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Abstract: When applied to a snow-covered surface, aerodynamic roughness length, z0, is typically
considered as a static parameter within energy balance equations. However, field observations
show that z0 changes spatially and temporally, and thus z0 incorporated as a dynamic parameter
may greatly improve models. To evaluate methods for characterizing snow surface roughness,
we compared concurrent estimates of z0 based on (1) terrestrial light detection and ranging derived
surface geometry of the snowpack surface (geometric, z0G) and (2) vertical wind profile measurements
(anemometric, z0A). The value of z0G was computed from Lettau’s equation and underestimated z0A
but compared well when scaled by a factor of 2.34. The Counihan method for computing z0G was
found to be unsuitable for estimating z0 on a snow surface. During snowpack accumulation in early
winter, z0 varied as a function of the snow-covered area (SCA). Our results show that as the SCA
increases, z0 decreases, indicating there is a topographic influence on this relation.

Keywords: aerodynamic roughness length; terrestrial lidar; snow surface topography; wind profile;
snow energy balance; snow accumulation

1. Introduction

In the Northern Hemisphere, a seasonal snowpack can cover over 50% of the land area with
the snow surface often the interface between the atmosphere and the earth [1]. The roughness of a
snow surface is an important control on air-snow heat transfer [2], and changes in the snow surface
can have substantial effects on the energy balance at this interface. Snow is a complicated surface
with rapidly evolving physical roughness characteristics due to changing atmospheric conditions,
the metamorphism of snow crystals, melting and freezing processes and redistribution by wind,
especially in open areas [3]. Roughness characteristics also influence the air-surface momentum transfer
on the snowpack due to wind [4]. The changes in wind momentum can reduce the energy budget,
influence the formation of roughness features, and affect the aeolian movement of snow [4]. Heat flux
modeling has typically used the aerodynamic roughness length (z0) as a static parameter, in hydrologic,
snowpack, and climate models [5,6], with z0 only varying as a function of land cover type. For example,
the Community Land Model version 4.0 (CLM4; http://www.cesm.ucar.edu/models/ccsm4.0/clm/)
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applies a single z0 value of 2.4 × 10−3 m to all snow-covered surfaces. However, z0 varies both
spatially [7] and temporally [8], which may result in variable estimates of turbulent heat fluxes not
captured by most models [9]. Wind velocity profile measurements are often used to calculate z0

estimates [6], but there are a limited number of sites that measure the wind profile over a snowpack
surface, making the spatio-temporal representation of z0 challenging.

Millimeter-scale variations in snow-surface roughness features have been estimated from a black
plate pushed partially into the snow [10–12], using two-dimensional photography, digital processing,
and automated post-processing software [13–16]. Snow surface elevation data are now available over
large areas at the resolution (±80 mm) of airborne light detection and ranging (lidar) [17–19], terrestrial
laser scanner (TLS) (resolution of ±5 mm) [20–26], and photogrammetry [25]. Although most lidar
and photogrammetry efforts have only focused on snow depth [26], only a few datasets have been
used to evaluate snow surface roughness at the meter-scale or sub-meter scale [27,28]. However, few of
these datasets have been applied to interpolate z0 and create a digital elevation model of the snowpack
surface for evaluating surface roughness [27]. Aerodynamic roughness length (z0) has been estimated
from the geometry of the snow surface [2,7,29–31]. However, this method is time consuming and
typically only applicable over smaller scales [13]. Also, Fassnacht et al. [27] have identified potential
errors with the different methods of computing z0 from the geometry of the surface that result in
values varying over 1–3 orders of magnitude and have suggested these methods need to be evaluated
for varying scales, resolutions, and environments.

This study used TLS-derived surface geometry and vertical wind profile measurements to
compare concurrent z0 estimates for changing snow surface features of shallow snowpacks. Here, we
asked the following questions: (1) How does the aerodynamic roughness length (z0) vary spatially and
temporally for a shallow snow environment? (2) How does z0 estimated from geometric measurements
(z0G) compare to z0 estimated from anemometric measurements (z0A), and (3) How does z0 vary with
snow-covered area based on the underlying terrain?

2. Materials and Methods

The capability of a rough surface to absorb momentum from a turbulent boundary layer can be
quantified by z0, which is a measure of the vertical turbulence that occurs when a horizontal wind flows
over a rough surface [32]. In general, z0 is a quantity that is computed from the Reynolds number and
the roughness geometry of the surface [29]. For rough, turbulent regimes occurring in the atmospheric
boundary layer, dependence on the Reynolds number vanishes and z0 is only a function of roughness
geometry [33]. Various relations have been found to relate the geometry of roughness elements with
z0 [2,29]. For example, the dependence of z0 on the size, shape, density, and distribution of surface
elements has been studied using wind tunnels, analytical investigations, numerical modeling, and field
observations [34,35]. Smith [36] provides a comprehensive review of the different approaches and
models developed to analyze surface roughness and highlights that almost all models were developed
for simplistic natural surfaces (i.e., regular arrays of roughness elements).The lack of a clear method
for calculating z0 as a function of surface roughness is due to the complexity of surfaces that exists in
nature and the direction, spatial, and temporal dependence.

The most robust approach for estimating z0 is from the anemometric method used to generate
a logarithmic wind profile and solve for z0 [32]. The anemometric method can be used for any
surface with any arrangement of roughness elements but requires a meteorological tower of at
least two vertically spaced wind, temperature, and humidity measurements that can be used to
approximate the respective gradients. The measurements integrate over a footprint area rather than
the single-point location of the sensors based on the distance from measurement source, elevation
of sensor, meteorological conditions, turbulent boundary layer, and atmospheric stability. All of
these factors can potentially create turbulent fluctuations affecting the downwind measurements of
the wind profile [37,38]. The anemometric method is also very sensitive to the wind measurement
heights; Munro [2] found that adding 0.1 m to any of the heights can alter z0 by an order of magnitude.
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In contrast, the geometric method uses algorithms relating z0 to characteristics of surface roughness
elements and thus does not require tower instrumentation but only a measure of the geometry of the
surface [29].

Anemometric data are used to estimate z0 from the logarithmic wind profile through an empirical
relation that describes the vertical distribution of horizontal wind speeds within the lowest portion of
the planetary boundary layer [39]. The wind speed (Uz in m/s) at height z (in m) above a surface is
given by:

Uz =
U∗

k
ln [

z
z0

+ ψ
(

z,
z
L

, L
)
] (1)

where U* is the friction velocity (m/s), k is the Von Kármán constant (~0.40), and ψ is a stability term,
and L is the Monin-Obukhov stability parameter. This equation is only valid through the hypothesis of
stationarity and horizontal homogeneity. Under neutral stability conditions, z/L tends towards zero,
and ψ can be neglected.

The most common geometric method for estimating z0 is simply a function of the height of
the elements:

z0 = f0zh (2)

where zh is the mean height of roughness elements in meters, and f 0 is an empirical coefficient derived
from observation [28]. The frontal area index, which combines mean height and breadth (all in meters),
and density of the roughness elements, is defined as roughness area density given by:

(λF) = Ly zh ρel (3)

where Ly is the mean breadth of the roughness elements perpendicular to the wind direction, and ρel
is the density or number (n) of roughness elements per unit area [40]. Lettau [29] developed a formula
for z0 based on the geometry of the surface for irregular arrays of reasonably homogenous elements:

z0 = 0.5 zh λ F (4)

In the Lettau formula, the coefficient 0.5 represents an average drag coefficient for the roughness
elements, which was determined experimentally. Other geometric methods have been developed,
especially to consider more regularly-shaped and distributed roughness elements, such as buildings in
an urban setting [41,42]. The Counihan equation provides a geometric estimate of z0 as:

z0 = zh(1.8
A f

Ad
− 0.08) (5)

where Af is the total area in square meters silhouetted by the roughness elements, and Ad is the total
area covered by roughness elements.

A meteorological tower was erected at Colorado State University Agricultural Research,
Development and Education Center (ARDEC) South (http://aes-ardec.agsci.colostate.edu/),
(40.629680, −104.99699) on a flat field that had no obstructions at least 100 m in the prevailing wind
direction. The fetch was 40 m wide with the tower placed in the middle, leaving 100 unobstructed,
homogenous meters upwind. Ten anemometers and five temperature and relative humidity sensors
were placed vertically at different heights on the tower. The accuracy of the air temperature and relative
humidity sensors (METER VP-3) was variable across a range of ±0.25–0.50 ◦C and ±4%, respectively
(see http://manuals.decagon.com/Manuals/14053_VP-3_Web.pdf for more information). The METER
Davis Cup Anemometers have a wind direction accuracy of ±7◦ and a speed accuracy within ±5%
(see http://manuals.decagon.com/Manuals/). Data were collected from February 2014 through
March 2015. In mid-March 2014, the flat field was plowed to create additional underlying roughness,
specifically furrows and troughs were formed perpendicular to the dominant wind direction at an
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approximate spacing of two meters. The approximate amplitude of the troughs and furrows was 25 cm
deep and 50 cm wide.

Meteorological data were recorded every five minutes based on the average of one-minute
observations. Anemometric data were evaluated for 153 instances when wind speeds were faster than
4 m/s to ensure neutral stability [8] and when the log-linear fit had an r2 greater than 0.95. The height
of the instruments was calculated based on the depth of snow, which did not exceed 10 cm.

This study estimated z0 values from anemometric measurements and used them as a reference
to evaluate concurrent geometric methods. The z0A values were calculated using Equation (1) from
logarithmic anemometer wind profile data. Surface elevation was measured using a FARO Focus3D
X 130 model TLS (https://www.faro.com/products/). This lidar tool generates a point cloud scan
of a given area with an error of ±2 mm and a resolution of approximately 7.5 mm. The TLS was
set up in 2–3 locations around the area of interest with 6 reference spheres to match the images
using the FARO Scene Software. The data were generated into a point cloud and interpolated to a
solid surface with 10 mm resolution with the kriging method using the Golden Software’s Surfer 8
(https://www.goldensoftware.com/products/surfer). The gridded data were de-trended in the x-y
plane to remove the bias in slope of the field or the angle of the lidar. Gaps in the scans tended to be
small (<100 mm), and the kriging interpolation eliminated them. Individual roughness elements were
identified and for each element the silhouette lot area and obstacle height were determined using a
MATLAB code (https://www.mathworks.com/products/matlab.html). This was required to compute
the Lettau formula (Equation (4)). The 1000-m2 area around the tower was scanned on 12 occasions
when the concurrent anemometric and geometric measurements were acquired. One concurrent
measurement set was made with no snow cover for each of the unplowed and plowed scenarios;
seven concurrent measurement sets were made with partial snow-covered area (SCA) and three with
complete snow cover. SCA was determined from digital photos taken from the TLS unit.

Both the Counihan and Lettau methods were used to calculate z0G (Equations (4) and (5),
respectively). The Counihan method was appropriate for this study because the roughness elements
(furrows) in this study site were semi-regular. During each concurrent anemometric and geometric
measurement set, the percentage of the area covered in snow, or SCA, was estimated from photographs.

3. Results

The unplowed versus plowed field yielded different z0A values (Figure 1). On average, the plowed
field was almost 20 times as rough as the unplowed field, yet the coefficient of variation (COV) was
essentially the same (0.67 and 0.62, respectively) (Figure 1). The smallest z0A values for the plowed
field were of the same magnitude as some of the largest z0A values for the unplowed field, in the range
of 1 to 3 × 10−3 m.

The Counihan method estimated z0G values that were 1.39 times larger and had greater variation
than the estimated z0A values (Figure 2). We used the Nash-Sutcliffe coefficient of efficiency (NSCE),
which is a performance statistic based on a comparison of the data fit to the 1:1 line, to evaluate
how estimates of z0G compared with z0A [43]. The NSCE of the Counihan z0G was −1.18, and the
Lettau z0G was 0.14, indicating the Lettau method compared more favorably with the z0A. A linear
regression between both z0G estimates (Counihan z0G and Lettau z0G) and z0A was fit through the
data origin to evaluate if the bias between the two methods could be removed through simple linear
scaling (Figure 2). When the Counihan z0G values were scaled by 0.721 (1/1.39), the NSCE value only
increased to 0.07. However, the NSCE increased to 0.88 when the Lettau z0G values were scaled by
2.34 (1/0.428).

https://www.faro.com/products/
https://www.goldensoftware.com/products/surfer
https://www.mathworks.com/products/matlab.html
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Figure 1. Histogram showing range and distribution of anemometric z0 (z0A) values for the unplowed
and plowed field from anemometric data, based on 28 and 125 wind-speed profiles, respectively.
The summary statistics (mean, standard deviation (std.dev.), and coefficient of variation (COV)) are
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Figure 2. Comparison of Lettau and Counihan geometric methods to the anemometric method. A linear
regression between the geometric-based Lettau and Counihan methods (z0G) and the anemometric
method (z0A) fit through the origin are presented. The Nash-Sutcliffe coefficient of efficiency [43] fit
statistic is also presented. When the Lettau method is scaled by 2.34 (1/0.428), the NSCE increases to
0.88. For the Counihan comparison, when it is scaled by 0.721 (1/1.39), NSCE increases to 0.07.

The estimated z0 values were found to vary as a function of the amount of SCA present (Figure 3).
As SCA increases, z0 decreases, with variability based on the calculation method (Figure 3a). A linear
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regression between SCA and each of the z0 estimates showed r2 values that were 0.01, 0.7, and 0.88 for
the Counihan, anemometric, and Lettau methods of z0 calculation, respectively. There were noticeable
differences in z0 depending whether SCA was increasing because snow was accumulating versus when
SCA was decreasing because the snow was melting. For periods of snow accumulation, removing
snow measurements that were not immediately following a snow event (the yellow boxes in Figure 3b
that represent non-accumulation values) improved the linear relation between accumulating SCA and
z0 (R2 = 0.94).Geosciences 2018, 8, x FOR PEER REVIEW  7 of 11 
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Figure 3. Linear relation between z0 and snow-covered area (SCA as a %) for (a) all datasets (scaled
Lettau and Counihan geometry-based and anemometric-based) with anemometric-based z0 for the
pre-plowed (orange circles) and plowed fields (green triangles) highlighted, and (b) the scaled Lettau
geometry-based z0 using a factor of 2.34 (see Figure 2). Lettau geometry-based z0 measurements
with non-accumulation snow measurements were removed. Lines are based on the best-fit linear
regression of the data. Snow had been on the ground for numerous days prior to the two concurrent
measurements (yellow squares) taken on 22 March 2014 (SCA = 100%) and 13 April 2014 (SCA = 70%).
The snowfall was fresh for all other measurements.

4. Discussion

Geometrically estimated z0, although easier to measure, produced different values when
compared to the anemometric derived values. The Counihan method overestimated by a factor
of 0.721, whereas the Lettau method underestimated anemometric z0 (Figure 2) by a factor of 2.34.
The Lettau method (Equation (4)) has a constant of 0.5 based on the average drag coefficient of the
roughness characteristic of the silhouetted area of the average obstacle. By dividing the Lettau based
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z0 values by the 0.5 and thus eliminating the drag coefficient from the equation, we get a new NSCE of
0.856, with scatter in the data much closer to the 1:1 line (Figure 2). The removal of the drag coefficient
suggests that the geometric data generated from the lidar point cloud appears to account for spatial
and temporal variability in the roughness of a snow surface.

Lidar-based snow data are becoming more readily available [19,26]. The accuracy of the scans
from about 1 mm for terrestrial lidar to 10 cm for airborne lidar can account for fine-scale changes of
the snowpack [26], which enables the computation of z0 at any scale. Although anemometric data can
yield reliable estimates of z0, meteorological towers are expensive to set up and operate. In addition,
data from a single tower does not consider spatial variability as well as the geometric method [44].
Comparing the two methods does not consider the scale of the study area; the geometric measurement
is taken over the entire area near the meteorological tower whereas the anemometric measurement is
only influenced by the fetch area upwind of the sensors [29].

The roughness of the snowpack can vary substantially both spatially and temporally creating
many implications [13,14,45]. Roughness variations can be caused by heterogeneities in land cover,
vegetation, and meteorological conditions [46]; non-uniform distribution of snow cover during
accumulation and melt [45,46]; snow-canopy interactions [47]; and snow redistribution by wind [48].
This was apparent in differences between the estimated z0 for the plowed versus unplowed field
(Figure 1). Land cover varies throughout regions particularly those with a shallow snow environment,
and this creates variations that depend on the underlying topography [13,14,46]. Thus, there are
many different values of z0 in the literature [7] that are broader than our observed mean range of
0.2 to 10 × 10−3 m (Figure 1). For example, Miles et al. [31] found the z0 of a hummocky glacier (a
particularly rough underlying surface) to range between 5 to 500 × 10−3 m, whereas Brock et al. [7]
reported z0 values for fresh snow and older snow of 0.2 × 10−3 and 3.56 × 10−3 m, respectively.
Our results show that change in roughness between a plowed and unplowed field yielded a 20-fold
difference in z0. The results of this study can be applied to areas of similar climate and land cover,
which included flat, bare soil, and bare soil with small furrows (<1 m); and therefore, the results of this
study may not scale appropriately to different land cover types. Further studies of a shallow snowpack
in sagebrush steppe [49], farmland, or non-densely forested environments may be able to replicate
our study results and scale from 1000 m2 to a larger area. The z0 values observed here had a notable
change between flat soil and small furrows, so the changes in z0 values in different environments with
even minimal vegetation will have much larger effects on the z0 values.

The inverse relation of SCA and z0 (Figure 3) [50] is affected by the underlying terrain and size of
the roughness features. As the snow accumulation increases, the roughness elements become buried,
and the topography appears to be smooth [50,51]. This relation indicates that as snow accumulates
over topographic features the snow will begin to level out at a z0 height dependent scale. A hysteresis
can be noted, and it has been found that a single snowfall event on a hummocky glacier can alter the
micro-topography by up to 75% due to the shallow snowpack over the small scaled features [45,52].
The CLM4 uses a z0 value of 2.4 × 10−3 m, a value that falls near the mean of the unplowed field,
which is applicable for deep, flat snowpack surface with minimal influences from underlying terrain.
However, this is not typical for shallower snowpacks or in complex terrains.

Relations between z0 and SCA (Figure 3) can be used to improve snow-energy balance modeling
by estimating the percentage of SCA via remote sensing and applying z0 only to the portion of
area it accurately describes [46,53]. Currently, most models use 100% SCA even though many areas
will remain snow free due to complex terrain and can drastically change during periods of melt
and accumulation [13,53]. Aerodynamic roughness length is incorporated into many climate and
energy models, which require sub-grid snow distribution [54] and are still inadequate at representing
SCA [46,48]. A dynamic z0 based on SCA and land cover type can improve these on a sub-grid
scale. Another complication with these models is the lack of accountability for snowpack variability
throughout accumulation and melt [48,53,54].
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Resolution is an important factor to consider when discussing both SCA and z0G. The higher
the resolution of the measurements (lidar, satellite, etc.), the higher the z0-G accuracy. However,
lidar datasets are often large, especially those acquired with TLS, making them difficult and time
consuming to process. Lower resolution data from remote sensing or airborne lidar systems (ALS)
can cause problems when scaling [53]. Quincey et al. [52] found that z0G is typically underestimated
with a small area and coarse resolution and overestimated with a large area and fine resolution when
compared to anemometric data. Nonetheless, even with lower resolution, applying dynamic z0 values
may greatly improve models. Scaling can be an effective way to incorporate both an anemometric and
geometric z0 value. Based on a specific land cover type, a scaling factor can be applied to areas with
the same land cover. This can help to improve modeled z0 accuracy, once preliminary z0 values have
been established.

5. Conclusions

Aerodynamic roughness length within our study has shown variation spatially and temporally for
a shallow accumulating snow environment. This was apparent in our results that showed differences
in z0 mean values of about 14 × 10−3 m between the plowed and unplowed field. Thus, single-point
measurements of anemometric data may not account for z0 over a range of spatial and temporal scales.
Geometrically calculated z0 using the Lettau method has shown to be an effective and more robust
form of z0 estimation compared to the anemometric method and also producing similar, estimated
values. The anemometric, single-point measurements will also not account for the snow-covered area,
which changes based on its inverse relation with z0. However, SCA can be observed and estimated
from satellite imagery or airborne lidar systems to create a more accurate estimation of z0.
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