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Abstract: This study was carried out in the Pliocene interval of the southern North Sea F3
Block in the Netherlands. This research paper demonstrates how an integrated interpretation of
geological information using seismic attributes, sequence stratigraphic interpretation and Wheeler
transformation methods allow for the accurate interpretation of the depositional environment of
a basin, as well as locating seismic geomorphological features. The methodology adopted here is
to generate a 3D dip-steered HorizonCube followed by chronostratigraphic analysis, 3D Wheeler
transformation, and system tract interpretation. A dip-steered seismic attribute (similarity, dip,
and curvature) was performed on each stratigraphic surface of interest and the isopach maps were
generated for each stratigraphic surface to help identify the maximum deposition. The results of
this study show that the similarity attribute is able to identify distinct stratigraphic features such
as sand-waves and deep marine meandering channels. However, its lateral continuity is poorly
understood, as the similarity attribute does not take into account the true geological dip and curvature
of the surfaces. Structural features such as faults are not easily recognizable due to these reasons.
However, the dip-apparent attributes are found to be very useful in identifying both the structural
and stratigraphic features. The seismic dip map is then improved by rotating the dip measurements
to user-defined azimuths. Such optimization has revealed the structural and stratigraphic features
that are not clearly evident on the similarity and curvature attributes. The maximum curvature
attribute is found to be useful in delineating faults and predicting the orientation and distribution of
fractures and also in subtle structural features.

Keywords: similarity; curvature; dip-azimuth; attribute analysis; wheeler transformation

1. Introduction

Seismic attributes provide geophysicists and seismic interpreters with useful information related
to the amplitude, position, and shape of a seismic waveform compared to the conventional or more
traditional ways of interpreting seismic stratigraphy. It fully utilizes the use of seismic amplitudes and
3D seismic to map and visualize subsurface stratigraphy and geomorphology, geological structures,
and reservoir architecture [1]. Sheriff [2] classified seismic attributes such as a measurement based
on seismic data such as envelope, instantaneous phase and frequency, polarity, dip, and dip azimuth.
Taner [3] defined seismic attributes as the information obtained either by direct measurement of
seismic data or by logical/experience-based reasoning. Seismic attributes form an integral part of
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the qualitative interpretative tool that facilitates structural and stratigraphic interpretation. It also
offers clues to lithology type and fluid content estimation with a potential benefit of detailed
reservoir characterization [4]. The rapid advancement of 3D seismic data made in-depth analysis and
high-resolution visualization of subsurface possible in a manner resembling surface geomorphology.
Seismic geomorphology interpretation is a primary method for mapping and viewing subsurface
features as well as aiding the interpretation of seismic structures and stratigraphy, especially in areas
away from well control [5].

Understanding sequence stratigraphy is crucial for the better reconstruction of the depositional
system and also in identifying new hydrocarbon plays. Sequence stratigraphy refers to a sequence of
geological events, processes, or rocks arranged in chronological order [6] and this discipline is still
controversial and has generated long arguments among researchers and geoscientist attempting to
define the conceptual basis of its technique. Recent software developments, particularly through
open-source software such as OpendTect, have enabled researchers to study time attributes of
seismic stratigraphic surfaces within the chronostratigraphic framework by using 3D Wheeler
Transformation [7,8] and recently 4D Wheeler Transformation [9]. Through 3D Wheeler Transformation,
seismic data, as well as attribute volumes, are flattened in 3D space [7] along the auto-tracked horizons
while at the same time honoring erosional events and non-depositional hiatuses [10]. Recently,
a fourth dimension was introduced [11] which integrated stratigraphic thickness per stratigraphic unit
into the 4D Wheeler diagram. A comprehensive historical review of the Wheeler diagram has been
documented by Qayyum and Catuneanu [12]. The role of the Wheeler Transformation when integrating
it with seismic attributes has proven to be a powerful tool in seismic interpretation and identifying
geological features. By combining these two methods instead of using it as a stand-alone tool, it has
helped researchers to better understand numerous things as demonstrated in previous studies done
in the Netherland Offshore F3 Block (Figure 1) such as porosity prediction [13], fracture and fault
characterization [14], structural interpretation [1,15], and turbidites characterization [16]. However,
the application of Wheeler Transformation and using seismic attributes to identify geomorphological
changes to reconstruct depositional history has been given little to no attention to date.

Therefore, the goals and objectives of this paper are to identify geomorphological changes of
stratigraphic surfaces by integrating the Sequence Stratigraphic Interpretation System (SSIS) with
Wheeler Transformation methods and seismic attribute analysis, particularly focusing on minimum
similarity, maximum curvature, and dip attributes. The surfaces of interest are MFS1, BSFR1, CC/SU1
(depositional sequence 1), and MRS1 (depositional sequence 2). A much more detailed interpretation
was done by Qayyum et al. [17]. Although the interval studied does not have any direct relevance for
hydrocarbon exploration, the study can be used as an analog in similar geological environments that
have potential for valid hydrocarbon plays.

2. Regional Geological Setting

2.1. Tectonic Framework

The development of the Eridanos delta system is a result of simultaneous episodes of uplift of
the Fennoscandian Shield and the subsidence of the North Sea Basin [18] (see Figure 2). It is believed
that the uplift of the Fennoscandian Shield started during the Oligocene. The uplift rate increased
during the late Miocene [19] and further uplift activity in the early Pliocene has also been suggested by
other researchers [20,21]. Previous studies [19,22–24] suggested that a total uplift amounting to 3000 m
occurred in the central part of the dome in northern Norway and about 1000–1500 m more to the south.
The hinge zone, which is along the western Scandinavian margin, was relatively narrow and a 600 m
differential uplift occurred over a distance of less than 100 km [25–27]. The Eridanos deltaic system
started during the Oligocene period while the Scandinavian Shield was being uplifted, resulting in the
development of a siliciclastic delta system [18]. High sedimentation influx filled the northern North
Sea region of the Dutch sector as a result of the late Miocene uplift [28]. The increasing sediment load
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resulted in a differential load throughout the region which caused the underlying Permian Zechstein
salt to start moving and several localized unconformities underlain by salt domes were formed within
the Pliocene interval [29]. These unconformities were often sub-aerially exposed in the southern North
Sea causing the topset beds of some clinoforms to be vulnerable to erosional activity.

The Cenozoic succession of the Eridanos fluvio-deltaic system can be subdivided into two main
packages: the Lower and Upper packages separated by a major unconformity called the Mid-Miocene
Unconformity [30]. The Lower package mainly comprises of relatively fine-grained gradational
Paleogene sediments. The Upper package mainly comprises of a coarse-grained Neogene sediment
and most of it is part of a progradational deltaic sequence that could be further subdivided into three
units corresponding to the three phases of delta evolution shown as Unit 1, 2, and 3 on Figure 3. The age
of the downlap onto the MMU becomes gradually younger towards the central part of the North Sea.
The estimated ages are believed to be 12.4 Ma in the Danish sector [31,32], and 10.7 Ma in the German
sector [33]. The downdip prograding units are overlain by thick distinctive units between 100 m and
300 m which represent the delta-top facies [28]. The dominant direction of progradation is towards the
west-southwest direction [34]. The progradation configuration is expressed as sigmoidal lineaments or
clinoforms in the dip section [34]. Figure 4 shows the regional cross-section and structural framework
of the North Sea region.
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Figure 3. (A) The schematic diagram of the Neogene Eridanos fluvio-deltaic system of the North Sea
and (B) its corresponding seismic profile (inline 425). The Eridanos delta can be divided into the Upper
and Lower packages. The Upper package can be further divided into 3 sub-unit [30].

2.2. The Stratigraphy of the North Sea Basin

The Netherlands is predominantly known as a gas producing country with the majority of
its onshore and offshore gas fields coming from the Carboniferous coal source rock (Figure 1).
The sandstones of the Lower Permian Rotliegend formation forms excellent reservoirs sealed by
the Upper Permian Zechstein carbonate and salt formations (Figures 5 and 6) [40]. The stratigraphy
of the North Sea can be viewed in three geological eras, the Paleozoic, Mesozoic, and Cenozoic.
The present study focuses on the rock formation called the North Sea Group, assembled during the
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Tertiary and Quaternary period. The North Sea Group can be divided into three sub-formations:
the Lower North Sea (Paleogene), the Middle North Sea (Paleogene), and Upper North Sea (Neogene).
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Figure 4. The tectonic framework and regional cross-section of the North Sea after Rondeel, Batjes and
Nieuwenhuijs [40]. The red box indicates the F3 block (the study area).

The Lower North Sea Group essentially consists of grey sands, sandstones, and clays and is a
product of several small and large scale clastic sedimentation cycles in a marine setting at the edge of
the North Sea Basin. The upper boundary of this group is characterized by unconformably overlying
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deposits of the Middle North Sea Group or younger units, while the lower boundary is characterized by
an unconformity expressed as a sharp lithologic break marking the top of the Chalk Group. The overall
depositional setting of this group is predominantly marine [41].

The Middle North Sea is a group of formations consisting of sands, silts, and clays with the main
sand distribution along the southern margin of the North Sea Basin. The depositional setting of this
group is interpreted predominantly as marine with some lagoon and coastal plain sediments [41].

The Upper North Sea Group is interpreted as a sequence of clays and fine-grained to
coarse-grained sands with gravel, peat, and brown coal seams. The general trend from coarse-
to fine-grained sands is observed towards the north and west region of the North Sea Basin. The
lower boundary of this sub-group is the Middle North Sea group and other older beds, and the
upper boundary is overlain by the present land surface or seafloor. The overall depositional setting
is interpreted as shallow marine settings and terrestrial beds of a fluvial and lacustrine origin.
The uppermost portion of this group may contain glacial deposits [41].
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3. Data and Methodology

The high quality raw 3D seismic data acquired from block F3 located in the North Sea Offshore
of Netherlands is used for this study. The 3D seismic survey covered an area of approximately
24 × 16 km2. The data volume consists of 650 inlines and 950 crosslines and the line spacing for both
is 25 m with a 4 ms sample rate. The seismic data volume was loaded into an open-source geological
modeling and interpretative tool; in this case the OpendTect software. The dataset also consists of four
wells with relevant log data available, in particular well logs of gamma ray, caliper, P-wave, density,
and porosity in true vertical depth. Both seismic and well data, as well as the software, was provided
by dGB Earth Sciences through its open source seismic repository portal. An integrated approach was
used to achieve the aim of the study and Figure 7 shows a brief summary of the workflow.
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The very first step in the workflow was to improve the quality of the raw seismic data by
increasing the signal to noise ratio and hence suppressing the noise from the data in order to display
the preserved geologic signals. There are three [42] different algorithms available in the OpendTect
academic version for creating SteeringCubes which are the BG Fast Steering (Gradient Structure Tensor)
method, the event-based steering method, and the Fast Fourier Transform (FFT) method. The FFT
algorithm is preferred in this study for horizon tracking and HorizonCube processing [11] due to
its sensitivity to noise. A dip-steered median filter was applied to the steering cube to solve the
noise problem. The steering cube forms the foundation for the structure oriented filtering of seismic
volumes, enhancing the multi-trace attributes and eventually generating curvature attributes. These
dips can be displayed as overlays on seismic sections. The dip-steering plug-in in OpendTect allows
interpreters to improve the multi-trace attributes by extracting attribute input along reflectors. It also
helps with the calculation of some unique attributes such as curvature, similarity, and variance of
the dip and also with the interpretation of single horizons or multi-zones through the dip-steered
auto-tracking technique. There are many different types of SteeringCube that can be calculated in
OpendTect and each of them has their own advantages and applications. In this study, the detailed
dip-steered SteeringCube is preferred as it preserves and contains several important geologic details
such as the dip associated faults or sedimentary structures, and hence provides the perfect platform
for detailed seismic attribute analysis [11].

Right after conditioning the seismic image, the next step in the workflow is horizon interpretations.
Conventional seismic interpretation is a time-consuming process and the geometrical expression of
seismic reflectors is qualitatively mapped in time with little or no emphasis on seismic amplitude
variations [43]. The dip-steered 3D auto tracker [9] in OpendTect allows multiple horizon
interpretations in a short period of time. Eight horizons were auto-tracked and interpreted pertaining
to the region of interests which will later act as a bounding surface for the Sequence Stratigraphic
Interpretation System (SSIS).
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OpendTect SSIS allows seismic data to be studied in the chronostratigraphic domain where
numerous events are auto-tracked per sequence bounded by major horizons created previously.
The SSIS plug-in allows for the reconstruction of depositional history using the HorizonCube slider,
flattening seismic data in the Wheeler domain and making full system tract interpretations with
automatic stratigraphic surface identifications and base-level reconstructions (Figure 8). There are
two types of HorizonCube available in OpendTect. The first one is the Continuous HorizonCube
where all horizons exist everywhere in the volume. When horizons converge, the density of the
horizons increases and this usually tends to happen along unconformities and condensed sections.
Continuous events can neither cross nor terminate against other events. The second HorizonCube is
called the Truncated HorizonCube where chronostratigraphic events terminate against other events
when they approach adjacent events closer than a certain user-defined threshold value [11,12,17].
This characteristic is very significant as it incorporates unconformities automatically and reveals
depositional hiatuses in the Wheeler domain. In this study, the Continuous HorizonCube was
initially created and later converted into a Truncated HorizonCube by following the methodology
used by Qayyum et al. [11], de Bruin et al. [10,44], and Brouwer et al. [45] to map major bounding
surfaces. Intermediate horizons were auto-tracked with sub-sample accuracy. Two auto-tracked
modes are available: data-driven and model-driven. In the data-driven model, the seismic horizons
are auto-tracked, following the local dip and azimuth of the seismic events. Thus, it will follow
the geometries of seismic reflections and is the preferred mode to construct accurate subsurface
models and interpret the seismic data within a geologic framework. In the model-driven approach,
the seismic horizons are calculated by interpolation or by adding horizons parallel to the upper or
lower bounding surfaces. The model-driven mode is a way of slicing the seismic data relative to the
framework horizons.
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Structural or Chronostratigraphic domain and (B) the Wheeler domain.

The next stage in the workflow is to create a Wheeler diagram through 3D automated Wheeler
Transformation [46]. Through Wheeler Transformation, the seismic data and attribute volumes were
flattened in 3D along the auto-tracked horizons while at the same time, honoring the erosional events
and non-depositional hiatuses [10]. By integrating the Wheeler domain and structural domain, we can
make a system tract interpretation on multiple 2D sections which will give a full or complete 3D
understanding of the system tracts.

The final step of the workflow is attribute analysis. Three attribute analyses were performed,
namely the minimum similarity, apparent dip, and maximum curvature attributes. The minimum
similarity attribute is known to be useful in highlighting discontinuity of seismic data related to faulting
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or stratigraphy such as channel edges. In this study, a fully steered similarity attribute is preferred in
order to honor the dip-steered HorizonCube which preserves important details such as dip associated
faults or sedimentary structures. The time gate used is [−8, 24] ms as this will highlight the geological
features below the stratigraphic horizons and eliminate overlapping features above the horizons. The
apparent dip attribute is known to be useful in highlighting undulations and incisions on seismic
surfaces by calculating the lateral gradient of the geological dip. The advantage of using this attribute
is to allow interpreters to analyze structural and stratigraphic features at specific azimuth directions
(0–360◦). In this study, three azimuth direction were selected: 0◦, 45◦, and 90◦. The default time gate of
[−28, 28] ms and a step-out value of (1, 1, 1) is chosen as the input parameters. The maximum curvature
attribute defines the maximum bending or curvature of the surface at a specific point orthogonal to
the minimum curvature. It is known to be useful in highlighting the channel lateral distribution and
delineating the downthrown or upthrown part of a fault block. This attribute was derived from the
dip-steered HorizonCube by using the default time gate of [−28, 28] ms, a step-out value of (2, 2, 2) and
a constant velocity of 2500 m/s as input parameters. These three seismic attributes were performed
on stratigraphic surfaces and interpreted automatically in the previous stages. Table 1 shows the
parameter setting used in the filtering and conditioning of the seismic cube in order to calculate
the attribute response. Attribute analysis allows us to identify both the structural and stratigraphic
features, especially on the dip-steered cube.

Table 1. Seismic attributes parameter settings.

Attribute Time Gates (ms) Step-Out Dip-Steering Statistical Operator

Raw Steering - (1, 1, 1) - -
Detailed Steering - (1, 1, 3) - -

Background
Steering - (5, 5, 5) - -

Similarity (−8, 24) (1, 1, 1) Steered Minimum Full
Curvature (−28, 28) (2, 2, 2) Steered Maximum

Dip (−28, 28) (1, 1, 1) Steered Apparent

4. Results and Discussion

4.1. Sequence Stratigraphic Interpretation

The synchronized analysis in both the structural and Wheeler domains allows the interpretation
of system tracts and helps us to define the sequence into a different set of packages. The interpretation
was made using a four-systems tract sequence stratigraphic model introduced by Hunt and Tucker [47]
termed the Depositional Model IV by Catuneanu [48]. Following the work of Qayyum et al. [11,12,17],
the stratigraphic interpretation is made and three depositional sequences are identified (Figure 9).
Each sequence has a complete set of packages comprising of the Transgressive System Tract (TST),
the Highstand System Tract (HST), the Falling Stage System Tract (FSST), and the Lowstand System
Tract (LST). These packages are bounded at the top by its subsequent stratigraphic surfaces, namely the
maximum flooding surfaces (MFS), the basal surface force regression (BSFR), the correlative conformity
and sub-aerial conformity (CC/SU), and the maximum regressive surface (MRS) respectively. In a
normal base-level cycle with a constant magnitude of base level rise and fall, a complete set of packages
of TST, HST, FSST, and LST are to be expected. However, in reality, with varying magnitudes of base
level rise and fall and unpredictable fluctuations of base level in geologic time, not all packages exist
in the same sequence.
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Figure 9. The complete sequence of stratigraphic systems. The three depositional sequence is identified.
However, only the two depositional sequence is considered in this study.

In order to achieve the objective of this study (to identify geomorphological changes of
stratigraphic surfaces), only the stratigraphic surfaces from the depositional sequence 1 (MFS1,
BSFR1, CC/SU1) and MRS1 surface from depositional sequence 2 were considered in this study.
Six stratigraphic surfaces were identified and only four are then extracted as seismic horizons from
the HorizonCube for attribute analysis. Table 2 shows the stratigraphic surfaces of interest and their
corresponding system tract events and depositional sequence.

Table 2. Stratigraphic surfaces with their corresponding events and depositional sequence.

No Stratigraphic Surfaces Corresponding System Tract Events Depositional Sequence

1 MFS1 End of TST1 1
2 BSFR1 End of HST1 1
3 CC/SU1 End of FSST1 1
4 MRS1 End of LST1 2
5 BSFR2 End of HST2 2
6 CC/SU2 End of FSST2 2
7 MRS2 End of LST2 3

4.2. Analysis

4.2.1. Similarity

The dip-steered similarity was preferred in the study by using steering data representative
of a regional dip which provided high-quality visualization of the seismic trace and better
geomorphological interpretations. The similarity attribute was calculated by using user-defined
parameters which are based on the quality, frequency, and sampling rate. The time-gate operator
determines the desired wavelength of the structures to be detected. In this case, a time gate of −8 ms
and +24 ms, which will highlight geological features below the stratigraphic horizons and eliminate
overlapping features above the horizons, was used to calculate the similarity of the seismic traces in
the data. A step-out of (1, 1, 1) was used for the similarity attribute and this implies that the sampling
was taken along every inline and crossline. The step-out defines the radius of investigation in inline,
crossline, and time-slice, and also determines the sampling size.

Figure 10 shows the result of similarity attribute analysis performed on each stratigraphic surface.
It can be observed that a northwest-southeast trending, parallel and asymmetrical feature presents on
each surface. This feature is identified as a sand wave or sediment wave. Sand waves are elongated
depositional bed forms with undulating surfaces which are located mainly in transverse or with a
small angle to the dominant current direction. Its environment of formation is usually in shallow water,
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riverbeds, tidal channel, estuaries, and flood tidal deltas. In this case, sand waves give an indication of
paleo-water depths and the direction of flow. Sand waves usually form in water with a depth of less
than 30 m.
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Figure 10. The minimum similarity attributes for each surface. (A) Maximum flooding surfaces
1 (MFS1); (B) basal surface force regression 1 (BSFR1); (C) correlative conformity and sub-aerial
conformity 1 (CC/SU1); and (D) maximum regressive surface 1 (MRS1). The yellow dashed line
indicates the paleo-coastline position. The existence of a deep meandering channel is denoted by the
blue arrows.

Maximum flooding surface marks the end of the transgressive system tract or the end of
the shoreline transgression. Hence an MFS1 surface (Figure 10A) separates the underlying and
retrograding transgressive system tract from the prograding highstand system tract which progrades
on top of it. The change from retrogradational to overlying progradational stacking patterns take place
during continued base level rise at the shoreline. It can be observed from Figure 10A that the sand
waves developed landwards while on BSFR1 surfaces (Figure 10B), the field of sand waves has shifted
significantly basin-ward as indicated by the position of the paleo-coastline (the yellow dashed line).
The highstand system tract is associated with aggradational and progradational sediment deposits
where the relative sea level is undergoing a slow rise. The sediment supply is sufficient enough to
outpace the sea level rise and hence drive a basin-ward building off the coast [48].

In Figure 10C, it can be observed on the CC/SU1 surface that the sand waves have shifted
basin-ward again due to a massive drop in the relative sea level and hence is considered a by-product
of forced regression. For MRS1 surfaces (Figure 10D), redevelopment and realignment of the sand
waves are observed as the coastline shifted back landward due to relative sea-level rise. The rise in
sea-levels causes the sediment deposits to prograde and aggrade. The overall basin- and land-ward
shifts of sand waves are in an agreement with the regressive and progressive nature of the system tracts.

Other distinct features that can be observed here are a series of meandering deep water channels
with a northeast-southwest flow direction indicated by the blue arrows on Figure 10. The lateral
continuity of the deep marine channel is not readily identifiable by the similarity attribute as it does
not take into account the true geological dip and curvature of certain geologic features which can be
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best analyze by using the dip and curvature attributes. Pockmark—a geological feature commonly
found in the seabed—can also be seen on each stratigraphic surface. Pockmark can be considered as
deep marine craters which are caused by biogenic gas and liquid escaping or a dewatering event which
is very common in the North Sea region [49]. Overall, similar observations were made in the Niger
Delta [1,15] regarding the application of similarity attributes in interpreting seismic and sub-seismic
scale structural and stratigraphic features.

4.2.2. Dip-Apparent Attributes

MFS1 Surfaces

The azimuth attribute helps visualize geological dips and curvatures in apparent dips ranging
from 0–360 degrees. In this study, three apparent dips were used to identify and analyze the structural
and stratigraphic features which are 0◦, 45◦, and 90◦. An apparent dip at 0◦ indicates that the seismic
reflector at the evaluation point is dipping in the direction of increasing cross-line numbers while a
90◦ apparent dip angle indicates that the seismic reflector at the evaluation point is dipping in the
direction of increasing inline numbers.

Based on Figure 11, the lateral continuity of the deep marine meandering channel (the blue arrow)
is clearly observable especially at a 0◦ and 45◦ apparent dip angle. The lateral extension of the sand
waves can be identified on all apparent angles where the troughs and crests of the sand waves can
be clearly seen. Other structural features that can be identified here are a series of minor faults and
a major fault. Three subtle features (the red arrow in Figure 11B) believed to be either a fault or
channel trending northeast-southwest, cutting through the sand waves, is clearly visible only when the
apparent dip angle is at 45◦. Figure 11D shows the maximum deposition or depocenter of sediment
deposited within the transgressive system tracts.
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Figure 11. The apparent dip attribute for MFS1 surfaces at (A) 0◦, (B) 45◦, (C) 90◦, and (D) the Isopach
map. The blue arrows indicate the deep meandering channels, the red arrows indicate the existence
of a minor sub-seismic fault which is only clearly visible in (B) while the white arrows highlight the
existence of pockmark.



Geosciences 2018, 8, 79 14 of 21

BSFR1 Surfaces

Figure 12 shows the aggradational and progradational basin-ward movement of sediment deposits
due to the steady relative sea level rise at the shoreline and normal regression. The yellow line
indicates the paleo-coastline at the very end of the highstand system tract stages and at the early
stage of force regression. The red line indicates the lateral extent of sediment deposition on top of
the previous stratigraphic surface (MFS1) which, in stratal termination terms, is known as downlap.
This also correlates directly to the region of maximum deposition (Figure 12D). The apparent-dip
attribute viewed at all azimuth angles shows that the existing sand waves have shifted basin-ward
and subsequently buried some part of the existing deep marine meandering channel (the blue arrow).

Geosciences 2018, 8, x FOR PEER REVIEW  14 of 21 

 

also correlates directly to the region of maximum deposition (Figure 12D). The apparent-dip attribute 
viewed at all azimuth angles shows that the existing sand waves have shifted basin-ward and 
subsequently buried some part of the existing deep marine meandering channel (the blue arrow). 

 
Figure 12. The apparent dip attribute for BSFR1 surfaces at (A) 0°, (B) 45°, (C) 90°, (D) the Isopach 
map, and (E) 3D turbidite geobody extraction where darker shades indicate mud-rich turbidite while 
lighter shades indicate sand-rich turbidite. The blue arrows indicate the deep meandering channels 
and the black arrows indicate the existence of a major fault. 

Recent studies done by Illidge, et al. [50] on the same area indicate the presence of turbidite 
deposits generated during the FSST stages. The main turbidites geobodies were found right after the 
last prograding offlapping lobe where the high-density turbidite deposits are most likely to be found 
as mounded geometries. This confirms the observation in this study as shown by the maximum 
depocenter (Figure 12D) on BSFR1 surfaces which might indicate high-density turbidite deposits. 3D 

Figure 12. The apparent dip attribute for BSFR1 surfaces at (A) 0◦, (B) 45◦, (C) 90◦, (D) the Isopach
map, and (E) 3D turbidite geobody extraction where darker shades indicate mud-rich turbidite while
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Recent studies done by Illidge, et al. [50] on the same area indicate the presence of turbidite
deposits generated during the FSST stages. The main turbidites geobodies were found right after
the last prograding offlapping lobe where the high-density turbidite deposits are most likely to be
found as mounded geometries. This confirms the observation in this study as shown by the maximum
depocenter (Figure 12D) on BSFR1 surfaces which might indicate high-density turbidite deposits.
3D geobodies are modeled in this study by integrating the 3D horizons framework, system tracts,
internal seismic geometry, and maximum depocenter data. Illidge et al. [50] concluded that the
proximal portion of the turbidite is sand-rich compare to the distal portion which is mud-rich. In terms
of hydrocarbon play, the underlying MFS surface might act as a potential source rock and the late stage
of an FSST stage might have generated a potential seal layer [50].

CC/SU1 Surfaces

The CC/SU1 is part of a forced regressional surface where there is a high rate of progradation due
to a significant sea-level fall at the shoreline. Figure 13 shows the downstepping, offlapping pattern,
and progradational movement of the sediment deposits due to force regression. The yellow line
indicates the paleo-coastline at the end of the falling stage system tract and the red line indicates the
progression and lateral extent of sediment deposition. The product of wave reworking as mentioned
before is evident on the dip attributes (Figure 13A–C). Sediment continues to be deposited basin-ward
and on top of existing surfaces as offlap and this can be seen in the distribution of the depocenter or
the maximum deposition of sediments (Figure 13D). The deep marine channel continues to be buried
by basin-ward movement of sediment on top.
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MRS1 Surfaces

MRS1 is part of a lowstand system tract where there is a steady rise in sea-level. This stage is
marked by a steady progradational and aggradational movement of sediment. Based on Figure 14, due
to an influx of sediment depositions, the lateral extent of sediment deposition (the red line) has shifted
significantly basin-ward and has created a favorable setting for the realignment and redevelopment of
sand waves at the basin region. Sand waves are clearly visible when the apparent dip is at a 0◦ and
90◦ angle. The existing deep marine channel is completely overlaid on top by the massive basin-ward
influx of sediment. It is also possibly shifted basin-ward at the deep marine setting and low energy
environment where the formation of the deep marine channel is favorable. Figure 14D shows the
distribution of the sediment depocenter occurring during the lowstand system tract and that it is in
agreement with the progradational and aggradational movement of sediment.
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4.2.3. Maximum Curvature

The curvature attribute has been known to be very powerful and a useful tool in delineating
faults that are smeared due to inaccurate migration [51] and predicting the orientation and distribution
of fractures [52,53]. Curvature also aids in the mapping of stratigraphic features such as channels,
levees, bars, and contourites, especially in a region where older rocks have undergone differential
compactions [54].

In this study, a Maximum Curvature attribute was used and applied to each stratigraphic layer
of interest and the outcome is shown in Figure 15. Sigismondi and Soldo [51] clarified that the use
of a correct color map with an appropriate range of values is important for better visualization as
the wrong use of a color map can result in the loss of structural and stratigraphic seismic definitions.
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In this study, we either used a grey scale or a coherency color map as it helped in enhancing subtle
discontinuities. Considering Figure 15, the maximum curvature was able to identify the lateral extent
of the deep marine meandering channel on each stratigraphic surface. Especially on the MFS1 surface
(Figure 15A), three subtle features noted by the colored arrows are observed and later confirmed to be
a series of three separate river channels as indicated in Figure 15E. This subtle feature is not clearly
observed in the similarity or dip attributes. Other stratigraphic features that were highlighted by the
maximum curvature are sand-waves and pockmark.
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In terms of structural features, a major fault is observed on each stratigraphic surface trending
northwest-southeast as denoted by the black arrows. The existence of this major fault is confirmed by
viewing it in the seismic inline section (Figure 16). The only problem with the maximum curvature is
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that it does not really indicate the upthrown (or anticlinal features) or the downthrown (or synclinal
features) part of the fault block without directly viewing it from the seismic section.Geosciences 2018, 8, x FOR PEER REVIEW  18 of 21 
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Figure 16. Cross-section of a major normal fault observed in the F3 block which is representing profile
a’b’ drawn in Figure 15A.

5. Conclusions

This research paper has managed to show how integrated interpretation of geological information
allows researchers to accurately interpret the depositional environment of a basin as well as locating
both seismic and sub-seismic geomorphologic features. By utilizing the steering cube and the wheeler
transformation, we improved the accuracy in interpreting stratigraphic surfaces and system tracts
when compared to the conventional interpretation of stratigraphic surfaces that relies on manual
interpretation and consumes a lot of time. In this study, three depositional sequences were identified
using synchronized analyses of both the structural and wheeler domain and following the Depositional
Model IV. Each sequence has a set of packages comprising TST, HST, FSST, and LST and their
corresponding stratigraphic surfaces. Defining the stratigraphic surfaces allow us to accurately
observe the accumulation of sediment and changes in geomorphology on each stratigraphic surface
which was demonstrated in this study by applying appropriate seismic attributes. As we move along
the basal cycle, changes in geomorphology and the evolution of sediment and depocenter on each
stratigraphic surface is very much evident in the response to sea level changes and hence control of
the sediment deposition or influx. The basin-ward and/or land-ward movement of sediment is very
clear as indicated by the changes in geomorphology. In addition, by analyzing the seismic internal
geometry, system tract, well log, and depocenter, it enables us to locate the presence of turbidite
geobody generated during the late stage of FSST as predicted. For future research, this study might be
useful in defining a new petroleum play if the drilling core data and analog study are integrated with
the present workflow.
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