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Abstract: The potential contamination of underground drinking water (UDW) caused by CO2

leakage is a critical decision input for risk assessment and management decision making. This paper
presents an overview of the potential alterations to UDW quality caused by CO2 and the relevant
quality guidelines on drinking water. Furthermore, a framework and numerical simulator have
been developed to (i) predict and assess the potential consequences of CO2 leakage on the quality of
UDW; and (ii) assess the efficiency of groundwater remediation methods and scenarios for various
UDW leakage conditions and alterations. The simulator was applied to a Canadian CO2 disposal
site to assess the potential consequences of CO2 leakage on groundwater quality. The information,
framework, and numerical tool presented here are useful for successful risk assessments and the
management of CO2 capture and sequestration in Canadian geological formations.

Keywords: climate change; deep geological disposal; CO2; carbon sequestration; carbon capture; risk
assessment; THMC; groundwater; contamination

1. Introduction

Human activities have altered the chemical composition of the atmosphere through emissions of
greenhouse gases (GHGs), primarily carbon dioxide (CO2), methane (CH4), and nitrous oxide [1–3].
GHGs tend to warm the Earth’s surface by absorbing infrared radiation reflected by it. The principal
anthropogenic GHG is CO2 [3].

This suggests that there is an urgent need to drastically reduce the quantity of GHGs, particularly
CO2, which is released into the atmosphere, and stabilize the concentration of CO2. A potential
contribution to solving this problem is the development and implementation of carbon-capture and
sequestration technology (CO2 storage in deep geological formations). CO2 capture and storage (CCS)
is an attractive option because it can be implemented on a large scale and also has the potential capacity
for deep emission reduction [4–7].

However, before implementing CO2 storage on a large scale, its viability with regard to the
long-term safety of both humans and the environment is crucial. Public safety could be jeopardized if
the stored CO2 leaks into overlying sources of potable groundwater. Indeed, the interactions between
the intruding CO2, water, and rocks would lower groundwater pH and thereby enhance the solubility
of hazardous inorganic constituents (such as lead or arsenic) present in the aquifer rocks [8]. The
release of these hazardous constituents would lead to the contamination of underground drinking
water (UDW). This could impact the environment, human health, and wildlife habitats, restrict or
eliminate the agricultural use of land, and pollute surface waters. It is well known that geochemical
reactions that affect drinking-water quality happen in very diluted waters where minor mineral
dissolution can alter water quality in such a way that environmental laws are violated [9]. This is
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particularly the case for trace metals where water quality standards for human consumption are high.
as set by the World Health Organization (WHO, Geneva, Switzerland; e.g., arsenic: 10 µg/L, lead:
10 µg/L). Thus, an understanding of the potential alteration of groundwater quality caused by CO2

storage is crucial for successful and safe CCS. Furthermore, demonstration through modeling that CO2

leakage is unlikely to affect UDW quality would provide a strong argument in terms of obtaining a
license where injection of CO2 is anticipated to take place in reservoirs or layers overlain by potable
aquifers, which is the case for most onshore injection sites, including those in Canada. Furthermore,
the potential contamination of UDW by CO2 leakage is a critical decision input for risk-assessment
(RA) and risk-management (RM) decision making. RA and RM decision making fail if assessment of
the potential consequences of CO2 leakage on UDW is lacking, or not considered.

Major research efforts are being made around the world to develop appropriate RA and RM
frameworks and guidelines, as well as to establish the best practice procedures for CCS. For example,
the National Risk Assessment Partnership (NRAP), which includes five U.S. national labs executing
collaborative research for DOE-Fossil Energy’s Carbon Sequestration Program, has been developing
defensible, integrated science-based methodology and a platform for quantifying risk at many types of
CO2 storage sites to guide decision making and risk management with respect to the long-term storage
of CO2 [10]. The assessment and prediction of potential impacts of CO2 storage on groundwater
quality and systems is one of the key research tasks within NRAP (e.g., References [11–13]). In Canada,
a relatively similar program (Carbon Management Canada, CMC, Calgary, AB, Canada) has been
in place to support collaborative research among Canadian researchers on CCS. For example, the
primary objective of one of the projects supported by CMC is, in a transdisciplinary collaboration, to
develop a tailored-for-Canada framework for CCS risk assessment and management, based on best
practices being developed around the world, as well as on the Canadian experience to date. The paper
presents results obtained from this project with regards to potential groundwater contamination by
CO2 storage.

The objectives of the present paper are:

- to present a framework and a numerical simulator that have been developed at the University of
Ottawa to predict and assess the potential consequences of CO2 leakage on the quality of UDW;

- to provide an overview of the potential alterations in UDW quality caused by CO2 and
drinking-water quality guidelines (which are relevant for groundwater contamination caused by
CO2) that exist in Canada and other countries; and

- to present an example of the application of the developed simulator to assess the consequences of
CO2 leakage on the quality of groundwater located in a Canadian CO2 storage site.

2. Developed Framework

Figure 1 presents the key building blocks of the framework developed to evaluate the
consequences of CO2 leakage on the quality of UDW and to assess the efficiency of groundwater
remediation methods and scenarios. The framework involves:

(i) an understanding and the identification of all potential mechanisms and processes of UDW quality
alteration caused by CO2 disposal and/or leakage. Figure 2 depicts the potential mechanisms
and processes of UDW alteration by unanticipated leakage and/or migration of CO2;

(ii) the identification of UDW guidelines or standards (which describe the quality parameters set for
drinking water) that apply to the CO2 injection site or region. Table 1 shows current worldwide
guidelines for drinking water quality in terms of the chemical parameters (relevant to CCS),
and Table 2 shows the Canadian guidelines for the main chemical and physical parameters.
These guidelines establish the maximum acceptable concentrations (MACs) of various chemical
substances in drinking water. The WHO guidelines are used as the basis for regulation and the
setting of standards in many countries.
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(iii) the identification and development of all potential CO2 leakage scenarios by using an appropriate
modeling tool and approach. Models that apply numerical, analytical, and semianalytical solution
methods have been successfully used to simulate the injection of CO2 into subsurface formations,
the reactive transport of CO2 and potential leakage scenarios (e.g., References [14–32]);

(iv) the modeling and prediction of the impact of leaked CO2 on the quality of UDW for each leakage
scenario previously identified by using a thermo-hydro-mechanical-chemical (THMC) simulator
developed in this study (Section 3). This modeling allows evaluating the evolution of the quality
or chemical composition and characteristics of the UDW in response to the intrusion of CO2;

(v) an evaluation of the acceptability of the changes in UDW quality induced by the intrusion of
CO2 by comparing the concentrations of the chemical substances and chemical characteristics of
the UDW with those set by the selected drinking-water quality guidelines or standards (Tables 1
and 2);

(vi) a selection of appropriate techniques for groundwater contamination mitigation (e.g.,
Reference [33]) if the changes in the UDW quality induced by CO2 intrusion are judged
as inacceptable;

(vii) the modeling and prediction of the impact of selected mitigation techniques on the improvement
in UDW quality by using the THMC simulator. The predicted chemical parameters of the
remediated groundwater are then compared with those set by the selected drinking-water quality
guidelines to evaluate its acceptability.
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Figure 1. Framework to predict and to assess the potential consequences of CO2 leakage on the quality
of underground drinking water (UDW) as well as assess the efficiency of groundwater mitigation
methods and scenarios.
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Table 1. Maximum acceptable concentrations (MACs) of various chemical parameters reported by the
World Health Organization (WHO), European Union (EU), Environmental Protection Agency (EPA),
and Australian Government National Health and Medical Research Council (NHMRC).

Parameter WHO (mg/L) EU (mg/L) EPA—United
States (mg/L) NHMRC (mg/L)

Aluminum (Al) 0.2 0.2 - 0.1
Arsenic (As) 0.01 0.01 0.01 0.01

Antimony (Sb) 0.005 0.005 0.006 0.003
Barium (Ba) 0.7 - 2 2

Benzene (C6H6) 0.01 0.001 0.005 0.001
Boron (B) 2.4 1 - 4

Cadmium (Cd) 0.003 0.005 0.005 0.002
Chromium (Cr) 0.05 0.05 0.0001 0.05

Chlorine (Cl) 5 - - 5
Copper (Cu) 2 2 1.3 2

Cyanide (CN−) 0.005 0.05 0.2 0.08
Fluoride (F) 1.5 1.5 4 1.5
Lead (Pb) 0.01 0.001 0.015 0.01

Manganese (Mn) 0.4 0.05 0.05 0.5
Mercury (Hg) 0.006 0.001 0.002 0.001

Molybdenum (Mo) 0.07 - - 0.05
Nickel (Ni) 0.07 0.02 - 0.02

Nitrate (NO3
−) 50 50 10 50

Nitrite (NO2
−) - 0.2 1 3

Polycyclic aromatic hydrocarbons
(PAHs) - 0.0001 - 0.00001

Selenium (Se) 0.04 0.01 0.05 0.01
Silicon (Si) - - - 80

Sodium (Na) 50 200 - -
Uranium (U) 0.03 - - 0.017
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Table 2. Summary of MACs of various chemical and physical parameters reported in Canadian water
quality guidelines *.

Parameter
Aluminum Ammonia Arsenic Barium Boron Calcium Chlorate/

Chlorite
Chloride Copper

(Al) (NH3) (As) (Ba) (B) (Ca) (Cl) (Cu)

MAC
(mg/L) 0.1 None

required 0.01 1.0 5.0 None
required 1.0 250 1.0

Parameter
Chromium Copper Cyanide Fluoride Iron Lead Manganese Magnesium Mercury

(Cr) (Cu) (CN−) (F) (Fe) (Pb) (Mn) (Mg) (Hg)

MAC
(mg/L) 0.05 1 0.2 1.5 0.3 0.01 0.05 None

required 0.001

Parameter
Nitrate pH Selenium Sodium Strontium Sulphate Sulphide

TDS
Uranium Zinc

(NO3) (Se) (Na) (Sr) (SO2
−4) (H2S) (U) (Z)

MAC
(mg/L) 45 6.5–8.5 ** 0.01 200 5 500 0.05 500 0.02 5

* Source of data: Health Canada (2012); **: No unit.

3. THMC Tool for Modeling Consequences of CO2 Leakage on UDW Quality

3.1. Introduction

The migration of leaking CO2 into groundwater systems and its interactions with aquifers, which
causes potable aquifer contamination as a consequence of the leakage, involves complex thermal (T),
hydraulic (H), mechanical (M), and chemical (C) couplings (e.g., Reference [34,35]). Therefore, an
analysis of the consequences of this migration and related interactions requires a coupled THMC
numerical tool.

In this study, a new numerical tool (TOUGHREACT-FLAC3DDM) for the coupled
thermo-hydro-mechanical-damage-chemical analysis of CO2 migration and CO2–rock–water
interactions has been developed. The tool is established based on the extension of TOUGH-FLAC [15].
Compared to the original scheme of Reference [15], the developed tool expands the area of applications,
i.e., geochemical reactions as well as mechanical damage, and their coupled influences can be handled
well by the new tool. With this new tool, not only can the injection-induced ground heave and
deformation be simulated (as evidenced by Reference [15]), but it can also help study the complex
geochemistry evolution happening underground. Coupling geochemistry with a THM simulator is
a known trend of efforts in the numerical simulation field. It enables tremendous potential in the
study and assessment of various key geoscience projects, for example, the deep geological repository
for nuclear wastes, greenhouse gas, and geothermal exploration. One of the typical and successful
application is in CCS projects as demonstrated in this study.

First, the T, H, and fluid–rock chemical (C) interaction capabilities of TOUGHREACT, a
well-established numerical code, are coupled with the strong geomechanical (M) modeling capabilities
of a finite volume formulation, FLAC3D. Then, an elastoplastic damage model is developed and
implemented into FLAC3D. This results in the development of the TOUGHREACT-FLAC3DDM

simulator, with the capability of modeling CO2 migration in geological media and the associated
fluid–rock interactions by taking into consideration the coupled thermal, hydraulic, geochemical, and
mechanical-damage processes [36].

The key processes and their couplings considered by the simulator are shown in Figure 3. Some
typical important multiphysics interactions are: M–H: permeability increases induced by excess
stress or mechanical damage; H–M: pore collapse induced by fluid drainage and effective stress
change induced by pore-pressure modifications; H–C: solute transport due to advection; H–T: thermal
transport process due to advection flow; T–H: permeability changes induced by heat gradient; T–C:
rate of chemical reaction changes induced by temperature changes; C–M: chemically induced porosity
changes; C–H: chemically induced permeability changes. It is noteworthy that the proposed THMC
numerical simulator has several novelty aspects: (1) a new mechanical constitutive model was
developed and implemented in the simulator; (2) the porosity variation induced by chemical reactions
(related to permeability inherently in TOUGHREACT) was further incorporated into the mechanical
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constitutive model in the simulator; (3) H–M coupling involving re-equilibration of pore pressure
and effective stress, which is fundamental to the geomechanical assessment of well stability and
groundwater flow, is taken into account by the simulator.

The developed numerical tool has been validated and tested against experimental data of CO2

or gas-injection tests on sedimentary host rocks [36,37]. The simulator structure and couplings, a
description of the mathematical statements, and the governing equations of the THMC tool and
examples of the validation results are presented in the following paragraphs.
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3.2. Simulator Structure and Couplings

Two numerical codes, FLAC3D (designed for mechanical (M) analysis) and TOUGHREACT (THC
code), have been coupled to act as a robust THMC-coupled simulator for assessment purposes to
investigate potential groundwater contamination in response to CO2 leakage.

FLAC3D is a robust finite-difference program for mechanics computation, and especially
professional and convenient in light of its capability to simulate the behavior of various geomaterials
that undergo plastic flow when deviatoric stress yielding has been reached [38]. Specific numerical
algorithms, e.g., the Lagrangian calculation scheme and the mixed-discretization zoning technique, are
used to ensure accurate plastic-flow modeling. FLAC3D can handle any constitutive model with no
adjustment to the solution algorithm, and is most effective when applied to nonlinear or large strain
problems [38].

FLAC3D is compatible with built-in programming, thus providing a convenient interface for users
to define new constitutive models. In this study, an elastoplastic damage model was developed and
scripted into a dynamic link library (DLL) compatible to FLAC3D to form a new FLAC3DDM module.

TOUGHREACT, which is based on the TOUGH code, considers THC and permeability–porosity
couplings as well as geochemical reactions, and multiphase solute transport that result from adsorption,
interphase exchange, mineral dissolution, and precipitation. A sequential iteration approach is
used by first running the solution of the multiphase flow equations, and then by using the fluid
velocities and phase saturations for chemical-transport simulation. Chemical transport is solved on a
component-by-component basis [39]. TOUGHREACT has proven to be efficient and reliable in the
modeling of the time-dependent transport of nonisothermal multiphase/unsaturated flow and reactive
transportation of chemical species in porous media.

Via a series of scripted programs that were developed with the C++ and FISH languages, the
primary variables, e.g., pore pressure, temperature, and porosity, were exchanged between FLAC3DDM

and TOUGHREACT while meshing of the Finite Element Model (FEM) models for the both programs
were kept consistent and compatible with each other. Figure 4 shows the schematic diagram of
this coupling process. As variables are applied into grids in FLAC3D instead of elements as in
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TOUGHREACT, data interpolation was carried out when introducing these data from the simulation
results of TOUGHREACT. On the other hand, the FLAC3D can output results that are represented at
the elemental centers, and hence no interpolation is necessary to transfer data into the input files for
TOUGHREACT. The coupling was achieved by a sequential iterative approach that can largely save
memory and computation requirements.
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3.3. Description of the THMC Model

A brief description of the THMC model is presented here. The THC component of the formulation
adopted here is based on the THC formulation proposed in TOUGHREACT [40,41]. THC formulation
is defined by a set of governing equations, constitutive equations, and equilibrium restrictions. The
M component is based on the formulation proposed in Reference [38] with the extension of the
elastoplastic mechanical constitutive model to an elastoplastic damage model.

3.3.1. Governing Equations and Constitutive Functions for the THC Model

The key governing equations for multiphase fluid and heat flow and chemical transport have
identical structure and are derived from the principle of mass (or energy) conservation. These
equations are summarized below. The main processes considered include: (1) fluid flow in both
liquid and gas phases happening under pressure, viscous, and gravity forces; (2) interactions between
flowing phases are represented by characteristic curves (relative permeability and capillary pressure);
(3) heat flow occurring by conduction, convection, and diffusion. The governing equations were
complemented with constitutive local relationships that express all parameters as functions of
fundamental thermophysical and chemical variables [10,41]. The constitutive functions adopted
in this study are given in References [36,37,40–42]. The governing equations for chemical equilibrium
are given in Reference [40].

The mass conservation equation is given as [40]:

dMk

dt
+∇Fk + qk = 0 (1)

where M is mass accumulation, F is relative mass flux, q is the source/sink, and superscript k indicates
the phase state (gas and liquid), heat or chemical species.
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The mass accumulations of gas and liquid are in the form of:

Mg = φ
(

SlρlXgl + SgρgXgg
)

(2)

Ml = φ
(

SlρlXll + SgρgXlg
)

(3)

where S is saturation, ρ is dry density, X is the mass fraction between the liquid and gas phases, and Φ

is porosity.
Mass flux is expressed as follows:

Fg = ρlvlXgl + ρgvgXgg (4)

Fl = ρlvlXll + ρgvgXlg (5)

The source and sink item is given as:

qg = qgl + qgg (6)

ql = qll + qlg (7)

The mass accumulation of chemicals is written as:

Mk = ∅SgCg
k (8)

Mj = ∅SlCl
j (9)

where C is the chemical concentration in the liquid (Cj) and gas phases (Ck), respectively.
For chemical species in aqueous and gas phases, the mass flux is a function of fluid flow and the

effective diffusion coefficient,
Fk = vgCg

j − Dg
e∇Cg

j (10)

Fj = vlCl
j − Dl

e∇Cl
j (11)

where subscript k is the chemical component in the gas phase, j is the chemical component in the
aqueous phase, De is the effective diffusion coefficient, v is the fluid velocity, superscript l is the liquid
phase, and g is the gas phase, respectively.

The source and sink item for the chemical component in the aqueous phase includes:

qj = qs
j + ql

j + qg
j (12)

However, only a species in the gas phase is considered in the source and sink item for gas,

qk = qg
k (13)

Heat balance and dissipation equations are given as:

Mh = φ
(

SlρlUl + SgρgUg
)
+ (1− φ)ρsUs (14)

Fh =
(

ρlvlhl + ρgvghg
)
− λ∇T (15)

where U is the internal energy (U = C*T, C is specific heat), h is specific enthalpy, λ is the
heat-conductivity constant, T is the temperature, and superscript h is heat.

The relationship between the amount of solid precipitation and the pore space available to the
fluid phases was also considered. The matrix permeability changes were calculated from changes
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in porosity by using permeability ratios calculated from the Carman–Kozeny relation, and ignoring
changes in grain size, tortuosity, and specific surface area, as follows [40]:

k
k0

=

(
1− φ0

1− φ

)2( φ

φ0

)3
(16)

where Φ is the updated porosity, and Φ0 is the original porosity before accounting for the precipitation
or dissolution effects on porosity change. Gas permeability is directly dependent on porosity and
relative saturation in such a form:

kg =

(
1− Sl

Sl − Sgr

)2
(

1−
(

Sl
Sl − Sgr

)2
)

(17)

where Sl is the liquid-phase saturation and Sgr is the irreducible saturation for the gas phase.
A stress-related relationship for the permeability of rocks was used for easy handling of data

exchange, i.e., matrix permeability between FLAC3DDM and TOUGHREACT [43]. The matrix
permeability variation with respect to the mechanical coupling effect was computed by updating
porosity change in the input file for TOUGHREACT. FLAC3DDM not only outputs the stress state
for data exchange with TOUGHREACT, but also provides information about the volumetric strain
increment (εI

v), based on which the porosity can be calculated:

φ =
εI

v + φ0

1 + εI
v

(18)

where Φ is the updated porosity and Φ0 is the original porosity before mechanical coupling. The
change in the porosity computed from the mechanical equilibration in FLAC3DDM is used to estimate
changes in permeability by means of empirical equations. Both mechanical damage and compression
could be accounted as discussed below. More details on the THC model are given in Xu and
References [36,37,40–42].

3.3.2. Governing Equations and Constitutive Functions in FLAC3DDM

FLAC3D solves the following equation of motion [38],

∇σij + ρbij = ρ
dvij

dt
(19)

where σ is the stress, ρ is the density of the matrix material, b is the body force, and v is motion.
The stress increment is given as:

∆σij = Hij
(
σi,

.
εij
)

(20)

where H is the stiffness matrix and
.
εij is the strain rate. The later is governed by:

.
εij =

1
2

(
∇vij +

(
∇vij

)tr
)

(21)

where tr means the transpose of a tensor.
For EP theory, a strength criterion must be imposed to identify the necessary conditions for the

initialization of the plastic flow. The well-known Mohr–Coulomb model can be written in the following
form:

F =
√

J2m(θ) + αI1 − k = 0 (22)

where m(θ) = cos θ −
√

1/3sinφ sin θ, α = sinφ/3, k = Ccosφ, J2 is second deviatoric stress invariant,
I1 is the first stress invariant, C is cohesion, θ is the Lode angle, and Φ is the internal frictional angle.
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The total strain increment consists of elastic and plastic strains as following:

εij = εe
ij + ε

p
ij (23)

The elastic strain reads:
εe

ij = Cijklσij (24)

where Cijkl is the compliance tensor that is representative of the elasticity.
Using associative flow rule, the strength criterion (F, Mohr–Coulomb theory in this study) can be

treated as the yield function. In this regard, the plastic strain rate takes this form:

.
ε

p
ij = λ

∂F
∂σij

(25)

where λ is the consistency parameter that can be determined by classical elastoplastic theory with
appropriate rearrangement of the differentiated form of the yield function.

FLAC3D allows users to extend the mechanical modeling database by defining new constitutive
models. A user-defined model can be incorporated into FLAC3D by using the C++ dynamic
link library (DLL) file. The original source code for the Mohr–Coulomb model was modified to
account for mechanical damage by using continuum damage mechanics [44–46]. The elastic–plastic
Mohr–Coulomb model was supplemented with the damage concept with respect to its influence on
the elastic-modulus and shear-strength criteria.

In this case, the tool’s elastoplastic damageable (EPD) model enabled us to model the plastic
strain-induced damage and the impact on permeability change. Permeability was updated by the
plastic strain in an exponential manner in terms of a damage factor that was defined as a parabolic
function of the plastic strain.

As plastic strain is required for the calculation of the damage coefficient, strain correction is
supplemented from the original code. The compiled DLL file can be loaded into FlAC3D by the Fish
command. Figure 5 depicts the schematic diagram for the numerical implementation of this EPD
model into FLAC3D.

In this study, an exponential evolution law is adopted [15]:

log
kD
k0

= κ′D (26)

where D is damage factor, κ’ is the model constant, 1 < κ’ < 3, kD is the permeability related to the
damaged material, and k0 is the permeability of the intact sample under a certain confining stress. With
THMC coupling in mind, the parameter k0 in Equation (26) is equivalent to the updated permeability
after porosity updating due to chemical precipitation/dissolution.
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3.4. Simulator Validation

The developed modeling tool is based on two established commercial codes (TOUGHREACT,
FLAC3D) that have been extensively scrutinized and successfully validated by the research community
for over 15 years. Furthermore, TOUGHREACT has been successfully tested and used in many CO2

storage problems by numerous investigators from around the world. FLAC3D has been successfully
applied to a wide range of problems related to geomechanical processes in geological media. Moreover,
each code (FLAC3D, TOUGHREACT) is “qualified” for regulated programs, such as the Canadian
and U.S. nuclear-waste program. In this study, additional validation examples of the developed
TOUGHREACT–FLAC3DDM tool have been performed. The capabilities of the THMC tool to simulate
CO2 migration and CO2–rock–water interactions with the associated consequences on UDW have
been tested against well-controlled laboratory and field-experiment CO2 or gas-injection tests.

Validation was carried out in a trial-and-error approach. The conceptual model was first
developed based on the experiment. Appropriate boundary and initial conditions were kept consistent
to the test conditions. Material properties were obtained from corresponding reports and were
assigned in the model. Critical parameters were identified and varied in a range for respectively
running simulations until the monitored key parameters were comparable against the test data.
Only the best results are presented here. The validation considers the geochemical reactions and
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permeability evolution laws. The validation results showed good agreement between the experimental
and predicted results. Some typical examples of the validation and simulation results are presented
below. Additional examples of the validation results were published elsewhere [36,37].

3.4.1. First Validation Example

The first validation example consists of simulating a laboratory test performed by Reference [41].
These authors reported a detailed experimental study on CO2 permeation through sandstone sampled
from an oil field. The rock sample was permeated with a CO2 saturated brine solution under a
confining pressure of 24 MPa and temperature of 100 ◦C. Permeation velocity was maintained at 2.5
mL/min and sustained for 130 h. Chemical species in the leachate and mineral compositions in the
porous media were analyzed, along with discussions on the permeability-reduction mechanism. The
experimental work was numerically simulated by using the developed simulator with the appropriate
initial and boundary conditions. Figure 6 shows a comparison example of the test data with the
simulated results for the evolution of various chemical species in the leachate. It can be seen that
most of the primary chemical species fit with good agreement. It is noteworthy that the simulated Ca
concentration and pH are, on average, larger than the experimental results. This could be related to the
assumption that calcite exists as an equilibrium mineral without taking into consideration the reaction
kinetics. The current version of TOUGHREACT only allows equilibrium calculation for calcite–CO2

reactions in view of their comparatively high reaction rate (1000 times that of albite) and the large
time scale. In addition, the solution pH greatly relies on the hydration reactions of surface functional
groups of a variety of minerals. A better prediction of pH requires more detailed information about the
surface properties, aqueous species, concentrations, and equilibration constants. Regardless of these
limitations, the current simulation provides an appropriate approximation of the chemical species, and
generally reflects the chemical reactions.
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Figure 6. Variations in chemical concentration and solution pH of leachate with permeation time
(scatter is test data and curve is simulated results; simulated curve considers effects of cation exchange).

Moreover, the predicted volume fractions (%) of the different minerals (albite, calcite, celestine,
illite, kaolinite, k-feldspar, quartz, and smectite) present in the sandstone were compared with the
experimentally obtained data. Figure 7 shows a comparison of the simulated mineral composition
with the test data. We can observe relatively good agreement between the experimental data and the
predicted values.
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Figure 7. Comparison of the predicted and experimentally determined volume fraction of the minerals
present in sandstone.

3.4.2. Second Validation Example

The second validation example deals with the simulation of a series of gas-breakout experiments
carried out by Reference [47] to study the sealing efficiency of various types of intermediate-to-low
permeable sedimentary rocks. This is a typical hydraulic–mechanical coupling problem. The test
sample and relative boundary conditions are shown in Figure 8. To verify the prediction ability of
the developed tool, the authors simulated a typical test on the permeation of highly pressurized
CO2 through a clay stone. The cell sample was sized as 2.0 cm × 2.85 cm (L × D) and presaturated
with water at 50 ◦C before being subjected to gas permeation. The outlet was sealed to allow the
accumulation of permeated gas. The experimental procedure is explained in detail in Reference [47].
The confining pressure (also the initial stress) was maintained to at least 300 bar to ensure a leak-tight
seal around the sample plugs.

Figure 9 shows a comparison of the results from the developed simulator and the results obtained
by Reference [47] with respect to the evolution of the gas pressure and the effective permeability for
CO2 (ke). The results show good agreement between the experimental and modeling results.
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Figure 8. Test sample (a) 3D view and (b) cross-section with boundary conditions.
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Figure 9. Comparison of test data and simulated curve with respect to the evolution of gas pressure
and effective permeability for CO2 (ke) (source: Reference [47]).

3.4.3. Third Validation Example

The third validation example consists of simulating one of the laboratory-scale gas-injection
tests carried out on Opalinus clay [48,49]. Triaxial loading, strength, and gas-injection tests were
performed on clay samples in a standard Kármán cell in a servohydraulic testing machine that allowed
for independent control of the radial (σ2 = σ3) and axial stresses (σAx) (Figure 10). The size of the
cylindrical rock sample was 40 × 160 mm2 (radius × length). The gas (nitrogen) was injected at
controlled pressure in a central borehole situated at the bottom of the sample (Figure 10). The gas
flow rate at the upper outflow borehole was monitored. The gas-injection tests performed with
increased confinement pressure (Pc) were selected for this validation. The confining pressure varied
from 10 to 50 bar during the test. Hydrostatic loading was applied with increased confinement and
step-wise increase of the gas pressure as shown in Figure 11. The details of the experimental setup
and procedures, as well as the rock properties, are available in Reference [48]. The validation results
are presented in Figure 12. This figure illustrates the comparison between measured and simulated
gas-flow rate. To study the significance of the impact of mechanical damage (e.g., rock microcracking)
induced by high gas pressure on the gas migration within the sedimentary rock, two simulation results
are presented in Figure 12: (i) a simulation performed by using the TOUGHREACT–FLAC3DDM
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(THMC tool), i.e., one that includes the developed EPD model (mechanical component); and (ii) a
simulation carried out by using TOUGHREACT alone, i.e., one that only considers the multiphase
flow modeling capability of TOUGHREACT. From Figure 12, it can be seen that the THMC tool
can adequately predict the gas migration within the Opalinus clay. However, Figure 12 shows that
TOUGHREACT alone (that does not include a mechanical component) cannot adequately predict the
gas flow rate for high gas-injection pressure. These results suggest that the THMC tool can satisfactorily
describe the gas migration within the laboratory sample as well as capture the main physical processes
that occur in the samples.
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Figure 10. High-pressure triaxial cell used for the gas-injection tests [48].
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4. Application to Potential Canadian CO2 Disposal Sites

4.1. Introduction

Shell Canada Limited (Shell, Calgary, AB, Canada), on behalf of the Athabasca Oil Sands Project
(AOSP), has made an application to the Energy Resources Conservation Board to construct and
operate a CCS project (Quest CCS Project) in Alberta (Canada). The goal of the project, which
is a key component of the GHG abatement strategy for Shell, is to capture CO2 (at the Scotford
upgrader facility), transport it (via pipeline), and permanently store it in the Basal Cambrian Sands
(BCS) formation, at a depth of approximately 2 km below ground level (Figure 13). It is expected that
approximately three to 10 injection wells will be drilled for injecting CO2 into this deep saline geological
formation [50]. The lifespan of the Quest CCS Project is considered to be greater than 25 years [50].
However, concerns have been raised that CO2 leakage from deep geological storage could adversely
impact the water quality in the aquifers that overlie the BCS. Therefore, to better understand the
consequences of CO2 leakage on the quality of the groundwater present in the project area, numerical
simulations have been performed by using the THMC simulator developed in this study. Several
results have been obtained. The geological characteristics of the project site, a model setup, and some
examples of the typical modeling results with regards to the quality of the groundwater are presented
and discussed in the following sections.
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4.2. Site Description

The targeted CO2 injection and disposal zone of the Quest Project, i.e., the BCS, is a deep saline
aquifer, which is overlain by a succession of low permeability seals that act as barriers between the
BCS and the nonsaline groundwater system. The BCS is in the Western Canadian Sedimentary Basin,
which consists of clastic and chemical deposits that are approximately 2000 m in thickness [51]. A
stratigraphic description of the region of interest is shown in Figure 14. The BCS is composed of
sandstone with upper-fine to upper-coarse and round to subrounded grains [51]. Above the BCS lies
a sequence of Middle and Upper Cambrian deposits. The Upper Cretaceous Lea Park Formation is
composed of marine shales and siltstones with minor sandstone stringers that have a thickness of over
100 m. The Belly River Group forms the uppermost bedrock in the region, and hosts aquifers above
the base of groundwater protection (BGWP) [51]. Quaternary deposits above the bedrock surface
include glacially derived deposits with a thickness that varies between 0 and 100 m across the project
area [50]. The mechanical properties, porosity, permeability, ground stress, maximum stress direction,
and capillary pressure of the rock formations in this area are provided by References [52–55]. They
reported that the level of ground stress at the Quest site can be predicted with the Equation (27):

Sv = 22 ∗ z(kPa); SHmin = 14 ∗ z(kPa) (27)

where Sv is the vertical stress, SHmin is the minimum horizontal stress, and z is the depth.
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4.3. Model Setup

The intrusion of leaking CO2 into the Belly River aquifer and the consequences on water quality
were simulated. This targeted aquifer outcrops at the Quest CCS injection site. The overall thickness of
the Belly River aquifer is about 100 m, which consists of the Oldman and Dinosaur Park Formations [50].
This formation layer is predominantly interbedded mudstones to very fine grained sandstones with
subordinate, but prominent coarser-grained sandstone beds. The Oldman Formation of the Belly River
Group overlies the Foremost Formation and subcrops beneath the remainder of the area of interest [50].
The Oldman Formation is made up of continental deposits of interbedded sandstone, siltstone, shale,
and coal. The model setup used for most of the simulations is depicted in Figure 15a. The model setup
was based on the characteristics of the Belly River aquifer. The dimension of the modeling region was
600 × 300 × 100 m3 for the X × Y × Z coordinate directions, which cover a wide range of typical
aquifers as shown in Figure 15b. A three-dimensional FEM gridding of the analysis zones was carried
out. The modeling started with the basic assumption that CO2 stored in deep geological units can
escape via preferential pathways (Figure 2) and locally enter the Belly River aquifer from below at a
constant rate. This is a conservative approach. A similar approach was used by other researchers (e.g.,
References [11,56,57] to investigate the effect of CO2 leakage on groundwater quality. To deal with the
uncertainties associated with the leakage rate or CO2 intrusion rate into the aquifer, scenarios with two
leakage rates were defined and taken into consideration in the simulations. The first is considered as a
normal scenario (7.5 × 10−5 kg/s), and the second as the worst-case scenario (conservative approach
with a leakage rate at 3.3 × 10−3 kg/s). Only simulation results related to the worse scenario are
presented below.
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4.4. Initial and Boundary Conditions

Temperature linearly varies with depth, and a geothermal gradient of 2.6 ◦C per 100 m in depth
was assumed, as suggested by Reference [58]. Moreover, it was assumed that the formations were
initially water-saturated. A linear hydrostatic condition and the self-weight of the rock formations were
assumed to be based on rock density for the starting hydraulic and mechanical conditions. The bottom
boundary of the FEM model was fixed in displacement, while the side boundaries were confined with
ground stress varying with depth. Groundwater flow directs to the downstream at 1.3 × 10−9 m/s.

The mineralogical, geomechanical and hydrogeological input data for our model are shown in
Tables 3–5 and were taken from References [54,55], whereas the data with regard to the chemical
composition of the Belly River formation were obtained from the Alberta Geological Survey [59,60].
As a conservative measure, a moderately high level of permeability anisotropy was assumed in this
study. The vertical to horizontal ratio of the permeability kv/kh was regarded as 0.1 for both layers
of sedimentations in the Belly River formation. The van Genuchten model was used to calculate the
capillary pressure and relative permeability of the two-phase flow of CO2 and water. The air-entry
value depends on permeability in accordance with the Davies relationship [61]. The hysteresis of the
capillary pressure and relative permeability were not considered in the model. Equilibrium runs were
conducted prior to simulating CO2 intrusion to create geomechanical and hydrogeological equilibrium,
as well as establish the initial chemical composition of the groundwater at equilibrium with the
selected mineralogy.

With regard to the boundary conditions, side boundaries were set to be impermeable, and a
confining stress of 300 bar for the second validation example, and 10 to 50 bar for the third validation
example were applied, respectively. The inlet and outlet boundaries were considered permeable, with
one end fixed in displacement, while the other end was confined with confinement stress.

Table 3. Hydrogeological parameters for the modeling of CO2 intrusion into the shallow aquifers.

Formations Dinosaur Park Oldman

Density (1000 kg/m3) 2.5 2.5
Porosity 0.20 0.15

Permeability—horizontal (m2) 2.0 × 10−14 5.0 × 10−15

Permeability—vertical (m2) 2.0 × 10−15 5.0 × 10−16

Pore compressibility 1.0 × 10−8 1.0 × 10−8

Air-entry value (Pa) 6.80 × 104 1.10 × 105

Table 4. Mineral components and abundance in volume.

Mineral
Volume Percentage

Dinosaur Park a Oldman a Average b

Calcite 0.017 0.066 0.19
Galena - - 0.0005 c

Hydrocerussite - - <5.0 × 10−12

Quartz 0.263 0.406 0.3
K-feldspar 0.01 0.02 0.2
Kaolinite - - 0.16 d

Smectite-ca - - 0.1 d

Illite - - 0.05 d

Note: a indicates that the data source is from Reference [62]; b indicates the source is from Reference [63], c is assumed
with justifiable reference to Reference [64]; and d means the data about clay minerals are from Reference [65].
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Table 5. Geochemistry of groundwater in both the Belly River formation [60] and Alberta basin [66].

Parameter
Value

Unit
Belly River Formation Alberta Basin

pH 6.9–8.95 8.2
EC 9.420 1.22 mS/cm
Eh -66.5 36 mV
T 15.5 6.9 ◦C

DO 0.85 0.39 mg/L
T-Alkalinity 162 545 mg/L

Boron 1.38 0.26 mg/L
K 21 1.4 mg/L
Fe <0.1 0.05 mg/L

Strontium 1.17 - mg/L
OH <5 - mg/L

CO3
2− 138 - mg/L

NO3
− <0.1 0.002 mg/L

NO2
− <0.05 - mg/L

Na 2000 318 mg/L
Cl− 3050 10.0 mg/L
Mg <1 0.9 mg/L

SiO3
2− 5.9 - mg/L

Ca 3 4.5 mg/L
HCO3− 92 635 mg/L

Si 12.9 3.75 mg/L
SO4

2− 20 93.8 mg/L
As 25 0.3 ppb
Pb 0.43 0.1 ppb

4.5. Examples of Results and Discussions

4.5.1. Spatial Distribution and CO2 Evolution

Figure 16 shows the evolution of the leaked CO2 gas concentration in time and space. It can be
observed that, after one year of leakage, the CO2 gas phase evolved close to the intrusion area. This
CO2 plume then migrated laterally and upward. Once the CO2 plume broke through the lower layer of
the Oldman Formation, the higher permeability in the upper layer (Dinosaur Park Formation) resulted
in the faster spreading of the CO2. After 100 years of CO2 intrusion, the largest lateral plume appeared
in the Dinosaur Park Formation. This can be explained by the higher permeability of this formation.
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4.5.2. Changes in Groundwater Acidity

The variation of pH with time is shown in Figure 17. The initial pH of 7.5 sharply declined to
5.5 after 20 years of CO2 leakage. However, only areas close to the intrusion point were affected.
Then, the low pH-plume migrated upward and spread laterally up to about 300 m from the intrusion
point. The vertical extension can be explained by the upward migration of gaseous CO2 driven by
density contrast. Again, the largest lateral pH-plume appeared in the Dinosaur Park Formation due
the reasons mentioned before. This observed sensitivity of the aquifer pH to CO2 intrusion might be a
useful parameter to detecting any CO2 leakage zones.

4.5.3. Prediction of Heavy-Metal Concentrations

It is well known that, with increasing acidity, contaminants such as heavy metals can be mobilized
from aquifer rocks via mineral dissolution and desorption from mineral surfaces. Therefore, the
evolution of the concentration of lead (Pb) in the targeted aquifer with time was simulated. Geological
survey in the western Canada sedimentary basin revealed considerable abundance of galena grains in
surficial sediments (one to four angular to subangular galena grains were recovered in eight of the
till samples from NW Alberta, and more other reports of galena in the Devonian formation in the
Sedimentary Basin) [64]. It is also highly expected to discover Zn-rich base metal deposits hosted
within Cretaceous shale rocks in the Western Canada Sedimentary Basin, including the Belly River
formation that is of particular interest to this study. Pb has been detected at various concentrations in
some groundwater and formation-water samples [60,66], which indicates the presence of galena in
the sediments. A galena proportion of 0.05% was used in this study [63]. The speciation of carbonate
greatly depends on the solution pH, and is thus vulnerable to CO2 intrusion. Metal sulfide, however,
i.e., galena is more prone to change in redox potential. Figure 18 depicts typical results of the effect of
leaking CO2 on the concentration of Pb and its spatial distribution in the aquifer. On the other hand,
Figure 19 shows the variation in Pb concentrations in the pore fluid with leakage time at the surface
of the aquifer along the X-axis. Modeling results show that the maximum concentrations of Pb after
100 years of CO2 leakage are 1.8 × 10−9 M. Compared to the WHO standard and Canadian guidelines
for drinking water (Tables 1 and 2), it was found that the water quality of the aquifer still meets the
WHO and Canadian standards, as the MAC of Pb was within the drinkable range.
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5. Summary and Conclusions

A review and analysis of the issues or concerns related to the potential impact of CO2 disposal
and leakage on UDW have been carried out. A compilation and analysis of the relevant potential
contaminants and existing regulations for UDW quality are being undertaken. The elements presented
in the tables in this work are selected based on the most important elements reported in the different
literature in terms of freshwater-quality control.

A THMC numerical tool with the capability of modeling CO2 migration and its impact on
the quality of aquifer water was developed, taking into consideration all relevant coupled thermal
(T), hydraulic (H), chemical (C), and mechanical-damage (M) processes. The simulator has been
successfully validated.

The numerical tool has been applied to a Canadian CO2 disposal site (Quest CCS Project site) to
assess the consequences of potential CO2 leakage on groundwater quality in the study area (Belly River
aquifer). The simulation results have shown that CO2 leakage could result in the increase of the acidity
of the Belly River aquifer. This would, in turn, result in an increase in heavy-metal concentrations,
such as Pb, in the groundwater. However, the maximum concentrations of Pb after 100 years of CO2

leakage would still be lower than the maximum acceptable concentration of Pb established by WHO
and the Canadian drinking-water guidelines. Despite these modeling results, it should be emphasized
that there is a lack of sufficient geochemical and mineralogical data at the study area. Furthermore,
the kinetics of heterogeneous reactions or the thermodynamic data used in the model are scale- and
history-dependent, and cannot be reliably quantified. General lack of a good knowledge of subsurface
heterogeneities could also trigger or limit CO2 migration. Providing a perfect match in meshing
between FLAC3D and TOUGHREACT is crucial to generate a conceptual model for a geometry.

Therefore, it is important that further studies be conducted to address the issues mentioned above.
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