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Abstract: Multi-temporal airborne laser scanning (ALS) surveys have become a prime consideration
for detecting landslide movements and evaluating landslide risk in mountain areas. The minimum
elevation change (or detectability) that can be detected by repeated ALS surveys has become a critical
threshold for landslide researchers and engineers to decide if ALS is a capable tool for detecting
targeted landslides and arranging the minimum time span between two scans if ALS is a choice.
The National Center for Airborne Laser Mapping (NCALM) at the University of Houston conducted
three repeated ALS surveys at the Slumgullion landslide site in Colorado, U.S. over one week in July
of 2015. These repeated ALS surveys provide valuable datasets for evaluating the vertical detectability
of multi-temporal ALS surveys in a typical mountain area. According to this study, the difference of
digital elevation models (DDEM) derived from ALS has the ability of detecting a minimum elevation
change of 5 cm over flatter and moderately rugged terrain areas (slope < 20 degrees) and a minimum
of a 10-cm elevation change over rugged terrain areas (20 degrees < slope < 40 degrees). However, the
DDEM values over highly rugged terrain areas (slope > 40 degrees), such as cliff and landslide scarps,
should be interpolated with caution. Global Navigation Satellite Systems (GNSS) and Terrestrial
Laser Scanning (TLS) surveys were also performed at the middle portion of the landslide area for
assessing the accuracy of ALS datasets. The accuracy of ALS varies from approximately one decimeter
(~10 cm) to one foot (~30 cm) depending on the roughness of terrain surface and vegetation coverage
(point density). The detectability and accuracy estimates of ALS measurements obtained from the
case study could be used as a reference for estimating the performance of modern ALS in mountain
areas with similar topography and vegetation coverage.
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1. Introduction

The use of airborne Light Detection and Ranging (LiDAR), also called airborne laser scanning
(ALS), for topographic mapping, is rapidly becoming a standard practice for landslide investigations.
The ability to use ALS to measure terrain surface elevations beneath a vegetated canopy has
significantly advanced mountain landslide studies (e.g., [1–6]). Mountain landslides are often
accompanied by significant elevation changes, which can be detected by differing repeated ALS surveys.
Multi-temporal ALS surveys have become a prime consideration for detecting mass movements and
monitoring land surface deformation processes (e.g., [7–10]). High-resolution bare-earth digital
elevation models (DEMs) derived from ALS data often serve as the base dataset for studying
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terrain features. Multi-temporal DEMs can be simply subtracted by using a cell-by-cell approach
to obtain elevation changes. The difference of DEMs (DDEM) has become a standard product for
landslide monitoring using multi-temporal ALS and aerial photogrammetry surveys (e.g., [11–13]).
A fundamental question about DDEM is what is the minimum elevation change (or detectability) that
DDEM maps obtained from modern ALS techniques can detect? The threshold is critically important
for users to decide if ALS is the right tool for detecting their targeted mass movements and for users to
arrange a reasonable time span between two ALS surveys if ALS is an option. DDEM maps may not
be able to detect mass movements in flatter areas and may not be able to detect slow elevation changes
over a short period of time.

The precision and accuracy of ALS measurements are two fundament parameters for
understanding the detectability of DDEM maps. Numerous empirical studies have been conducted
to date and suggest that the elevation accuracy of ALS measurements could range from a couple
of decimeters to over one meter for large-scale topographic mapping applications, depending on
many issues (e.g., [14–19]). While a general understanding of the accuracy of ALS surveys is known,
too few empirical studies exist for assessing the precision and accuracy of ALS point clouds in deep
mountain forests.

Field measurements are always subject to certain errors or uncertainties. Precision refers to how
closely repeated measurements or observations come to duplicating measured values. Therefore,
precision is a measure of statistical variability or uncertainty, also called repeatability. Accuracy
refers to how closely a measurement comes to matching a “true value” (trueness). Thus, accuracy is
a description of observational errors. To the most stringent ALS users, field measurements need to be
precise as well as accurate. In practice, it is often a challenge to precisely determine the trueness, in
turn, it is difficult to assess the absolute accuracy. However, remote sensing measurements acquired
by the same crew with the same equipment and processed by identical procedures may share a large
portion of the uncertainty budget as common errors. Thus, DDEM maps derived from repeated ALS
surveys may achieve exceptionally high accuracies in the detection of ground elevation changes.

The U.S. Geological Survey (USGS) National Geospatial Program (NGP) is responsible for
updating “The National Map” of U.S. The USGS–NGP “Lidar Base Specification” (recent version
1.3, February 2018, https://pubs.usgs.gov/tm/11b4/pdf/tm11-B4.pdf) has quickly been embraced
as the fundamental guidelines for Airborne LiDAR surveys of U.S. states, counties, and numerous
foreign countries. The USGS LiDAR Base Specification defines four Quality Levels (QL) for ALS
data. QL0 requires a vertical accuracy of 5 cm (RMSEz: vertical linear root-mean-square error in the
z direction) and point density of at least 8 points/m2. QL1 and QL2 LiDAR data require a vertical
accuracy of 10 cm in open terrain. QL1 requires a point density of a minimum of 8 points/m2 and QL2
requires a minimum of 2 points/m2. QL3 requires a vertical accuracy of 20 cm and a point density
of 0.5 points/m2. QL2 was established as the minimum required QL for new USGS–NGP ALS data
collections [20]. The USGS classification has become the national standard. Many airborne mapping
companies routinely quote their survey products as QL1 LiDAR. As a consequence, non-expert LiDAR
users are often educated that airborne LiDAR data would retain a 10-cm vertical accuracy. Nevertheless,
experienced LiDAR users would agree that accuracy at the USGS QL1 level (~10 cm) is only achievable
under the most ideal circumstances, such as low altitude flight, flat or simple terrain features, minimal
or no surface vegetation or obstructions, and huge post-processing efforts. To our knowledge, the
accuracy of ALS in mountain areas with complex terrain features and heavy vegetation has not been
fully investigated. Most of the previous investigations focused on accuracy assessments that used ALS
datasets collected in flat and open-ground surface environments.

The National Center for Airborne Laser Mapping (NCALM) at the University of Houston
conducted three repeated ALS surveys over the Slumgullion landslide area in Lake City, Colorado, see
Figure 1, on 3, 7, and 10 July 2015. The ALS scanned area is approximately 13 km2. These three TLS
datasets were collected by the same field crew with the same equipment and were post-processed with
identical procedures. They provide valuable datasets for evaluating the repeatability (precision) of
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model ALS surveys in a typical mountain landslide area. Static Global Navigation Satellite Systems
(GNSS) surveys and Terrestrial Laser Scanning (TLS) were also performed at the middle portion of
the landslide area during the ALS surveys. These ground truth measurements provide fundament
datasets to assess the accuracy of the ALS datasets. The precision and accuracy of ALS surveys will
help us to understand the detectability of DDEM maps.
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model (DEM) showing the extension of the Slumgullion landslide in space. The DEM is derived from 
the bare-earth ALS data collected on 7 July 2015. The unit of the three axes is in meters. 
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Tertiary basalt, rhyolite, and andesite [21]. The collapsed materials slid and flowed over 6 km 
downhill, thus blocked Lake Fork of the Gunnison River and created Lake San Cristobal. The 
Slumgullion landslide spans elevations between 2800 m and 3600 m and occupies the montane and 
subalpine ecological zones with sporadic coverage by Engelmann spruce and quaking aspen trees 
[22], see Figure 1b,c. The active part of the landslide is approximately 4-km long and 300-m wide and 
has an estimated volume of 2.0 × 106 m3 [23]. The sliding mass has an average surface slope of 8°. The 
sliding speed varies in both space and time with a maximum rate of about 6–7 m/year (~1.5–2 
cm/day) occurring at the narrowest part of the landslide [24]. The Slumgullion landslide has been 
frequently utilized as a test site for ground-based, airborne, and space-borne remote sensing studies 
(e.g., [25–27]). 

2.2. ALS Data Acquisition and Processing 

The ALS datasets were acquired using an Optech Gemini NIR LiDAR system installed on a 
Piper Chieftain PA-31 aircraft. The Optech Gemini model is capable of acquiring data at a laser pulse 

Figure 1. (a) A topographic map showing the location of the Slumgullion landslide located in the
San Juan Mountains within Hinsdale County, Southwestern Colorado. The red box indicates the area
covered by three ALS scans on 3, 7, and 10 July 2015. The elevation data (1/3 arc-second digital elevation
model (DEM)) is from U.S. Geological Survey (https://viewer.nationalmap.gov). (b) A Google Earth
image showing the vegetation coverage in the landslide area. (c) A 3D digital elevation model (DEM)
showing the extension of the Slumgullion landslide in space. The DEM is derived from the bare-earth
ALS data collected on 7 July 2015. The unit of the three axes is in meters.

2. ALS and TLS Data Acquisition

2.1. Study Area

The Slumgullion landslide is located in the San Juan Mountains near Lake City, a large
early-Tertiary volcanic center in Southwest Colorado, see Figure 1a. The landslide formed as a result of
the collapse of hydrothermally altered volcanic materials in the rim of the Lake City Caldera. The active
part of the landslide and the underlying landslide deposit are comprised of deeply weathered Tertiary
basalt, rhyolite, and andesite [21]. The collapsed materials slid and flowed over 6 km downhill, thus
blocked Lake Fork of the Gunnison River and created Lake San Cristobal. The Slumgullion landslide
spans elevations between 2800 m and 3600 m and occupies the montane and subalpine ecological
zones with sporadic coverage by Engelmann spruce and quaking aspen trees [22], see Figure 1b,c. The
active part of the landslide is approximately 4-km long and 300-m wide and has an estimated volume
of 2.0 × 106 m3 [23]. The sliding mass has an average surface slope of 8◦. The sliding speed varies
in both space and time with a maximum rate of about 6–7 m/year (~1.5–2 cm/day) occurring at the
narrowest part of the landslide [24]. The Slumgullion landslide has been frequently utilized as a test
site for ground-based, airborne, and space-borne remote sensing studies (e.g., [25–27]).
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2.2. ALS Data Acquisition and Processing

The ALS datasets were acquired using an Optech Gemini NIR LiDAR system installed on a Piper
Chieftain PA-31 aircraft. The Optech Gemini model is capable of acquiring data at a laser pulse rate
of up to 300 kHz. It records as many as four discrete returns (including the first three and last) per
shot. The immediate outputs from ALS surveys are point clouds that are referenced to the kinematic
positions of the onboard laser source. These “raw” point clouds are then georeferenced and processed
using various algorithms. The classification of ALS point clouds is done by an automated processing
algorithm using the TerraScan software package (version 16.031). The whole points are classified
as ground points and non-ground points. Only the ground points, also called bare-earth points,
are investigated in this study. The ALS point clouds are georeferenced to a regional East-North-Up
(ENU) coordinate system. The easting (E) and northing (N) coordinates are aligned to the Universal
Transverse Mercator (UTM, Zone 13N) coordinate system. The UTM coordinates in North America are
referred to the geodetic reference frame North American Datum of 1983 (NAD83, epoch 2011.0) [28].
The vertical measurements (elevation) are orthometric heights calculated from the NGS GEOID12B
model referred to the North American Vertical Datum of 1988 (NAVD88). The workflow for ALS data
post-processing is illustrated in Figure 2. A detailed discussion regarding the NCALM field survey
procedure and data quality can be referred to in a recent article published by NCALM researchers [29].
The ALS datasets from each survey were processed independently. The ALS data used for this study
are archived at OpenTopography (San Diego, California, USA, http://opentopo.sdsc.edu/lidar) and
are available to the public.

Geosciences 2018, 8, x FOR PEER REVIEW  4 of 18 

 

rate of up to 300 kHz. It records as many as four discrete returns (including the first three and last) 
per shot. The immediate outputs from ALS surveys are point clouds that are referenced to the 
kinematic positions of the onboard laser source. These “raw” point clouds are then georeferenced 
and processed using various algorithms. The classification of ALS point clouds is done by an 
automated processing algorithm using the TerraScan software package (version 16.031). The whole 
points are classified as ground points and non-ground points. Only the ground points, also called 
bare-earth points, are investigated in this study. The ALS point clouds are georeferenced to a 
regional East-North-Up (ENU) coordinate system. The easting (E) and northing (N) coordinates are 
aligned to the Universal Transverse Mercator (UTM, Zone 13N) coordinate system. The UTM 
coordinates in North America are referred to the geodetic reference frame North American Datum of 
1983 (NAD83, epoch 2011.0) [28]. The vertical measurements (elevation) are orthometric heights 
calculated from the NGS GEOID12B model referred to the North American Vertical Datum of 1988 
(NAVD88). The workflow for ALS data post-processing is illustrated in Figure 2. A detailed 
discussion regarding the NCALM field survey procedure and data quality can be referred to in a 
recent article published by NCALM researchers [29]. The ALS datasets from each survey were 
processed independently. The ALS data used for this study are archived at OpenTopography (San 
Diego, California, USA, http://opentopo.sdsc.edu/lidar) and are available to the public. 

 
Figure 2. The workflow for airborne laser scanning (ALS) data post-processing. 

Figure 3 illustrates the bare-earth point clouds and a digital elevation model (DEM) derived 
from georeferenced ALS data acquired on 7 July 2015. The bare-earth point clouds have been 
down-sampled to 0.5-m by 0.5-m per point. The point with the median elevation in each grid is used 
to represent the location (x, y, z) of the cell if more than two points are within a grid. If only two 
points are within a grid, the point with the lower elevation is used to represent the location of the 
grid. The white grids in Figure 3a indicate the places where no ALS points exist. For convenience, 
the UTM coordinate system has been rotated 25° in the clockwise direction. The UTM coordinates at 
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Figure 2. The workflow for airborne laser scanning (ALS) data post-processing.

Figure 3 illustrates the bare-earth point clouds and a digital elevation model (DEM) derived from
georeferenced ALS data acquired on 7 July 2015. The bare-earth point clouds have been down-sampled
to 0.5-m by 0.5-m per point. The point with the median elevation in each grid is used to represent the
location (x, y, z) of the cell if more than two points are within a grid. If only two points are within
a grid, the point with the lower elevation is used to represent the location of the grid. The white grids
in Figure 3a indicate the places where no ALS points exist. For convenience, the UTM coordinate
system has been rotated 25◦ in the clockwise direction. The UTM coordinates at easting (x) 299,200 m
and northing (y) 4,205,500 m were initialized to zeros in this study.
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Figure 3. (a) A topographic map depicting bare-earth ALS point clouds collected on 7 July 2015.
The ALS points have been down-sampled to 0.5-m by 0.5-m grids. Stars indicate Global Navigation
Satellite Systems (GNSS) stations that were installed for georeferencing Terrestrial Laser Scanning (TLS)
points. (b) A shaded relief map from a bare-earth DEM derived from the ALS points shown in (a).
The red square shows the area that was also scanned by TLS on 7 July 2015.

2.3. TLS Data Acquisition and Processing

TLS datasets were collected in the middle portion of the landslide area, as marked in Figure 3b.
A Trimble GNSS and RIEGL VZ-2000 scanner integrated system was used for the TLS survey in the
field, see Figure 4a. TLS datasets from eight scans conducted on 7 July 2015 are used for this study.
Locations of these TLS scan positions are marked in Figure 5. One GNSS antenna was mounted on the
top of the scanner, see Figure 4a, and another one was installed on the top of a reflector, as shown in
Figure 4b. The distance between the scanner and reflector was limited to 200 m. Point clouds from
each scan were registered to the ENU coordinate system using a direct georeferencing method [30].
The classification of TLS data was initially performed by a vegetation filter employed in the RiSCAN
Pro. A manual process was further involved to remove certain non-ground TLS points that were not
removed by the automatic filtering.

A comparison of point density (point per square meter) of bare-earth point clouds from ALS and
TLS surveys (600-m by 600-m) is depicted in Figure 5a. The ALS survey yields a more uniform point
distribution than the TLS survey. TLS points are mostly concentrated near the scanner positions and
the point density decreases rapidly with the increase of the distance to the scanner. There are frequent
and large data gaps within the TLS datasets because of the line-of-sight problem of TLS, also known as
the “shadow” problem. The average point density of the bare-earth ALS points within the landslide
area is about 6 to 15 points per square meter, matching the point density requirement of USGS QL1
Lidar. There are fewer ground points in areas with trees than open areas.
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surveys on 7 July 2015. The location of the area is marked in Figure 3. The filled dark circles in
(b) indicate TLS scan positions.

Figure 6 depicts the typical topographic features and vegetation coverage inside and outside
the active portion of the landslide. The location of the profile is marked in Figure 3a. There is less
vegetation inside the sliding mass but with more complex geometric terrain features compared to the
areas outside the sliding mass. Landslides are known to have rougher surfaces than neighboring stable
terrain due to uneven deformation of sliding mass in both the horizontal and vertical directions.
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Figure 6. Typical terrain features and vegetation coverage inside and outside the sliding mass illustrated
by ALS point clouds. The location of the profile EF is marked on Figure 3a.

3. Difference of DEMs (DDEM)

ALS surveys provide discrete ground points that are unevenly distributed, particularly in areas
with complex terrain features and vegetation coverage. For topographic surveying using ALS, the
final product is often a DEM: z = f (x, y), where “z” is the ground evaluation of a point with plane
coordinates x and y. DEMs are usually stored in regular grids. Certain averaging, smoothing (filtering),
interpolation, and extrapolation processing are involved in generating DEMs from discrete LiDAR
points. The overall accuracy of a DEM is largely a function of the field-surveying strategy, accuracy,
and density of survey points, gridding resolution, method of interpolation, and the complexity
(or roughness) of terrain features (e.g., [31–33]).

In this study, the following steps are used to generate a DEM. First, the bare-earth point clouds
were blocked into small, unified grid cells with a dimension of 0.5-m by 0.5-m. The point with a median
elevation is selected to represent the location of the cell. Therefore, the original coordinate (x, y, z)
of this point is reserved. Second, a “surface” method in the Generic Mapping Tools (GMT) software
package is employed to produce a continuous and smoothed surface [34,35]. Third, an anti-aliasing
filter in a frequency domain is applied to filter the initial DEM. The low-pass cutoff wavelength of the
filter is set to be four times the grid size. The details of the “surface” and anti-aliasing methods are
addressed in a recent publication by Xiong et al. [36].

The grid size of 0.5-m by 0.5-m is chosen to be slightly larger than the horizontal accuracy of
ALS points and have at least one measurement per grid on average. The nature of lidar data makes it
difficult to assess the absolute horizontal accuracy. Conventional assessments of horizontal accuracy
involve multiple flights over building corners with flat roofs and special ground targets (e.g., [37–39]).
The horizontal errors of ALS surveys could result in considerable impacts on the observed elevations
in steeper and/or complex terrain features. According to our previous investigations on NCALM’s
ALS datasets [39,40], the overall horizontal accuracy of point clouds would be within 0.5 m. Thus,
the grid size of 0.5-m by 0.5-m is the minimum grid size that is able to minimize the effect of the
horizontal uncertainty of ALS points on DEM elevations while retaining the most detailed terrain
features. According to the Nyquist–Shannon sampling theorem, a 0.5-m sampling distance will not be
able to accurately model objects (terrain features) with a horizontal dimension smaller than one meter
(two times the grid size or half of the sampling frequency). This study focuses on the vertical accuracy
of ALS measurements.

In order to monitor movements of the sliding mass, several GNSS stations were installed
on the middle portion of the landslide area during the one-week period from 3 to 10 July 2015.
The observation period of GNSS data was over 6 h. Figure 7 depicts the three-component displacement
time series (hourly solutions) and horizontal trajectory of a GNSS antenna (GPS1) fixed on the landslide.
The relative positions are obtained by employing a double-difference carrier-phase static processing
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method. The locations of GPS1 and the reference GNSS station, REF0, are marked in Figure 3b.
The baseline is less than 150 m. The short baseline is able to secure sub-centimeter displacement
accuracy for static GNSS surveys with an occupation period of 1 h [41]. According to the GNSS
measurements, the average horizontal velocity is about 1.4 cm/day towards the downhill direction
during the survey period. The vertical velocity is at a level of a couple of millimeters per day. Other
GNSS stations on the sliding mass also recorded similar sliding rates. The accumulated sliding
displacement between two ALS surveys (7-days apart) is below one decimeter in the horizontal
direction and below a couple of centimeters in the vertical direction, which is smaller than the
horizontal and vertical accuracies of ALS point clouds. Accordingly, the land surface can be regarded
as static during the one-week survey period.
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Figure 7. (a) Three-component (NS: north to south, EW: east to west; Vertical) displacement time series
of the GNSS antenna (GPS1) during the period from 3 to 10 July 2015. The displacements are referred
to a GNSS station (REF0) located outside of the sliding mass. (b) The horizontal trajectory of the GNSS
antenna (GPS1) during the same period as (a). Locations of GPS1 and REF0 are marked in Figure 3b.

Figure 8a depicts elevations from these three ALS surveys along profile AB shown in Figure 3a.
The bare-earth point clouds have been down-sampled into unified grid cells (0.5-m by 0.5-m). A median
elevation is selected to represent the elevation of the grid. The elevation varies from 2800 m to 3600 m
along the 6.5-km length. Nevertheless, the differences in elevation measurements among the three
surveys could not be observed from such a large-scale profile. Since the grid size is larger than the
horizontal accuracy of ALS points, the elevation measurements from three surveys within the same
grid (0.5-m by 0.5-m) could be regarded as the repeated measurements for the same ground point.
Figure 8b illustrates the differences in the elevations between two ALS surveys on 3 July and 7 July and
between two ALS surveys on 10 July and 7 July. The ALS measurements acquired on 7 July 2015 are
used as references to assess the vertical precision (repeatability) of ALS surveys. Both datasets resulted
in a root mean square of differences (RMSD) of approximately 9 cm, which indicates the repeatability
of the vertical measurements of the ALS surveys. Figure 8c illustrates the elevation differences of
two ALS-derived DEMs between 3 July and 7 July and between 10 July and 7 July 2015. The RMSD
of DEMs is below 5 cm. It comes as no surprise that the overall precision of DEMs is better than
the precision of discrete ALS points. The process of generating DEMs from redundant ALS points
(~10 points per grid) often involves certain averaging and smoothing steps. Figure 8d illustrates the
differences of elevations between the discrete ALS points (7 July 2015) and their corresponding DEM
grids. Only those cells having original laser points are compared. RMSD is about 6 cm, smaller than
the precision (RMSD) of the discrete ALS points, see Figure 8b.
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Figure 8. Plots illustrating the vertical precision of bare-earth ALS points. The point clouds have been
down-sampled into unified grid cells (0.5-m by 0.5-m). (a) Elevation measurements from three ALS
surveys along profile AB (Figure 3a). (b) Elevation differences of discrete points between two ALS
surveys on 3 July and 7 July, and 10 July and 7 July 2015. (c) Elevation differences of two DEMs (DDEM)
along with profile AB. (d) Elevation differences between ALS points and gridded DEM points.
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Figure 9 depicts three DDEM maps showing an elevation difference of each of the two DEMs.
The right column shows the histograms of the distribution of DDEM values. The mean of all the
elevation differences across the whole scanning area is below 5 cm; the standard deviation (σ) is
approximately 5 to 6 cm; the root-mean-square of the differences (RMSD) is approximately 6 to 7 cm.
DDEM values over 70% of the scan area are within ±5 cm and the values over 90% of the whole
scanned area are within ±10 cm. DDEM maps indicate the repeatability of ALS surveys over areas
with different terrain roughnesses. Figure 10 depicts the terrain roughness of the study area. Terrain
roughness is a morphometric measure expressing how heterogeneous a land surface is. The term
roughness is defined and interpreted differently depending on the field of study, the scale of analysis,
and the aim of application. In practice, terrain roughness can be quantified based on variations
of the surface slope, the standard deviation of elevations, slope convexity, the variability of plan
convexity (contour curvature), or some other measure of topographic texture. Here we define the
terrain roughness as the maximum surface slope over an area of one square meter. The roughness is
calculated by the GMT command “grdgradient” from the bare-earth DEM [34]. Grdgradient considers
four neighbors of each DEM cell to calculate a local slope. Specifically, the points z(i − 1, j) and z(i + 1, j)
are used to calculate the slope in the x-axis direction and z(i, j + 1) and z(i, j − 1) are used to calculate
the slope in the y-axis direction. The final slope for each DEM cell is the square root of the sum of
these two slope squares (hypotenuse). The slope represents the maximum surface slope within an
area of approximately four times of the unit cell (4 × 0.25 m2). It is evident that the DDEM value is
fairly consistent, except in the areas that surface roughness is significant. Sharp topographic features
cannot be accurately represented by DEMs. In turn, DDEM may give false information regarding
ground elevation changes in sharp topographic areas, such as cliff and landslide scarps. Large values
in DDEM maps coincident with an extraordinary surface roughness (slope > 40 degrees) should be
interpreted with caution.
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Figure 9. The elevation difference of two DEMs (DDEM, 0.5-m by 0.5-m) derived from bare-earth ALS
datasets. (a) DDEM derived from ALS surveys on 10 July and 3 July; (b) DDEM derived from ALS
surveys on 10 July and 7 July; (c) DDEM derived from ALS surveys on 3 July and 7 July. The black
dotted line depicts the boundary of the landslide. The unit of the difference of elevations is a centimeter.
The histogram illustrates the distribution of the values of the corresponding DDEM.

Geosciences 2018, 8, x FOR PEER REVIEW  11 of 18 

 

Figure 9. The elevation difference of two DEMs (DDEM, 0.5-m by 0.5-m) derived from bare-earth 
ALS datasets. (a) DDEM derived from ALS surveys on 10 July and 3 July; (b) DDEM derived from 
ALS surveys on 10 July and 7 July; (c) DDEM derived from ALS surveys on 3 July and 7 July. The 
black dotted line depicts the boundary of the landslide. The unit of the difference of elevations is a 
centimeter. The histogram illustrates the distribution of the values of the corresponding DDEM. 

 
Figure 10. Map showing the elevation contours (in meters) and the terrain roughness (in degrees) 
derived from the DEM on 7 July 2015. The roughness is defined as the maximum surface slope over 
one square meter. The blue dashed line depicts the boundary of the landslide. 

4. Evaluating the Vertical Accuracy of ALS Data 

Traditionally, georeferenced ALS datasets are evaluated against isolated ground control targets, 
also called checkpoints, installed at strategically important locations (e.g., [37,39]). The ground 
control points are surveyed by both GNSS and ALS. The contemporary method leverages a small 
number of isolated ground control points to quantify millions of ALS points. Statistically and 
practically, this method shows great weakness due to the high volume of airborne laser points being 
adjusted based solely on a confidence factor derived from the relationship between a segment of 
ALS point clouds or a portion of a DEM and several isolated ground control points. In addition to 
the statistical disadvantage of this method, it can be extremely difficult to identify exact ALS points 
that were reflected from the surface of ground control targets. Furthermore, the establishment and 
surveying of ground control points are often costly and time-consuming. TLS surveying has become 
more and more efficient and cost-effective with the development of advanced scanners, rapid field 
surveying and direct georeferencing methods, and automated point cloud classification (e.g., 
[35,42–44]). In general, TLS measurements can achieve a similar positional accuracy when compared 
to conventional ground control targets positioned by static GNSS. A single TLS scan can provide 
millions of credible ground references; therefore, TLS data can provide a potential alternative 
solution for evaluating ALS data. In this study, TLS measurements are used as references to assess 
the vertical accuracy of ALS measurements. According to recent experimental investigations using a 
similar TLS data collection and post-processing procedure, the bare-earth TLS points used for this 
study would be able to retain a vertical accuracy of below five centimeters and a better horizontal 
accuracy [30]. Well-designed TLS surveys are able to deliver sufficient accuracy for the purposes of 
evaluating and calibrating ALS surveys. Nevertheless, any assessment of accuracy introduces 
additional “apparent” error from the reference data. 

Figure 10. Map showing the elevation contours (in meters) and the terrain roughness (in degrees)
derived from the DEM on 7 July 2015. The roughness is defined as the maximum surface slope over
one square meter. The blue dashed line depicts the boundary of the landslide.

4. Evaluating the Vertical Accuracy of ALS Data

Traditionally, georeferenced ALS datasets are evaluated against isolated ground control targets,
also called checkpoints, installed at strategically important locations (e.g., [37,39]). The ground control
points are surveyed by both GNSS and ALS. The contemporary method leverages a small number of
isolated ground control points to quantify millions of ALS points. Statistically and practically, this method
shows great weakness due to the high volume of airborne laser points being adjusted based solely on
a confidence factor derived from the relationship between a segment of ALS point clouds or a portion
of a DEM and several isolated ground control points. In addition to the statistical disadvantage of this
method, it can be extremely difficult to identify exact ALS points that were reflected from the surface
of ground control targets. Furthermore, the establishment and surveying of ground control points are
often costly and time-consuming. TLS surveying has become more and more efficient and cost-effective
with the development of advanced scanners, rapid field surveying and direct georeferencing methods,
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and automated point cloud classification (e.g., [35,42–44]). In general, TLS measurements can achieve
a similar positional accuracy when compared to conventional ground control targets positioned by static
GNSS. A single TLS scan can provide millions of credible ground references; therefore, TLS data can
provide a potential alternative solution for evaluating ALS data. In this study, TLS measurements are
used as references to assess the vertical accuracy of ALS measurements. According to recent experimental
investigations using a similar TLS data collection and post-processing procedure, the bare-earth TLS
points used for this study would be able to retain a vertical accuracy of below five centimeters and
a better horizontal accuracy [30]. Well-designed TLS surveys are able to deliver sufficient accuracy for the
purposes of evaluating and calibrating ALS surveys. Nevertheless, any assessment of accuracy introduces
additional “apparent” error from the reference data.

Figure 11 depicts the comparisons of bare-earth elevations measured by both ALS and TLS over
a portion (600-m by 600-m) of the landslide area marked in Figure 3. The point clouds have been
down-sampled to 0.5-m by 0.5-m grid cells. Both ALS and TLS datasets were acquired on 7 July 2017.
While the distribution of ALS points is continuous and evenly distributed in general, see Figure 11a,
the TLS points are unevenly distributed with frequent large data gaps, see Figure 11b. Figure 11c,d
depict the DEMs derived from the ALS and TLS points. Visually, the TLS and ALS datasets result in
very similar DEMs; although, TLS has much larger data gaps than those in the ALS data. In order
to precisely compare two datasets, elevations from ALS points and DEM grids along four profiles
(AB, CD, EF, and GH, Figure 11b) are compared in Figures 12 and 13.
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Figure 11. Comparisons of elevation measurements derived from ALS and TLS surveys on 7 July 2015.
Both ALS and TLS points have been down-sampled to 0.5-m by 0.5-m grid cells. The location of the scan
area is marked in Figure 3b. (a) Elevation measurements of the bare-earth ALS points. (b) Elevation
measurements of the bare-earth TLS points. (c) A shaded DEM map derived from the ALS points
illustrated in (a). (d) A shaded DEM map derived from the TLS points illustrated in (b).
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Figure 12. Comparisons of the elevation measurements from the ALS and TLS datasets depicted
in Figure 11. The left column is the elevations along profile AB; the right column is the elevations
along profile CD. The root mean square of errors (RMSE) and mean values marked in subplots (e,f) are
calculated from the datasets within the shaded areas where both ALS and TLS datasets have continuous
data coverage.

The comparisons of elevation measurements from ALS and TLS points along two profiles (AB and
CD) are illustrated in Figure 12. Figure 12c illustrates the differences of the point-elevations along
profile AB. The differences indicate the errors of ALS points with regard to TLS measurements and
only the cells that have both ALS and TLS points are compared. The mean of the errors is 4 cm with
a standard deviation (σ) of 34 cm. Root mean square of errors (RMSE) retains a similar value as the
standard deviation, approximately one foot (~30 cm). RMSE is computed as:

RMSE =

√
∑(ZALS − ZTLS)

2

n
(1)

which indicates the vertical accuracy of ALS measurements. Figure 12e illustrates the differences of
two DEMs along profile AB. The DEM-elevations of all cells along the profile are compared. At grid
cells that have both TLS and ALS measurements, the difference between DEMs is, in general, smaller
than the difference between original TLS and ALS points. However, the difference in DEMs can be
considerably larger than the difference in original laser points at the places where there are no TLS
measurements. This can be explained by the fact that the TLS-derived DEM can be biased by frequent
data gaps in the TLS datasets. The right column of Figure 12 illustrates the same comparison for ALS
and TLS datasets along profile CD.
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The ground surface elevation measured by GNSS station REF1, see Figure 11b, is also marked
on profile CD as a star in Figure 12b. The occupation time of REF1 was 6 h on 7 July 2015. According
to the Online Positioning User Service (OPUS, https://www.ngs.noaa.gov/OPUS/) static solution,
the ground elevation at REF1 is 3178.319 m with respect to NAVD88. The elevations measured by
the closest (within two 0.5-m-by-0.5-m grids) TLS and ALS points are 3178.4708 m and 3178.2526 m,
respectively. The elevation difference between TLS and GNSS measurements is 15 cm; the difference
between ALS and GNSS measurements is 7 cm; the difference between ALS and TLS measurements
is 22 cm. These three measurements agree with each other reasonably well considering the fact that
the measurements were not taken at exactly the same ground point and terrain roughness can be
significant at some sites, see photos in Figure 4. Figure 13 illustrates the same comparisons along
another two profiles, EF and GH, see Figure 11b. There are more frequent and larger TLS data gaps
along these two profiles compared to the two profiles shown in Figure 12. The comparisons along these
four profiles indicate that the vertical accuracy (RMSE) of ALS points ranges from approximately 14 cm
to 30 cm. The RMSE accuracy of DEMs derived from ALS points is approximately at a one-decimeter
level (8 cm to 14 cm). The mean of the differences between the ALS-derived DEM and the TLS-derived
DEM is approximately 10 cm, which suggests a systematic error in the ALS datasets.Geosciences 2018, 8, x FOR PEER REVIEW  15 of 18 
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5. Discussion and Conclusions

Accuracy and repeatability (precision) are two fundamental concerns for stringent ALS data
users. Although ALS has been used in research and commercial mapping for almost two decades,

https://www.ngs.noaa.gov/OPUS/


Geosciences 2018, 8, 469 15 of 18

it is still a relatively new technology since the advances in GNSS, Inertial Measurement Unit (IMU),
LiDAR, software, and computing capacity have evolved continuously. ALS data processing is still
an art as much as a science and it requires significant experience and manual efforts to produce
highly-accurate ground surface measurements. The overall performance of ALS surveys has been
continuously improving. It would be a challenge to quantify the precision and accuracy of ALS
surveys, and in turn, the detectability of DDEM maps, in a simple way that keeps pace with all of
these ceaseless advances.

It may not be precise to claim that the hardware (LiDAR scanner, GNSS, IMU) and methods used
for this study represent the state-of-the-art of ALS technology. However, it is reasonable to say that
the system (hardware + software) represents at least the average level of modern ALS technology.
According to this study, modern ALS surveys could produce DDEM maps with a detectability of
approximately 5-cm over flatter and moderate rugged areas (slope < 20 degrees) and a detectability
of within the nearest 10-cm over rugged terrain areas (20 degrees <slope < 40 degrees). However,
extraordinary elevation changes in DDEM maps coincidence with cliff and landslide scarps should
be interpolated with caution. The vertical accuracy of modern ALS surveys could vary from one
decimeter to one foot (~30 cm) depending on the roughness of the terrain and vegetation coverage.
In general, errors are largest in areas with abrupt changes in slope. This study used three, repeated ALS
datasets collected in a typical mountain landslide area by the same field crew with the same equipment
and post-processed by identical procedures. Thus, the DEMs retain considerable common errors
which will be canceled in DDEM. If DEMs from ALS surveys are collected by different equipment and
post-processed by different methods, the detectability of DDEM maps could be worse than the result
presented in this study.

The precision and accuracy results of ALS surveys from the case study could be used as a reference
to evaluate ALS mapping in mountain areas with similar topography and vegetation conditions. It is
critically important for non-expert LiDAR users to be aware of the complexity of ALS surveys in
mountain areas and understand the spatial variation of the accuracy of ALS point clouds to avoid
interpreting artifacts as true information in landslide monitoring. This is particularly important when
researchers mix newly acquired ALS datasets and older datasets to produce DDEM maps. In general,
old ALS datasets may retain larger errors than newly acquired datasets. We strongly suggest that
users assess the accuracy of ALS datasets before using repeated ALS data to produce DDEM maps.
DDEM maps are highly effective means to detect topographic changes over time only if the change
calculations have accounted for measurement uncertainties.
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