paged Tables

A paged table can contain inner tables in its rows and this way of representation is convenient
when dealing with layers and their properties (e.g., bounding box, EPSG etc.). In addition, it is possible
to provide domain values for every attribute assisting further request manipulation to the end-user,
as shown in the Figure 4 below:

Geosciences 2018, 8, x FOR PEER REVIEW 8 of 15

Another example has been presented in Figure 2.

(3) GeoJSON

XML files are transformed to GeoJSON using the new specification RFC 4976 in order to be

expressed as native JavaScript objects and handled appropriately, in terms of parsing and generating

the parameters of OGC service requests. Being JSON objects they may be easily visualized as paged

tables, may be modified by the end-user and may be reconstructed in XML code. An example of the

bounding box property of a layer coded as properties of a JSON JavaScript object is shown below:

“type”: “Feature”,

“geometry”: {

“type”: “Point”,

“coordinates”: [125.6, 10.1]

},

“properties”: {

(4) Paged Tables

A paged table can contain inner tables in its rows and this way of representation is convenient

when dealing with layers and their properties (e.g., bounding box, EPSG etc.). In addition, it is

possible to provide domain values for every attribute assisting further request manipulation to the

end-user, as shown in the Figure 4 below:

Figure 4. Setting WMS parameters through a paged table.

3.3. End-User Interface

3.3.1. User Interaction

The end-user interface implements request and response interaction with the available OGC

services (e.g., WMS, WFS, WPS). As already discussed the results of the above interaction may be

XML-based files or images as shown in Figure 5 [15].

Figure 4. Setting WMS parameters through a paged table.

Geosciences 2018, 8, 139 9 of 15

3.3. End-User Interface

3.3.1. User Interaction

The end-user interface implements request and response interaction with the available OGC
services (e.g., WMS, WFS, WPS). As already discussed the results of the above interaction may be
XML-based files or images as shown in Figure 5 [15].Geosciences 2018, 8, x FOR PEER REVIEW 9 of 15

Figure 5. User interaction and data type results (Papadopoulos & Evangelidis, 2016).

Specifically, user interaction results involve:

 Tabular data with (a) the available raster or vector layers or processes formed by

WMS/WFS/WPS GetCapabilities XML-based files and (b) attributes of selected layers or process

descriptions/results formed by WFS/GetFeatures and WPS/Describe-ExecuteProcess

respectively, XML-based files

 Vector data coded in GML, the prevailing XML-based format

 Raster data in image file formats representing maps

3.3.2. Major Operational Areas

A prototype service-based end-user interface has been proposed [15] and is adopted in the

present work as the base for the presented implementation. In the presented work this is extended to

include geospatial data processing functions. Aim of the final prototype design is to achieve a typical

desktop GIS-based ‘look and feel’ interface, exclusively exploiting geospatial Web services for data

retrieval and processing purposes and this is performed with a completely transparent to the user

manner. The following major operational areas for both advanced and simple operations are

identified:

 Data Management Area

At this area it is possible to declare the geospatial service providers. As soon as a server is

declared WMS-WFS/GetCapabilities requests are submitted to it, resulting to the development of

lists with the available raster and vector data. By selecting a layer from the above lists, either raster

or vector it is possible to view and select its parameters, preparing that way the exact WMS/GetMap

or WFS/GetFeatures respectively, request for submission. Alternatively, the user is capable of

uploading layers to be included in the project.

Since, the whole environment is a service-based environment the presented layers are

dynamically requested by the servers offering them, whenever the user checks for their visibility. To

permanently obtain desired layers, at this area it is possible to clarify which of the requested layers

will be cloned to form the GIS project on a local environment. Metadata information may also be

retrieved and presented as long as this is supported by the standard specifications, as for example

happens in WFS standard through metadata parameter.

 Content Area

As already stated, layers selected in the Data Management Area are requested on a real time

basis directly from the service provider. Whenever the end-user performs additional requests

according to a desired parameterization, the server responds accordingly and the result is

temporarily rendered in the front-end. This area contains the spatial content that has been

permanently selected to form the GIS project and is therefore stored locally.

 Data Visualization Area

Figure 5. User interaction and data type results (Papadopoulos & Evangelidis, 2016).

Specifically, user interaction results involve:

• Tabular data with (a) the available raster or vector layers or processes formed by WMS/ WFS/WPS
GetCapabilities XML-based files and (b) attributes of selected layers or process descriptions/results
formed by WFS/GetFeatures and WPS/Describe-ExecuteProcess respectively, XML-based files

• Vector data coded in GML, the prevailing XML-based format
• Raster data in image file formats representing maps

3.3.2. Major Operational Areas

A prototype service-based end-user interface has been proposed [15] and is adopted in the present
work as the base for the presented implementation. In the presented work this is extended to include
geospatial data processing functions. Aim of the final prototype design is to achieve a typical desktop
GIS-based ‘look and feel’ interface, exclusively exploiting geospatial Web services for data retrieval
and processing purposes and this is performed with a completely transparent to the user manner.
The following major operational areas for both advanced and simple operations are identified:

• Data Management Area

At this area it is possible to declare the geospatial service providers. As soon as a server is
declared WMS-WFS/GetCapabilities requests are submitted to it, resulting to the development of lists
with the available raster and vector data. By selecting a layer from the above lists, either raster or
vector it is possible to view and select its parameters, preparing that way the exact WMS/GetMap or
WFS/GetFeatures respectively, request for submission. Alternatively, the user is capable of uploading
layers to be included in the project.

Since, the whole environment is a service-based environment the presented layers are dynamically
requested by the servers offering them, whenever the user checks for their visibility. To permanently
obtain desired layers, at this area it is possible to clarify which of the requested layers will be cloned
to form the GIS project on a local environment. Metadata information may also be retrieved and
presented as long as this is supported by the standard specifications, as for example happens in WFS
standard through metadata parameter.

Geosciences 2018, 8, 139 10 of 15

• Content Area

As already stated, layers selected in the Data Management Area are requested on a real time basis
directly from the service provider. Whenever the end-user performs additional requests according to
a desired parameterization, the server responds accordingly and the result is temporarily rendered in
the front-end. This area contains the spatial content that has been permanently selected to form the
GIS project and is therefore stored locally.

• Data Visualization Area

This area is charged with visualizing the desired spatial content. Visualization concerns either the
results of the service requests individually, such as for example an image returned or an XML file itself,
or various themes overlaid to form a GIS project.

• Messages Area

This area provides feedback to the end-user by presenting messages returned by server responses.

• Data Processing Area

This area provides the necessary capabilities for declaring a geoprocessing server compatible with
OGC/WPS specification and parameterizing a data processing request. The WPS implementation
of this area is dynamically formed according to the type and the complexity of the requested
geoprocessing job.

Figure 6 provides a visualization of the end-user interface operational areas. A video demonstrating
the presented platform is available at goo.gl/f54X6Q.

Geosciences 2018, 8, x FOR PEER REVIEW 10 of 15

This area is charged with visualizing the desired spatial content. Visualization concerns either

the results of the service requests individually, such as for example an image returned or an XML file

itself, or various themes overlaid to form a GIS project.

 Messages Area

This area provides feedback to the end-user by presenting messages returned by server

responses.

 Data Processing Area

This area provides the necessary capabilities for declaring a geoprocessing server compatible

with OGC/WPS specification and parameterizing a data processing request. The WPS

implementation of this area is dynamically formed according to the type and the complexity of the

requested geoprocessing job.

Figure 6 provides a visualization of the end-user interface operational areas. A video

demonstrating the presented platform is available at goo.gl/f54X6Q.

Figure 6. A Web interface implementing geospatial Web services.

4. Demo Presentation

A demonstration case containing routine geospatial activities is presented, implementing the

following scenario:

‘Create a simple layout of the world overlaid by the country boundaries and export a vector layer of the

boundaries in a shapefile format’

The scenario is further analysed for the following geospatial activities:

 Import a world map

 Import country boundaries

 Export the features of the buffer in shapefile format

Each of the above mentioned geo-activities will be performed by employing respective

geospatial services by different servers. In detail:

(1) The ArcGIS online sample server (http://sampleserver1.arcgisonline.com/) will be employed to

provide the world map through the appropriate WMS service

Figure 6. A Web interface implementing geospatial Web services.

4. Demo Presentation

A demonstration case containing routine geospatial activities is presented, implementing the
following scenario:

‘Create a simple layout of the world overlaid by the country boundaries and export a vector layer of the
boundaries in a shapefile format’

Geosciences 2018, 8, 139 11 of 15

The scenario is further analysed for the following geospatial activities:

• Import a world map
• Import country boundaries
• Export the features of the buffer in shapefile format

Each of the above mentioned geo-activities will be performed by employing respective geospatial
services by different servers. In detail:

(1) The ArcGIS online sample server (http://sampleserver1.arcgisonline.com/) will be employed to
provide the world map through the appropriate WMS service

(2) The Boundless demo Geoserver (http://demo.boundlessgeo.com/geoserver/web/) will offer
features of the country borders through its WFS services

(3) A custom Node.js server was developed for the purposes of the present work and was registered
in 52◦ North WPS HTML interface developed with wps-js JavaScript library (https://github.com/
52North/wps-js), with the aim to transform the GML file in to shapefile format, by exploiting
GDAL/OGR libraries as described in Section 3.2.2

Table 2 below, presents the end-user (U) actions and the subsequent server (S) reactions,
both handled by the JS interface (I). All tasks are placed in a chronological order in the workflow of the
presented scenario. The scenario is demo

Table 2. User actions, interface handling and server reactions.

Actor User Action—Interface—Server Reactions

U Declares WMS and WFS servers
I Submits WMS-WFS/GetCapabilities requests to the declared servers
S Return XML files with the offered raster and vector layers
I Transforms XML files to lists of available raster and vector data in the Data Management area
U Scans the lists with the available raster data and selects a layer of the world map
I Submits WMS/GetMap request to the WMS Server offering the requested map
S Returns the requested raster image map
I Displays raster image map in the Data View area
U Scans the lists with the available vector data and selects a layer of the world boundaries
I Submits WFS/GetFeature request to the WFS Server offering the requested features
S Returns GML file with the requested features
I Displays raster image in the Data View area
U Selects layers to form Layout
I Permanently stores locally the selected layers which are overlaid in Content area
U Selects Geospatial Processing Tools and declares WPS server
I Submits WPS/GetCapabilities request to the declared Server
S Returns XML file with the offered processes
U Selects the Convert file process
I Submits a WPS/DescribeProcess request
S Returns XML file with a description of the specifications of the requested process

I Displays the specifications of the requested process and prompts for user action in filling out
parameters and, if required, providing data

U Fills the requested data/parameters and submits a request to execute the process
I Submits a WPS/ExecuteProcess request
S Returns the results of the requested process
I Provides the results

Figure 7 visualizes the above scenario workflow:

http://sampleserver1.arcgisonline.com/
http://demo.boundlessgeo.com/geoserver/web/
https://github.com/52North/wps-js
https://github.com/52North/wps-js

Geosciences 2018, 8, 139 12 of 15
Geosciences 2018, 8, x FOR PEER REVIEW 12 of 15

Figure 7. Scenario workflow diagram (demonstrated at goo.gl/f54X6Q).

5. Conclusions and Future Outlook

The presented work deals with invocable geospatial Web services and explores the potentiality

of re-serving them under a fully transparent Web-based cross-platform interface in order to satisfy

routine GIS functionalities. As such, the presented solution, is based on JavaScript, relies on open

standards, is independent of additional software components, add-ins or APIs and all is needed is an

updated Web browser. Even in the case of utilizing a server to implement a custom WPS service to

satisfy a specific geo-process, the presented solution remains in JavaScript. This way both server and

Figure 7. Scenario workflow diagram (demonstrated at goo.gl/f54X6Q).

5. Conclusions and Future Outlook

The presented work deals with invocable geospatial Web services and explores the potentiality
of re-serving them under a fully transparent Web-based cross-platform interface in order to satisfy
routine GIS functionalities. As such, the presented solution, is based on JavaScript, relies on open
standards, is independent of additional software components, add-ins or APIs and all is needed is

Geosciences 2018, 8, 139 13 of 15

an updated Web browser. Even in the case of utilizing a server to implement a custom WPS service
to satisfy a specific geo-process, the presented solution remains in JavaScript. This way both server
and client components are light enough to reside on the client side, making the whole venture highly
efficient and unique.

An interesting topic worth discussing in the present work is the development of the geospatial
processing service provided by Node.js server which is invoked through 52◦ North wps-js interface.
This task is subdivided into two discrete subtasks:

• the creation of the appropriate XML content modelling the description and execution of an OGC
WPS compatible process and,

• the employment of a GIS engine performing this geospatial process.

The first subtask is a matter of editing the exact parameters of the WPS requests inside the
appropriate XML tags. The second subtask requires the existence of GIS engines inside the WPS server
and thereafter the establishment of an interaction between the engines and the server. In this respect
Node.js was proved to be a convenient solution due to the direct communication with GDAL/OGR
libraries command line. Extending this to other GIS APIs is expected to be a quite efficient and
easy to implement task due to the capability of calling functionalities in most free and open source
projects like those supported by the open source geospatial foundation, OSGeo (e.g., GRASS GIS and
QGIS). Even more, in the case of ArcGIS the JavaScript API may also be employed to facilitate the
Node.js communication with its GIS engine. Therefore, building WPS geospatial processes through
Node.js may be considered as a great opportunity for further developments and extensions of the
presented work.

Some of the most representative projects of the geospatial community, dealing exclusively with WPS
standard are briefly cited: (a) 52◦ North initiative serves a significant number of WPS implementations
and offers wps-js, a JavaScript library that makes possible to register WPS implementations and provide
Web access for requesting and executing geospatial processes, (b) ZOO-Project, an OSGeo incubator project,
offers an integrated WPS suite covering all the way from server to client including a server solution with
a huge collection of implemented WPS services, a JavaScript API for services creation and a JavaScript library
for Web interaction (c) PyWPS, also an OSGeo incubator project is a server side Python solution assisting the
development and exposure of custom geospatial calculations and (d) Boundless Server, which is actually
a complete server suite, consisting, beyond typical server components, of a WPS builder for server-side
processes [29]. The presented work is in its very early stages, however it may potentially be enriched with
stuff provided by all of the above mentioned. For the time being it adopts wps-js, registers in it a Node.js
server and implements a demo WPS service. Thus, it provides a client interface together with a WPS server,
that both of them employ JavaScript libraries. In addition, the presented work does not focus only on WPS
and extends its vision to satisfy a complete geospatial environment offering routine GIS functions.

Having said all that, one may realize the applicability of the presented research: a free and open
source platform dealing with freely available OGC services may potentially satisfy any geospatial
need, either for gathering or for processing data or for undertaking a complex GIS project. Limitations
are mainly depending on external factors: the system relies on the availability and function of publicly
available invocable web services, therefore, in case of a server malfunction there’s no other choice,
than find other functional geospatial servers. Concluding, potential applications of the presented
research include the public reusability of any geospatial process that is already or is expected to be
freely provided and may be executed with user-owned or other discoverable geospatial data. As such,
is expected beyond others, to contribute also to the management of data and the development of
geospatial processes related to the assessment of pressures exerted on the environment [37] acting as
one more tool towards tackling environmentally related societal changes.

Geosciences 2018, 8, 139 14 of 15

Acknowledgments: The authors wish to acknowledge financial support provided by the Research Committee of
the Technological Educational Institute of Central Macedonia under grant SAT/GS/180131-26/2.

Author Contributions: Konstantinos Evangelidis performed the literature review, the design of the prototype,
assisted its development and wrote the paper. Theofilos Papadopoulos assisted the design of the prototype and
developed the software prototype.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dragicevic, S. The potential of Web-based GIS. J. Geogr. Syst. 2004, 6, 79–81. [CrossRef]
2. Chow, T.E. The potential of maps APIs for internet GIS applications. Trans. GIS 2008, 12, 179–191. [CrossRef]
3. Oxera. What is the Economic Impact of Geoservices? Prepared for Google. 2013. Available online: http://www.oxera.

com/Latest-Thinking/Publications/Reports/2013/What-is-the-economic-impact-of-Geo-services.aspx (accessed
on 3 March 2018).

4. McKee, L.; Reed, C.; Ramage, S. OGC Standards and Cloud Computing; OGC White Paper; OGC:
Wayland, MA, USA, 2011.

5. Yang, C.; Goodchild, M.; Huang, Q.; Nebert, D.; Raskin, R.; Xu, Y.; Bambacus, M.; Fay, D. Spatial cloud
computing: How can the geospatial sciences use and help shape cloud computing? Int. J. Digit. Earth 2011,
4, 305–329. [CrossRef]

6. Evangelidis, K.; Ntouros, K.; Makridis, S.; Papatheodorou, C. Geospatial services in the Cloud. Comput. Geosci.
2014, 63, 116–122. [CrossRef]

7. Aktas, M.S.; Aydin, G.; Fox, G.C.; Gadgil, H.; Pierce, M.; Sayar, A. Information Services for Grid/Web
Service Oriented Architecture (SOA) Based Geospatial Applications. In Proceedings of the 1st International
Conference, Beijing, China, 27–29 November 2005.

8. Buyya, R.; Yeo, C.S.; Venugopal, S.; Broberg, J.; Brandic, I. Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 2009, 25,
599–616. [CrossRef]

9. Web Map Service|OGC. Available online: http://www.opengeospatial.org/standards/wms (accessed on
3 March 2018).

10. Web Coverage Service|OGC. Available online: http://www.opengeospatial.org/standards/wcs (accessed
on 3 March 2018).

11. Web Feature Service|OGC. Available online: http://www.opengeospatial.org/standards/wfs (accessed on
3 March 2018).

12. Catalog Service|OGC. Available online: http://www.opengeospatial.org/standards/cat (accessed on
3 March 2018).

13. Web Processing Service|OGC. Available online: http://www.opengeospatial.org/standards/wps (accessed
on 3 March 2018).

14. Percivall, G. The application of open standards to enhance the interoperability of geoscience information.
Int. J. Digit. Earth 2010, 3, 14–30. [CrossRef]

15. Papadopoulos, T.; Evangelidis, K. An HTML tool for exploiting geospatial web services. In Proceedings of
the Geospatial World Forum, Rotterdam, The Netherlands, 23–26 May 2016.

16. European Commission. Commission Regulation (EU) No 1312/2014 of 10 December 2014 Amending
Regulation (EU) No 1089/2010 Implementing Directive 2007/2/EC of the European Parliament and of the
Council as Regards Interoperability of Spatial Data Services. 2014. Available online: http://eur-lex.europa.
eu/eli/reg/2014/1312/oj (accessed on 3 March 2018).

17. European Commission. European Commission Directive 2007/2/EC of the European Parliament and of the
Council of 14 March 2007 Establishing an Infrastructure for Spatial Information in the European Community
(INSPIRE). Off. J. Eur. Union 2007, 50, 1–14.

18. Haklay, M.; Weber, P. Openstreetmap: User-generated street maps. IEEE Pervasive Comput. 2008, 7, 12–18.
[CrossRef]

19. Add WMS Services. Available online: https://pro.arcgis.com/en/pro-app/help/data/services/add-wms-
services.htm (accessed on 3 March 2018).

http://dx.doi.org/10.1007/s10109-004-0133-4
http://dx.doi.org/10.1111/j.1467-9671.2008.01094.x
http://www.oxera.com/Latest-Thinking/Publications/Reports/2013/What-is-the-economic-impact-of-Geo-services.aspx
http://www.oxera.com/Latest-Thinking/Publications/Reports/2013/What-is-the-economic-impact-of-Geo-services.aspx
http://dx.doi.org/10.1080/17538947.2011.587547
http://dx.doi.org/10.1016/j.cageo.2013.10.007
http://dx.doi.org/10.1016/j.future.2008.12.001
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/wps
http://dx.doi.org/10.1080/17538941003792751
http://eur-lex.europa.eu/eli/reg/2014/1312/oj
http://eur-lex.europa.eu/eli/reg/2014/1312/oj
http://dx.doi.org/10.1109/MPRV.2008.80
https://pro.arcgis.com/en/pro-app/help/data/services/add-wms-services.htm
https://pro.arcgis.com/en/pro-app/help/data/services/add-wms-services.htm

Geosciences 2018, 8, 139 15 of 15

20. QGIS Python Plugins Repository. Available online: https://plugins.qgis.org/plugins/wfsclient/ (accessed
on 26 January 2018).

21. Granell, C.; Díaz, L.; Gould, M. Service-oriented applications for environmental models: Reusable geospatial
services. Environ. Model. Softw. 2010, 25, 182–198. [CrossRef]

22. Stollberg, B.; Zipf, A. OGC Web Processing Service Interface for Web Service Orchestration—Aggregating
Geo-Processing Services in a Bomb Threat Scenario; Springer: Cardiff, UK, 2007; pp. 239–251.

23. Lapierre, A.; Cote, P. Using Open Web Services for urban data management: A testbed resulting from
an OGC initiative for offering standard CAD/GIS/BIM services. In Urban and Regional Data Management;
Annual Symposium of the Urban Data Management Society: Delft, The Netherlands, 2007; pp. 381–393.

24. Meng, X.; Xie, Y.; Bian, F. Distributed Geospatial Analysis through Web Processing Service: A Case Study of
Earthquake Disaster Assessment. J. Softw. 2010, 5, 671–679. [CrossRef]

25. Evangelidis, K.; Ntouros, K.; Makridis, S. Geoprocessing Services over the Web. In Proceedings of the 32nd
EARSeL Symposium, Mykonos, Greece, 21–24 May 2012; pp. 344–349.

26. Tzotsos, A.; Alexakis, M.; Athanasiou, S.; Kouvaras, Y. Towards Open Big Geospatial Data for geodata.gov.gr.
Available online: https://pdfs.semanticscholar.org/b9ac/b187bfd98f68c625d82d33d527b84c335f41.pdf
(accessed on 26 January 2018).

27. Sayar, A.; Pierce, M.; Fox, G. Developing GIS visualization web services for geophysical applications.
In Proceedings of the ISPRS 2005 Spatial Data Mining Workshop, Ankara, Turkey, 14–16 October 2005.

28. Sayar, A.; Pierce, M.; Fox, G. Integrating AJAX approach into GIS visualization web services. In Proceedings
of the Telecommunications, 2006 AICT-ICIW’06 International Conference on Internet and Web Applications
and Services/Advanced, Guadelope, France, 19–25 February 2006; p. 169.

29. Boundless Releases Server Product to Offer Complete Ecosystem of Enterprise GIS Solutions. Available
online: https://boundlessgeo.com/press_releases/boundless-releases-server-product-offer-complete-
ecosystem-enterprise-gis-solutions/ (accessed on 3 March 2018).

30. ModelBuilder Tutorial. Available online: http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/
modelbuilder/modelbuilder-tutorial.htm (accessed on 26 January 2018).

31. Egenhofer, M.J. Toward the semantic geospatial web. In Proceedings of the 10th ACM International
Symposium on Advances in Geographic Information Systems, McLean, VA, USA, 8–9 November 2002;
pp. 1–4.

32. Vockner, B.; Mittlböck, M. Geo-enrichment and semantic enhancement of metadata sets to augment discovery
in geoportals. ISPRS Int. J. Geo-Inf. 2014, 3, 345–367. [CrossRef]

33. Utility Market Embraces ArcFM GIS Solution. Available online: http://www.esri.com/news/arcnews/
spring99articles/05_utilitymkt.html (accessed on 26 January 2018).

34. Automating Complex Workflows Using Processing Modeler. Available online: http://www.qgistutorials.
com/en/docs/processing_graphical_modeler.html (accessed on 26 January 2018).

35. Sun, J.; Liu, Y.; Dong, J.S.; Pu, G.; Tan, T.H. Model-based methods for linking web service choreography and
orchestration. In Proceedings of the 2010 Asia Pacific Software Engineering Conference, Sydney, Australia,
30 November–3 December 2010; pp. 166–175.

36. GEO User Feedback System. Available online: http://geoviqua.stcorp.nl/home.html (accessed on 26 January 2018).
37. Evangelidis, K. Geoinformation Technologies for Environmental Changes and Pressures Assessment; Polytehnika Press:

Bucuresti, Romania, 2018; ISBN 978-606-515-798-9.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://plugins.qgis.org/plugins/wfsclient/
http://dx.doi.org/10.1016/j.envsoft.2009.08.005
http://dx.doi.org/10.4304/jsw.5.6.671-679
https://pdfs.semanticscholar.org/b9ac/b187bfd98f68c625d82d33d527b84c335f41.pdf
https://boundlessgeo.com/press_releases/boundless-releases-server-product-offer-complete-ecosystem-enterprise-gis-solutions/
https://boundlessgeo.com/press_releases/boundless-releases-server-product-offer-complete-ecosystem-enterprise-gis-solutions/
http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/modelbuilder-tutorial.htm
http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/modelbuilder-tutorial.htm
http://dx.doi.org/10.3390/ijgi3010345
http://www.esri.com/news/arcnews/spring99articles/05_utilitymkt.html
http://www.esri.com/news/arcnews/spring99articles/05_utilitymkt.html
http://www.qgistutorials.com/en/docs/processing_graphical_modeler.html
http://www.qgistutorials.com/en/docs/processing_graphical_modeler.html
http://geoviqua.stcorp.nl/home.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Influence of Geospatial Web Semantics on GIS
	Geospatial Data Formats
	Vector Data
	Raster Data
	Descriptive Data

	Geospatial Interoperability
	Syntactical Interoperability
	Semantic Interoperability

	Geospatial Automations

	Software Prototype Design & Development
	Functional Architecture
	Development
	Raster and Vector Layer Views
	Geospatial Processes
	Descriptive Data Management

	End-User Interface
	User Interaction
	Major Operational Areas

	Demo Presentation
	Conclusions and Future Outlook
	References

