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Abstract: Drought is one of the most serious climatic and natural disasters inflicting serious impacts
on the socio-economy of Morocco, which is characterized both by low-average annual rainfall and
high irregularity in the spatial distribution and timing of precipitation across the country. This work
aims to develop a comprehensive and integrated method for drought monitoring based on remote
sensing techniques. The main input parameters are derived monthly from satellite data at the national
scale and are then combined to generate a composite drought index presenting different severity
classes of drought. The input parameters are: Standardized Precipitation Index calculated from
satellite-based precipitation data since 1981 (CHIRPS), anomalies in the day-night difference of Land
Surface Temperature as a proxy for soil moisture, Normalized Difference Vegetation Index anomalies
from Moderate Resolution Imaging Spectroradiometer (MODIS) data and Evapotranspiration
anomalies from surface energy balance modeling. All of these satellite-based indices are being used
to monitor vegetation condition, rainfall and land surface temperature. The weighted combination
of these input parameters into one composite indicator takes into account the importance of the
rainfall-based parameter (SPI). The composite drought index maps were generated during the
growing seasons going back to 2003. These maps have been compared to both the historical, in situ
precipitation data across Morocco and with the historical yield data across different provinces
with information being available since 2000. The maps are disseminated monthly to several main
stakeholders’ groups including the Ministry of Agriculture and Department of Water in Morocco.

Keywords: drought monitoring; remote sensing; composite index; CDI; SPI; NDVI; ET; LST

1. Introduction

In Morocco, agriculture is an important sector for economic and social development. The agricultural
sector contributes approximately 15% of the national Gross Domestic Product (GDP), representing
nearly 1.5 million farms and supporting almost 40% of the country’s employment. Agriculture is the
most vulnerable sector within the Moroccan economy because over 90% the country’s agriculture is
rain-dependent, located in the arid and semi-arid areas of the country and characterized by limited
soil and water resources.
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Agricultural drought is a recurrent phenomenon in many parts of Morocco, primarily in the
non-irrigated areas. It happens when rainfall and soil moisture conditions are inadequate to support
healthy crop growth to maturity during the growing season. This situation causes extreme crop stress
and physiognomic changes within vegetation, which can be detected by satellite sensors through
the use of vegetation indices. These indices are sensitive to vegetation changes affected by moisture
stress [1]. Agriculture faces several constraints in Morocco with one of the most important being the
dependence of agriculture on weather conditions. In recent years, Morocco has faced recurrent rainfall
deficits jeopardizing agricultural production and causing farmers to face shortages in water and fodder.
These drought conditions led to the deterioration of living conditions of local populations and the
environment. According to the statistics of the Moroccan Ministry of Agriculture, the last two decades
were characterized by the presence of at least five periods of drought. Table 1 lists some of the most
significant drought events with numbers of specific losses (rain, cereal production, socio-economic).

Table 1. Socio-economic impacts of recent droughts in Morocco.

Growing
Season

National Cereal
Production (MQ)

CP Loss Compared
to the Average (%)

Rainfall Loss Compared
to the Average (%)

Remarks from the RMSI
Report [2]

1998–1999 36.3 42.7 35.0 Reduced incomes caused GDP to
fall by 1.5% in 1999

1999–2000 18.5 70.8 24.5
275,000 people were affected;
economic damage equalled
US$900 million

2000–2001 44.7 29.5 8.2
Morocco imported about 5 Million
Tons of wheat in 2001 compared to
2.4 MT in normal year

2006–2007 23.4 63.1 32.1
700,000 people were affected;
grain production reached less than
the half of the normal year level

2011–2012 50.7 20.0 31.5 Morocco executes the NDMP

2015–2016 33.5 47.2 43.0 Morocco executes the NDMP

MQ: Million quintals, CP: cereal production, NDMP: National Drought Mitigation Program.

Morocco is characterized by a highly contrasting climate with a rainfall regime dominated by
high irregularity in the spatial distribution and timing of precipitation across the country. For example,
the amount of precipitation is very different between the north-western plains (300 mm) and the
southern regions of Morocco (100 mm). In addition to this spatial variability, rainfall is seasonally
irregular with considerable inter-annual variations in the onset and end of the rainy season, as well as
the timing of the most humid month for a given region. Annual total rainfall can be double or triple
the amount of a normal year in wet years or not exceed 40–50% of this value in dry years.

This situation is likely to deteriorate as a result of climate change. In recent decades, the Mediterranean
region has suffered from climatic variations with an increase in extreme drought events resulting in
significant reductions in rainfall and surface water runoff, which are critical to support agricultural
production in the predominately rainfed systems of the region [3]. A major challenge facing Morocco
is the impact of climate change and the increased frequency of drought. Climate observations during
the last four decades have shown that Morocco is experiencing major impacts from climate change
through increased temperatures and decreased precipitations [4].

Historically, Morocco has experienced several years of drought with greater frequency and with
high intensity [2]. The impacts of these droughts on the national economy are of great importance.
For example, in 2000, which was a drought year, the contribution to the country’s overall gross domestic
product from agricultural GDP was only 11.4% with total cereal production less than 20 million quintals
at national level. By comparison, the contribution of agricultural GDP was 30.4% of the GDP in 2009,
which was a very wet year, with national cereal production exceeding 100 million quintals.



Geosciences 2018, 8, 55 3 of 18

The main objective of this study is to use several satellite-derived data sets that characterize
relevant components of the hydrologic cycle related to drought into a new, gridded Moroccan
Composite Drought Indicator (MCDI) that will be used to support various drought-related
decision-making activities within the different concerned departments (Ministry of Agriculture,
Department of Water).

2. Background: LDAS-Morocco Project

The Moroccan Land Data Assimilation System (LDAS-Morocco) project was designed within the
framework of a regional project, financed by the Global Environment Facility (GEF), and managed by
the World Bank with the support of the United States Agency for International Development (USAID)
and the American National Aeronautics and Space Agency (NASA). The objective of the regional
project is to improve water resource management and capacity building at the Middle East and North
Africa (MENA) region scale. In Morocco, the project was coordinated by the Royal Centre for Remote
Sensing (CRTS) closely with NASA, this project aims to improve the management of water resources
through satellite-based earth observations, in-situ information and modelling.

Among the components of LDAS project, the drought monitoring component aims to produce
a regular monthly bulletin on the status of drought at national scale by combining different remote
sensing data sources that describe current relevant environmental conditions linked to drought that
include precipitation, soil moisture, and vegetation health. The overall objective of this project is to
contribute to improving the detection and potentially provide early warning in order to reduce its
impact on the agricultural and socioeconomic sectors in Morocco.

This paper describes the methodological steps for these various remote sensing data sets to
calculate a Composite Drought Indicator (CDI) that monitors agricultural-related drought conditions
across Morocco. The first section summarizes the methodology used to select the rainfall data source
used to calculate the Standardized Precipitation Index (SPI) that represents the precipitation input into
the CDI. Second, the other remote sensing indices used in the CDI are described. The methodology
of combining the various remote sensing data sets into the CDI and validation of results are then
presented along with some examples of the products generated.

3. Drought Monitoring and Conceptualization of the CDI

Because of the difficulty of objectively quantifying the characteristics of drought (duration,
intensity and spatial extent), much effort has gone into the development of techniques for monitoring
and analysis of drought through the calculation of various indices and indicators. Specific indicators
have been developed for different sectors (e.g., water resources and agriculture) based on both in situ
and remote sensing-based information related to precipitation, soil moisture, evapotranspiration (ET),
and vegetation health. Each indicator/index has its own inherent strengths and weaknesses and its
utility is often tailored for a specific application or decision-making activity. As a result, this study
attempted to integrate several indicators/indices that represent different components of the hydrologic
cycle into a single CDI. The composite approach taken in this project is intended to leverage the
relevant strengths of each indicator and provide a single index that is representative of various parts of
the water cycle that influence agricultural-related drought conditions. It also addresses the fact that no
single index can cover all aspects of drought. Using a “convergence of evidence” approach determined
by agreement and consensus amongst a variety of indicators integrated into the CDI can lead to more
confidence in the drought conditions being depicted more accurately during both onset and decay of
the drought.

The CDI approach developed in this project represents a remote sensing-based drought monitoring
tool that incorporates information related to precipitation, ET, soil moisture, and vegetation health.
The specific data inputs for these parameters in the CDI include the Standardized Precipitation Index
(SPI), thermal-based ET, a thermal-based proxy of soil moisture, and the Normalized Difference



Geosciences 2018, 8, 55 4 of 18

Vegetation Index (NDVI) anomaly. Descriptions of each of these data sets is provided in the
following section.

4. Materials and Methods

4.1. Data Sources

The recently published “Handbook of Drought Indicators and Indices” [5] provides a good
description of the most commonly used drought indicators/indices that are being applied for
drought monitoring, early warning and information delivery systems. This guide describes the
different drought monitoring approaches based on the use of a single indicator/index, a multiple
indicators/indices or composite indicators. A detailed list of indices and indicators is given in this
handbook to help users to decide which of these indicators are more appropriate for each type of
drought. The indicators and indices are categorized and grouped into different classes: meteorology,
soil moisture, hydrology, remote sensing and composite indicators.

The CDI developed in this project is based on a combination of four different parameters derived
from various satellite-based earth observation products that are generated on a monthly basis to
produce a monthly time series of CDI over Morocco for agricultural drought monitoring. The input
indices used in this study are described below. This set of remote sensing-derived data inputs was
chosen based on the state of the art and best practices of many agricultural drought monitoring systems
throughout the world [5]. Criteria used to determine the most suitable inputs for analyses was based
on: data access, data reliability and long-term availability, the best operational resolution possible,
and commonly accepted and operationally used variables by other agricultural focused drought
early warning systems around the world. Several sources of information on the different indices and
indicators being used nowadays around the world for drought monitoring and early warning exist
and are supported by institutions of high reputation in the field, like the National Drought Mitigation
Centre, the World Meteorological Organization and the European Drought Observatory [5].

4.1.1. NDVI Anomalies

The United States Geological Survey Earth Resources Observation and Science (USGS EROS)
Center generates and distributes a set of satellite-derived vegetation products generated from
MODIS. These products (called eMODIS) are used for operational land monitoring applications
requiring near-real time NDVI data for comparison against historical records. An eMODIS 10-day
maximum-value composite of NDVI images at 250m spatial resolution are used to monitor the general
state of vegetation conditions [6]. The data and products produced are available for download from
the Famine Early Warning Systems Network (FEWSNET) data portal.

The CDI incorporates the eMODIS-derived NDVI anomaly that represents how anomalous the
current vegetation conditions are the historical conditions for that time period across the MODIS
observational record. The NDVI anomaly is calculated by subtracting the mean NDVI values (2001 to
present) for a 10-day, decade period from the current-year NDVI value for the same time period during
the year. Temporally smoothed, 250 m MODIS NDVI data are used to generate the gridded anomaly
NDVI data set where negative values represent less vigorous vegetation than average, and positive
values represent areas that are more vigorous in the current year. Figure 1 below shows the NDVI
anomalies map for February 2016.
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Figure 1. Example of the Normalized Difference Vegetation Index (NDVI) anomalies for February 2016.

4.1.2. Evapotranspiration Anomalies

Evapotranspiration is the combination of soil evaporation and transpiration from vegetation.
Actual ET is produced using the Operational Simplified Surface Energy Balance (SSEBop) model [7]
for the period of 2003 to present. The model SSEBop is based on the simplified surface energy balance
(SSEB) approach based on estimates of daytime land surface temperature [8,9] with parameterization
for operational applications within FEWSNET. The unique feature of the SSEBop parameterization is
that it uses pre-defined, seasonally dynamic, boundary conditions that are unique to each pixel for the
“hot/dry” and “cold/wet” reference points. The ET anomaly gridded data products are open-access
and acquired from FEWSNET.

ET anomaly data used in the CDI is calculated using the SSEBop method and represents the ratio
of actual ET and the corresponding median ETa, expressed as a percentage value. Figure 2 below
presents an example of ET anomaly for February 2016.
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Figure 2. Example of the evapotranspiration (ET) anomaly for February 2016.

4.1.3. Land Surface Temperature-Based Soil Moisture Proxy Anomalies

Vegetation growth is impacted by surface and subsurface soil moisture and the availability of
soil moisture for soil evaporation and canopy transpiration plays an integral role in the emergence
and impact of drought. Remote sensing techniques for soil moisture monitoring and quantitative
retrieval are mainly based on active and passive microwave observations [10]. However, relative
soil moisture can also be estimated using land surface temperature (LST) observations in the thermal
infrared region [11,12]. Diurnal changes in LST can contain important information about soil moisture.
It has been shown that the evolution of LST in the morning hours is strongly dependent on current soil
moisture conditions, as wet soil or well-watered vegetation will heat up more slowly, and dry soil or
stressed vegetation will heat up more rapidly [11–13].

Observations of LST from sensors such as MODIS provide long-term data continuity for deriving
anomalies in the difference between day and night LST that can be used as a proxy of soil moisture
conditions. Here, twice-daily observations of LST are taken from the MODIS Terra sensor, where LST
is retrieved using a generalized split-window technique [14–16]. The daily L3 global 0.05 Climate
Modelling Grid LST product (MOD11C1) and corresponding QC flags are applied and re-sampled to
the study domain. These MODIS day-night LST anomalies are used as indicator of soil moisture in
the current combined drought index. Figure 3 presents an example of LST day_night difference for
February 2016.



Geosciences 2018, 8, 55 7 of 18

Geosciences 2018, 8, x FOR PEER REVIEW  7 of 18 

 

 
Figure 3. Example of the land surface temperature (LST) day-night difference for February 2016. 

4.1.4. SPI Calculation from CHIRPS Data 

The SPI, which is the most commonly used indicator to characterize drought globally according 
to the Lincoln Declaration on Drought Indices [17], was incorporated into the CDI to represent the 
precipitation component. The SPI [18], is an indicator based on a long history of rainfall (at least 30 years) 
and quantifies the difference in rainfall from one-time period relative to historical average rainfall in 
the same period. The SPI has the flexibility to be calculated over a range of time periods spanning 
from one month (seasonal droughts) to 2 years (prolonged droughts). Given that the SPI is a 
normalized index, it allows drought conditions to be compared directly over time and between 
different climatic and geographic zones. Using the SPI, drought begins when the index begins to be 
systematically negative (reaches a value of −1.0 or less) and ends with the positive value of SPI [19].  

To calculate the SPI for the CDI, rainfall data from CHIRPSv2 (Climate Hazards Group InfraRed 
Precipitation with Stations) was used. CHIRPS rainfall data represents satellite estimates corrected 
by the integration of rainfall data from weather stations on the ground. These data are available from 
1981 to present [20]. Main satellite data used for creation of CHIRPS are: (1) Climate Hazards 
Precipitation Climatology (CHPClim) that are in the form of monthly average precipitation with high 
spatial resolution (0.05°) derived from the combination of satellite observations data, average rainfall 
weather stations and parameters for rain prediction such as elevation, latitude and longitude [20]; (2) 
thermal infrared satellite data from two NOAA sources, the National Climatic Data Center (NCDC) 
and the Climate Prediction Center (CPC), that extract the thermal infrared data from different 

Figure 3. Example of the land surface temperature (LST) day-night difference for February 2016.

4.1.4. SPI Calculation from CHIRPS Data

The SPI, which is the most commonly used indicator to characterize drought globally according
to the Lincoln Declaration on Drought Indices [17], was incorporated into the CDI to represent the
precipitation component. The SPI [18], is an indicator based on a long history of rainfall (at least
30 years) and quantifies the difference in rainfall from one-time period relative to historical average
rainfall in the same period. The SPI has the flexibility to be calculated over a range of time periods
spanning from one month (seasonal droughts) to 2 years (prolonged droughts). Given that the SPI
is a normalized index, it allows drought conditions to be compared directly over time and between
different climatic and geographic zones. Using the SPI, drought begins when the index begins to be
systematically negative (reaches a value of −1.0 or less) and ends with the positive value of SPI [19].

To calculate the SPI for the CDI, rainfall data from CHIRPSv2 (Climate Hazards Group InfraRed
Precipitation with Stations) was used. CHIRPS rainfall data represents satellite estimates corrected
by the integration of rainfall data from weather stations on the ground. These data are available
from 1981 to present [20]. Main satellite data used for creation of CHIRPS are: (1) Climate Hazards
Precipitation Climatology (CHPClim) that are in the form of monthly average precipitation with high
spatial resolution (0.05◦) derived from the combination of satellite observations data, average rainfall
weather stations and parameters for rain prediction such as elevation, latitude and longitude [20];
(2) thermal infrared satellite data from two NOAA sources, the National Climatic Data Center (NCDC)
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and the Climate Prediction Center (CPC), that extract the thermal infrared data from different
geostationary satellites (Meteosat-5, Meteosat-7, GOES-8, GOES-10, GMS-5), as well as passive
microwave observations (from NOAA-15, NOAA-16 and NOAA-17); (3) NASA Tropical Rainfall
Measuring Mission (TRMM) 3B42 precipitation data; (4) atmospheric model rainfall fields from the
NOAA Climate Forecast system (CFSv2 version); and (5) in-situ precipitation observations obtained
from different weather stations. All the data sources are compiled as 5-day rainfall accumulations and
CHIRPS data are produced globally at a 0.05◦ gridded resolution.

As mentioned above, the SPI was designed to quantify the precipitation deficit for multiple time
scales. These timescales reflect the impacts of drought on different water resources. For example,
meteorological and soil moisture conditions (agriculture) respond to precipitation anomalies on
relatively short timescales (1 to 6 months) whereas longer time periods (12–36 months) may better
reflect surface reservoir or groundwater levels associated with hydrological drought. In the present
study, a 2-month SPI was calculated for the CDI that provides a comparison of the precipitation
over a specific 2-month period with the historical precipitation totals from the same 2-month period
dating back to 1981. The CHIRPS rainfall data set was used to generate the 2-month SPI calculations.
The long-term CHIRPS rainfall record was fit to a probability distribution, which was then transformed
into a normal distribution so that the mean SPI for the pixel and desired period is zero [21]. Figure 4
below shows an example of the 2-month SPI calculated at national scale for Morocco for February 2016.
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4.2. Composite Drought Indicator Methodology and Generation

The four input data sets described above cover the study area with different spatial resolutions
(5 km for SPI from CHIRPS, 250 m for NDVI, 1 km for ET and LST from MODIS). In order to have
a uniform spatial resolution for the CDI, all four indices were sampled to a 5-km spatial resolution
consisting of 25,589 grid cells in total over Morocco. The CDI calculation methodology combines the
four input data sets as given by the Equation (1):

CDI = a × SPI + b × NDVI + c × LST + d × ET, (1)

where a, b, c and d are the respective weights assigned to each input data.
For each input parameter (SPI, NDVI, ET and LST), the historical data for each grid was

analyzed to rank the current condition within a historical context using a ranking percentile approach.
The percentile value for each input is then weighted and combine using the previous equation. All the
grid cell calculations are stored in a SQL Server database and Python is used to help automate and
script the monthly updates and CDI calculations. Figure 5 shows the flowchart of the proposed
CDI methodology.
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Considering the fact that the weight of each input parameter represents the degree of its
approximation to reality observed in a period of real drought, a scientific approach was adopted to
assign weights to each parameter of the CDI. This method is based on the confrontation of productivity
gaps between a year of severe drought (2006–2007) as compared to a reference year. Thus, locating
areas with high impacts of previous drought was the first step. This information was provided by
data on the evolution of grain production in different regions and provinces of Morocco for the main
crops (wheat) obtained from the Ministry of Agriculture. Then, for each province, the rate of change
(increase or decline) during a drought year compared to a normal or higher situation (2009–2010) in
term of productivity was defined.

The deviation of the productivity between the two years (severe drought and favorable year)
shows the distribution of areas that have been most affected (impacted), whose productivity has
dropped in a significant way. The result was presented in a map of deviations from normal (Figure 6).
This map is then overlaid to each of the CDI input parameters in order to determine their relative
weights. The approach is based on a statistical calculate of the incidence proportions of each parameter
with the most affected areas during a severe drought.
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This procedure will allow assigning weights to the different factors. The highest weight is
attributed to the factor that, from a statistical point of view, reflects more the reality during a period
of drought. The methodology is based on the comparison between each CDI input parameter maps
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and real drought episodes from the past. The main step consists on the combination of the map of
cereal productivity gaps between the two extreme seasons (2006–2007 and 2009–2010) and those of
each input data (SPI, NDVI, ET and LST) at national scale. For example, the yearly cumulative NDVI
maps overlaid to the map of cereal productivity gaps highlight the areas corresponding at the same
time to high cereal productivity deficit and low NDVI values. Hence, the incidence proportion of low
NDVI classes with areas of severe drought (high productivity gaps) corresponds to the relative weight
of NDVI. The same method was applied to the other parameters.

The second step is to apply the same comparison at regional scale by choosing three specific
zones (Chaouia, Fes-Saiss and the Oriental) which are very fragile and sensitive to drought. The two
first zones are dominated by rainfed cereals and the third one is characterized by the presence of
rangelands. For each zone, several control points were selected in the middle of high density rainfed
crops and a statistical analysis was conducted using historical data available for these zones.

The next step was to compare the monthly CDI values generated over the last 10 years with
monthly ground station precipitation measurements acquired from the Moroccan Meteorological
Service. Based on these analyses, it was concluded that the rainfall-based parameter (SPI) has the
strongest relationship with drought and its onset, duration and the intensity over the retrospective
period. The amount and temporal distribution of precipitation during the growing season was
determined to be a key factor influencing agricultural productivity. For this reason, the SPI was given
a higher weighting in the CDI formula. The other three indices (NDVIa, ETa and LSTday_night) are
considered factors resulting from the impact of rainfall deficit and were equally weighted. The relative
weights of each CDI input data are: SPI: 43.16%, NDVI: 19.03%, LST: 18.87% and ET: 18.94%. Finally,
the rounded values of these weights are respectively: SPI: 40%/NDVIa: 20%/LST: 20%/ETa: 20%.
The CDI values calculated after the weighting were then re-ranked against the history to produce the
final CDI maps.

The CDI was then recalculated using the new weights and the monthly-generated CDI map
results compared to in situ data (ground station precipitation data and cereal yields). The final CDI
map contains four classes corresponding to the drought intensity categories that are associated with
historical occurrence determined using the percentile approach (Table 2) as adapted from the U.S.
Drought Monitor scheme [22]:

Table 2. Drought intensity categories.

Drought Classes Class Names CDI Percentiles Significance

Normal >20 No drought
D1 Moderate Drought 10 to 20 once per 5 to 10 years
D2 Severe Drought 5 to 10 once per 10 to 20 years
D3 Extreme Drought 2 to 5 once per 20 to 50 years
D4 Exceptional Drought 0 to 2 once per 50 years and more

5. Results and Validation

Since the CDI is calculated for each grid cell, the final map presents a mosaic of pixels
corresponding to a specific drought category. In order to facilitate the analysis of the generated
maps, we combined the raw raster CDI maps with a spatial data layer containing administrative
boundaries (provinces and districts). Then, a statistical zoning calculation was applied to spatially
aggregate the drought severity classes of the zone’s grid cells to a majority severity class that is assigned
to in the corresponding administrative unit.

The objective of this statistical zoning step is to simplify the CDI maps for end users by assigning
to each province or district a drought severity class. Decision makers can then evaluate the impact of
drought at each province or district level. Figure 7 shows a time series of CDI maps generated during
the 2015–2016 agricultural season.
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Figure 7. Composite drought indicator (October 2015 to April 2016).

From the above, it can be observed that the 2015–2016 growing season was strongly affected by
drought. The persistence of exceptional, extreme and severe drought classes during the most sensitive
period of the agricultural cycle (December–January), had a negative impact on non-irrigated cereal
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zones. These zones (about 5 million hectares) are located in the center, the eastern and the northern
parts of Morocco and are very sensitive to drought.

The growing season (2015–2016) recorded a lack and a delay of rain as of November. Since the
beginning of December, a rainfall deficit has started to increase compared to a normal year to exceed
63% at the end of January. The effects worsened during the following months with a rainfall deficit
continuing to increase until the end of the season with about 50% [23].

At the national scale, Figure 8 shows that more than 90% of the national territory of Morocco
(except the southern provinces) experienced drought during December 2015 and January 2016.
This graph also shows that drought persisted on more than 50% of the national territory during
the 2015–2016 season.
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These first results at a national scale present a global characterization of drought during the
2015–2016 growing season. For a more in-depth evaluation of the CDI, two pilot areas were selected
for further analysis: Settat and Meknes. The Settat province is located in the Chaouia region (less than
100 km in the south of Casablanca), which is relatively flat with a mean elevation of 400 m above mean
sea level. Soil classes of the area are relatively homogeneous and generally characterized by loamy
clays that are deep and highly productive. The climate of the region is semi-arid with hot and dry
summers. Agriculture is dominated by non-irrigated cereals.

The Meknes site is part of the Saiss region (about 250 km north east of Casablanca), which is a very
wide range of plains and plateaus of central northern Morocco. The soils in this site are characterized
by the dominance of clays with low concentrations of organic matter. The mean elevation is about 600
m above mean sea level. The region is characterized by a Mediterranean climate and is dominated by
cereals and olive trees.

Agriculture activities in these two areas are strongly rainfall dependent. Figure 9 below presents
the expansion of drought characterized by the evolution of CDI during 2015–2016 growing season in
these two pilot areas.
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Figure 9. CDI evolution in Settat and Meknes regions (2015–2016).

This figure shows that both Settat and Meknes zones were under drought during most of the
2015–2016 growing season. Extreme and exceptional drought classes dominated the studied areas
during the most sensitive period in the season (December–January), which has a negative impact on
the winter cereals yields.

In terms of validation, it is important to understand how the individual data inputs (SPI, NDVI,
ET and LST) represent drought conditions and reflect the geography extent, severity and duration of
drought. The objective is to establish the accuracy and performance of the composite drought index
across varying drought severity conditions. The methodology adopted consists on the comparison
between the CDI generated maps (2003–2012) and the historical on the ground precipitation data at
national scale on one hand and between CDI maps and historical yields across different provinces
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available between 2000 and 2012 on the other hand. The graphs in Figure 10 illustrate the result of this
combined comparison made between the two pilot areas: Settat and Meknes.
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Figure 10. Comparison between annual cumulated rainfall through the end of February since 2002–2003
growing season (Moroccan Meteorological Service), annual cereal yields (Ministry of Agriculture) and
the number of drought occurrences per year for the Settat (a) and Meknes zone (b).

The analysis of the historical on the ground precipitation data at the national scale allows for the
identification of two extreme situations: a dry year (2006–2007) and a wet year (2009–2010). These
situations differ from one agricultural zone to another. For example, in the Saiss zone (Meknes), the wet
year was 2008–2009 with a cumulative rainfall (from October to February) of about 490 mm.

The graphs show that the response of the CDI, which is solely based on remote sensing
observations, matched up with the reported drought information that was measured (rainfall and
yields) during 10 years over these two benchmark areas. In the Settat zone for example, the growing
seasons with more than three dry months (CDI < 20) are: 2004–2005, 2006–2007, 2007–2008 and
2011–2012. These years were characterized by a cumulative rainfall of less than 200 mm and total
cereal production less than 3000 Tons. The other growing seasons are considered normal with a total
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rainfall (through the end of February) greater than 350 mm and the annual cereal production exceeding
6000 Tons. Note that for the 2009–2010 growing season that despite the high level of precipitation
measured in the Settat region, the remote sensing drought index depicted a moderate drought in this
area during December 2009. Indeed, the total rain measured in the Settat region during this month was
more than 160 mm, and vegetation wasn’t yet well developed at that point in time. Hence, some CDI
input parameters (anomalies of NDVI, LST day-night difference and ET) indicated moderate drought
situation in this zone.

Concerning the Meknes zone, the same growing seasons like in Settat zone (2004–2005, 2006–2007,
2007–2008 and 2011–2012) were identified as dry years according to the available measured data
(total rainfall to February less than 300 mm and annual cereal production around 1000 Tons).
Each of these growing seasons included at least 3 dry months detected by the CDI. This composite
indicator CDI allows detecting two main components: the meteorological drought due to rainfall
anomalies and precipitation deficit calculated from satellite data (CHIRPS) and compared to the ground
precipitation data; and the agricultural drought highlighted by remote sensing based observations of
the vegetation cover (NDVI anomalies, evapotranspiration anomalies and day-night difference land
surface temperature).

6. Findings and Recommendations

Climate observations during the last 40 years have shown that Morocco is experiencing major
impacts from climate change; e.g., warming of temperatures and rainfall deficiency. A significant
consequence is the increase in frequency and intensity of droughts. The risk of drought in Morocco
becomes a structural factor of the climate due to its recurrence and the sustainability of its impacts at
different levels (e.g., socially, economically, ecologically). The apprehension and monitoring of this
phenomenon require new technologies and more effective instruments to produce and disseminate
information about drought: earlier, reliable, gridded and cost-effective.

The objective of this study is to develop an operational methodology for drought monitoring
based on the use of remote sensing techniques combined to meteorological data and modelling.
The combined drought index highlighted in this paper constitutes a new methodology of drought
monitoring in Morocco. The added value is that we can monitor vegetation state at each 5 km grid
cell every month by combining different input parameters: standardized precipitation index by using
precipitation data from CHIRPS, anomalies in the day night difference of land surface temperature as a
proxy for soil moisture, vegetation index anomalies and evapotranspiration anomalies from modelling.

The weighted combination of these input parameters into one composite indicator generated
during the growing season (October to April) takes into account the importance of the rainfall-based
parameter (SPI). The drought index maps are disseminated to the main users in Morocco (Ministry
of Agriculture, Department of Water). These maps can be used also by other stakeholders: insurance
companies, institutes of research and private farmers.

Finally, as recommendations for CDI near real time validation, it is necessary to identify potential
expert evaluators representing the different regional services of the Ministry of Agriculture and other
departments and sectors (e.g., climate experts, agricultural experts, agricultural producers, natural
resource managers, and private sector) to assess and validate the CDI maps and input variables
information during every growing season. This network of evaluators across different regions and
agricultural provinces in Morocco can help to collect quantitative and qualitative information regarding
drought and vegetation conditions for the local area. The mechanism to collect information from
evaluators could be a standard survey to be completed via email, phone app, or website. The feedback
can be used to evaluate the accuracy of the CDI maps across the growing season.

The system implemented in the framework of this project can be applied in other regions with
different context, only the inputs and the weights have to be adapted to the specific characteristics of
these regions.
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