
Supplementary Material 

S.1 Additional testing of the scatterbin histogram approach 
To help capture the range of observed snow water equivalent (SWE) and snow cover fraction 

(SCF) relationships, a histogram analysis is introduced that allows for reducing the dispersion of data 
and retaining most measurements within the analysis. A binned scatterplot method is used where 
SNOwpack TELemetry (SNOTEL) SWE observations (along the x-axis) are grouped into bins of equal 
length (e.g., 40 mm of SWE) and the corresponding MODIS SCF observations are averaged within 
the given bin. For each bin, a boxplot can be produced to reflect the spread in MODIS SCF values for 
that given bin and be represented by that bin’s statistics (mean, median, minimum/maximum, etc.). 
Figure S1 presents a range of some of the statistics per 40 mm SWE bin for the Washington (WA) and 
Colorado (CO) domains. The median values tend to be higher than the averages, where the median 
is affected by the amount of 100% SCF values across the many SWE bins. In this study, the average 
SCF (arithmetic mean) of each SWE bin was used.  

To show the robustness of the scatterbin approach, another set of binned scatterplots were 
applied to the data whereby an equal number of SNOTEL SWE observations were grouped per bin 
with SCF averaged across each new SWE bin. Here, 1000 SWE values were grouped into each bin. To 
show the differences in the distribution of observations per bin, Figures S2(a) and S2(c) highlight 
those observation count distributions for WA and CO, respectively. In adjacent plots, Figures S2(b) 
and (d), the averaged SCF values are shown for each SWE bin type, revealing tight overlaps between 
the averages of the two bin approaches, for both WA and CO. One additional test was applied to the 
binned scatterplot approach and that involved splitting the SNOTEL observation sites into two 
separate groups, thus two groups of 23 for WA (56 total sites) and 49 for CO (98 total) were set. The 
equal-length 40 mm SWE bins were applied independently to each group, and again overlaps in the 
binned averages were found for both regions (not shown). A Student t-test was employed to test 
whether a significant difference existed between the two groups (null hypothesis: No difference), and 
the final t-statistic values fell within the given two-tailed critical value at α = 0.05, not rejecting the 
null hypothesis of no difference. These tests provide support for the use of the binned scatterplot 
approach in deriving the snow depletion curves (SDC)-type relationships between the SNOTEL SWE 
and Terra MODIS SCF observations. 

S.2 Generating temporal and physiographic based SDCs 
Physiographic conditions are known to be a major control on larger spatial patterns of snow 

cover distribution, especially topography (e.g., Jost et al., 2007; Anderton et al., 2004). Also, snow 
cover patterns vary greatly throughout the year with extensive (lower) snow cover and low (high) 
snowpack depths in fall (spring), affected by snow accumulation (snowmelt) processes. As derived 
for the annually representative observation-based SDC equations in Section 4, additional obs-h SDC 
relationships are derived and evaluated for different temporal and physiographic conditions, e.g., 
elevation bands and vegetation type, for the two regions, Washington (WA) and Colorado (CO). We 
show here how observation-based obs-h curves, using the methods described in Section 4.1, vary with 
time of year and physiographic conditions. The binned scatterplot approach is applied, but for 
varying elevation band, vegetation, and monthly timescale for WA and CO. The SNOTEL SWE and 
MODIS SCF measurements are used in the same manner, but binned for these specific cases. The 
SWE bins and corresponding SCF averages are then used to derive each logarithmic equation’s slope 
and intercept coefficients by estimating these beta parameters using a Least Squares fitting-
logarithmic approach. We present the predicted SCF values and generated regression lines in the 
figures found in this section. 

For time of year, an obs-h curve is derived for each month, separately, and for each region. The 
summer months were found in different calculations to average near zero, so no curves were fit for 
this season and not shown in subsequent figures. Though for the summer months when a MODIS 
SCF observation is present, the CLM2 model-h curve is used instead to derive the predicted model 
SCF observations. The monthly fitted curves are plotted in Figures S3 and S4 for WA and CO, 
respectively, as functions of 40 mm interval SWE bins as inputs. For WA, the shape of the binned 
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points and curves change with each month, with higher predicted SCF values in fall to early winter 
months, leveling off mostly to 90% SCF at about 1000 mm of SWE (Figure S3). The curves tend to 
have lower y-intercepts in spring months and lower SCF averages, especially within the lower SWE 
binned values. The resulting monthly logarithmic curves are similar to the shape of those monthly 
curves shown in Niu and Yang (2007) Figure 2, where instead they used 1 x 1° gridded SCA maps, 
which were derived from binary snow cover datasets. For the CO region monthly curves (Figure S4), 
similar curve shape and features are found as in WA per each month, though with higher SCF values 
associated with fall to early winter months and lower SCF values into the spring months, as expected 
snow melt occurs.  

The next set of logarithmic functions derived as observation-based observation operators 
involve differences in elevation height for each region. Based on the range of SNOTEL elevation 
values, near-average mid-points of elevation are taken as a cutoff value to distinguish higher versus 
lower elevation bands (based on Andreadis and Lettenmaier, 2006; Su et al., 2008). For WA, the 
average midpoint elevation is about 1500 m and used to set the lower elevation range as 1000–1500 
m and higher elevation range as 1501–2000 m. For CO, the two elevation band ranges are 2500–3000 
m for the lower and 3001–3600 m for the upper band. Applying the scatterbin plot approach to each 
group of elevation points, two sets of logarithmic curves are generated like before for each region, 
one reflecting the lower and the other higher elevation band, and shown in Figures S5 and S6. For 
WA (Figure S5), distinctive logarithmic curves emerge between the two bands with much spread or 
difference between them. As predicted, higher SCF averages are shown with the higher elevation 
bands. Similar patterns are shown for the CO elevation band curves, but there is less spread shown, 
especially with lower snowpack SWE values present (Figure S6). 

Finally, the scatterbin approach is applied and logarithmic functions are fitted for different 
vegetation types within each region. For the vegetation classes, to ensure agreement with the original 
500m sinusoidally-projected MODIS SCF pixels used here, the MODIS 1km sinusoidal UMD land 
classification maps are used for consistency purposes. The sinusoidally based MODIS land cover 
pixels are extracted for each corresponding SNOTEL point and used for grouping the sets of SNOTEL 
SWE values and MODIS SCF pixel values in deriving the binned scatter points. The resulting 
vegetation classes included for each region and for which logarithmic functions are derived are 
shown in Figures S7 and S8, for WA and CO, respectively, including the list of classes for each region.  

For WA, five UMD classes resulted from the group of SNOTEL sites, so bins and curves were 
derived for those classes. Vegetation class 1, evergreen needleleaf forest, is shown to correspond to 
the highest observation counts per bin, and the grassland type (UMD class 10) has the least amount 
of counts for both regions. However as expected, higher SCF averages are associated with grassland 
points, and lowest values associated with mixed forest type (class 5), as shown for WA (Figures S7). 
The CO vegetation class logarithmic functions also similarly exhibit expected patterns as WA, but the 
evergreen needleleaf class function is associated with the lowest SCF averages across all 40 mm SWE 
bin inputs. This result is not too surprising, since evergreen needleleaf forests and similar vegetation 
types contribute to lower MODIS SCF detection ability through obscuring the underlying snow from 
the satellite’s view and impacts on the MODIS Normalized Difference Snow Index (NDSI) algorithm 
for discriminating snow cover from the vegetation (Hall and Riggs, 2007). 

Since the evergreen needleleaf forest class is the most dominant type at or near the SNOTEL 
sites, it can be important to show whether these derived logarithmic functions, or observation 
operators to the Ensemble Kalman filter (EnKF) scheme, are actually representative of these MODIS 
SCF averages, and do not just reflect the associated large observation counts. An independent check 
is applied here to test the curves associated with this land class. Since it was shown in Figures S5 and 
S6 that higher binned SCF averages occur at higher elevations, an elevation threshold was selected 
for each region, which is weighted toward higher elevation points, to derive a new set of scatterplot 
bins and a new logarithmic curve for observation points associated only with evergreen needleleaf 
points. For WA, the threshold selected was 1600 m, and 3200 m for CO, above which only snow 
observations are included in the bins. The results are highlighted in Figures S9 and S10 for WA and 
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CO, respectively, and indicate pretty close agreement between the elevation-screened bins and bins 
that included all snow observation values associated with evergreen needleleaf class, for both 
regions. For CO, the bins remain much lower than the annual averaged bin values and in close 
agreement with the bins, including all evergreen needleleaf points. This suggests that the evergreen 
needle class-based curves do reflect “realistic” SCF estimates, as seen from the satellite and 
determined with the NDSI algorithm.  

S.3 Temporal and physiographic SDC effects on the data assimilation (DA) experiments  
As for the SDC functions derived for the different months and physiographic conditions, Figure 

S11(a)–(d) shows a comparison of the spatially averaged predicted SCF from the EnKF experiments 
with the different observation operators applied and MODIS SCF observations for the four different 
melt seasons for WA (a,b), an CO (c,d). The four EnKF experiments include the original model-h one, 
and the annual, monthly, vegetation type and elevation band based obs-h experiments. SNOTEL 
estimated SCF is also derived using the CLM2 model-h curve and presented as spatial averages with 
the other SCF averages. The impact of the monthly obs-h curves can be seen, such as the drops that 
occur in the averaged SCF values at the start of each month, e.g., April 1st for WA’s WY2005 case. The 
vegetation based EnKF experiment shows predicted SCF values to be higher for all four snowmelt 
season cases, revealing the impact of 100% MODIS SCF on the analysis, due to the large discrepancies 
in the curve-predicted SCF values and observed values, especially for the evergreen needleleaf case 
in CO. Such results indicate that MODIS can be effective in adding snow, depending on the 
observation operator’s characteristics and how much model SWE and snow depth are present. 

To further show an example of the difference between the model-h and obs-h curves in the DA 
experiments, we present two individual SNOTEL site location comparisons from the WA domain 
(Salmon Meadows and Ollalie Meadows) for WY2004, focusing on just the impact of the vegetation 
obs-h equations and observational standard errors (Figure S12). The SNOTEL site comparisons 
include two evergreen needeleaf locations in the WA domain to highlight the model SWE analysis 
response to the model, observed annual, and vegetation class-based observation operators. The less 
steep nature of the two obs-h curves, both for the annual and vegetation-based, compared to the 
CLM2 model-h curve, produced higher SWE analysis due to the obs-h curves never reaching above 
90% SCF, allowing the 100% MODIS SCF values to “pull” the predicted SWE higher. This influence 
improves the peak SWE and early melt-off issue for the Olallie Meadows site (21b55s) in relation to 
the SNOTEL SWE (Figure S12(b)). However, the peak SWE for the Salmon Meadows site (19a02s) 
improves between March and April, but due to the model’s snowmelt and lack of windblown 
physics, retains too much SWE into May (Figure S12(a)). These two examples show how the shape of 
the SDC function can play a major role in the snow cover assimilation updates, leading to either late 
snowmelt or improved snowmelt conditions, as the observational standard errors were considered 
similar enough to not have made a large impact on the DA-based update steps. 
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Figure S1. Binned scatterplots and relevant bin statistics are shown for Washington (WA) (left) and 
Colorado (CO) (right) domains. The statistics per each 40 mm snow water (SWE) bin include average 
(black squares), median (green circles), 5th and 95th percentile ranks (purple diamonds and blue 
triangles, respectively) of MODIS snow depletion curves (SCF) values. 

 
Figure S2. Comparison of equal-length SWE histogram bins (open circles) to equal-number of SWE 
observations per histogram bin (solid green circles) for Washington (a,b) and Colorado (c,d). The 
distributions of observations per bin are shown in plots (a) and (c), and plots (b) and (d) present 
average SCF values (in %) for both 40 mm SWE bins and an equal number (1000 count) of SWE 
observations. 
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Figure S3. Monthly SDC relationships derived from binned scatterplot approach for WA, including 
water years 2000-03 and 2006-10. (a) The observation counts per bin are shown for each month 
category along with (b) the bin-averaged SCF values, and c) the predicted SCF values for each 40-mm 
SWE bin from the logarithmic functions fitted to the scatter-bin points in plot (b). Summer months 
from July to September are not included.
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Figure S4. Monthly SDC relationships derived from binned scatterplot approach for CO, including 
water years 2000-03 and 2006-10. (a) The observation counts per bin are shown for each month 
category along with (b) the bin-averaged SCF values, and (c) the predicted SCF values for each 40-
mm SWE bin from the logarithmic functions fitted to the scatter-bin points in plot (b). Summer 
months from July to September are not included. 

 
Figure S5. SDC relationships derived for two different elevation bands, 1000–1500m and 1501–2000m, 
from binned scatterplot approach for WA region. (a) The observation counts per bin are shown for 
each elevation band category along with (b) the bin-averaged SCF values overlaid with the predicted 
SCF values for each 40 mm SWE bin. 
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Figure S6. SDC relationships derived for two different elevation bands, 2500-3000m and 3001–3600m, 
from binned scatterplot approach for CO region. (a) The observation counts per bin are shown for 
each elevation band category along with (b) the bin-averaged SCF values overlaid with the predicted 
SCF values for each 40 mm SWE bin. 

 

 
Figure S7. SDC relationships derived for different vegetation types from binned scatterplot approach 
for WA. (a) The observation counts per bin are shown for each vegetation category along with (b) the 
bin-averaged SCF values, and (c) the predicted SCF values for each 40 mm SWE bin from the 
logarithmic functions fitted to the scatter-bin points in plot (b). 
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Figure S8. SDC relationships derived for different vegetation types from binned scatterplot approach 
for CO. (a) The observation counts per bin are shown for each vegetation category along with (b) the 
bin-averaged SCF values, and (c) the predicted SCF values for each 40 mm SWE bin from the 
logarithmic functions fitted to the scatter-bin points in plot (b). 
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Figure S9. An independent check was performed on SWE bins used for SCF averages for the 
dominant vegetation type, needleleaf evergreen, to see if lower bin averages really do occur with such 
forest type. For WA domain, an elevation of 1600 m was chosen to generate an independent set of 
SWE bins above which SCF values are averaged if the evergreen needleleaf vegetation type is met 
(yellow boxes). The (a) counts, (b) binned scatterplots, and (c) predicted SCF estimates are compared 
with the original set (green circles) and with the annually based curves (open-circles). 
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Figure S10. An independent check was performed on SWE bins used for SCF averages for the 
dominant vegetation type, needleleaf evergreen, to see if lower bin averages really do occur with such 
forest type. For the CO domain, an elevation of 3200 m was chosen to generate an independent set of 
SWE bins above which SCF values are averaged if the evergreen needleleaf vegetation type is met 
(yellow boxes). The (a) counts, (b) binned scatterplots, and (c) predicted SCF estimates are compared 
with the original set (green circles) and with the annually based curves (open-circles). 
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Figure S11. Comparison of spatially averaged predicted SCF (%) with the different observation 
operators and MODIS SCF observations (single pixel; purple diamonds) for the four different melt 
seasons for WA (a,b), an CO (c,d). The four EnKF experiments include the model-h EnKF experiment 
(black line), and the annual (red), monthly (blue), vegetation type (green), and elevation band (brown 
long-dashed) based obs-h experiments. 

 
Figure S12. Comparison of the model-h (purple line), annual obs-h (red line) and vegetation-based obs-
h (green line) based DA experiments with the MODIS SCF estimates (in %; blue squares) and SNOTEL 
SWE observations (in mm; open circle) for WY2004 at two WA SNOTEL sites: (a) Salmon Meadows 
(19a02s) and (b) Olallie Meadows (21b55s). Both sites are collocated with MODIS-based UMD 
evergreen needleleaf forest classes. MODIS SCF (%) values range from 0 to 100% and corresponds 
with the right y-axis (in blue). 


